Introduction to Stochastic Optimization in Supply Chain and Logistic Optimization John R. Birge Northwestern University

Outline

- Overview
- Part I - Models
- Vehicle allocation (integer linear)
- Financial plans (continuous nonlinear)
- Manufacturing and real options (integer nonlinear)
- Part II - Optimization Methods

Overview

- Stochastic optimization

- Traditional
- Small problems
- Impractical
- Current
- Integrate with large-scale optimization (stochastic programming)
- Practical examples
- Expanding rapidly
- Integration of financial and operation considerations

Vehicle Allocation

- Decision:
- How to position empty freight cars?

DEMAND: DAY 1: \mathbf{B} to $\mathbf{A}:$ Mean Value=2 DAY 1: A to B:Mean Value=2

Vehicle Allocation: Mean Value Solution

Parameters: COST: 0.5 per empty car from A to B

REVENUE: 1.5 per full car from B to $A, 1$ from A to B

- Maximize: Revenue-Cost
» MOVE TWO EMPTY CARS FROM A to B
NOW: DAY 1: DAY 2:

RESULT: \quad Net 2: A to B; Net 2: B to A
TOTAL(MV) = 4

Expectation of Mean Value

Suppose: Demand is Random (Expectation from A to $B=2$)

- 0 from A to B with prob. 1/3
- 3 from A to B with prob. 2/3
- Find: Expected (Revenue-Cost)
» MOVE Two EMPTY CARS FROM A to B
NOW: DAY 1: DAY 2:

Stochastic Program Solution

Suppose: Demand is Random (as before)
GOAL: A solution to obtain highest expected value

- Maximize: Expected (Revenue-Cost) Expected Value:

Net 2: A to B;
Net 3: B to A (w.p. 2/3)
-1.5: B to A (w.p. 1/3)
TOTAL (RP): 3.5
RP=Recourse Problem

INFORMATION and MODEL

VALUE

- INFORMATION VALUE:
- FIND Expected Value with Perfect Information or Wait-andSee (WS) solution:
- Know demand: if 3, send $\mathbf{3}$ from A to \mathbf{B}; If $\mathbf{0}$, send $\mathbf{0}$ from A to B:
- Earn: $2($ AtoB $)+(2 / 3)(3)+(1 / 3) 0=4=W S$
- Expected Value of Perfect Information (EVPI):
- EVPI $=$ WS - RP $=4$ - $3.5=0.5$
- Value of knowing future demand precisely
- MODEL VALUE:
- FIND EMV, RP
- Value of the Stochastic Solution (VSS):
- VSS = RP - EMV=3.5-3 = 0.5
- Value of using the correct optimization model

INFORMATION/MODEL OBSERVATIONS

- EVPI and VSS:
- ALWAYS >=0 (WS >= RP>= EMV)
- OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
- FIT CIRCUMSTANCES:
- COST TO GATHER INFORMATION
- COST TO BUILD MODEL AND SOLVE PROBLEM
- MEAN VALUE PROBLEMS:
- MV IS OPTIMISTIC (MV=4 BUT EMV=3, RP=3.5)
- ALWAYS TRUE IF CONVEX AND RANDOM
- CONSTRAINT PARAMETERS
- VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

STOCHASTIC PROGRAM

- ASSUME: Random demand on AB and BA
- GOAL: maximize expected profits
- (risk neutral)
- DECISIONS: x_{ij} - empty from i to j
- $\mathbf{y}_{\mathrm{ij}}(\mathrm{s})$ - full from i to j in scenario s (RECOURSE)
- (prob. p(s))
- FORMULATION:

```
Max -0.5xAB + \Sigmas=s1,s2 p(s) (1.5 yAB(s) + 1.5 yBA(s))
s.t. xAB +xAA = 5 (Initial)
    -xAB +yBA(s)<= 0 (Limit BA)
    -xAA +yAB(s) <= 0 (Limit AB)
        yBA(s) <= DBA(s) (Demand BA)
                                + yAB(s)<= DAB(s) (Demand AB)
```

 \(x A A, X A B, y A A(s), y A B(s)>=0\)
 EXTENSIONS: Multiple stages;Constraint/objective
 complexity (Powell et al.)

Financial Planning

- GOAL: Accumulate \$G for tuition Y years from now
- Assume:
- \$ W (0) - initial wealth
- K - investments
- concave utility (piecewise linear)

RANDOMNESS: returns $\mathrm{r}(\mathrm{k}, \mathrm{t})$ - for k in period t where $\mathrm{Y} \longrightarrow$ T decision periods IMA Tutorial, Stochastic Optimization, September 2002

FORMULATION

- SCENARIOS: $\boldsymbol{\sigma} \in \boldsymbol{\Sigma}$
- Probability, $\mathbf{p}(\sigma)$
- Groups, $\mathbf{S}_{1}^{\mathrm{t}}, \ldots, \mathbf{S}_{\mathrm{St}}^{\mathrm{t}}$ at t
- MULTISTAGE STOCHASTIC NLP FORM:
$\max \quad \Sigma_{\sigma} \mathrm{p}(\sigma)(\mathrm{U}(\mathrm{W}(\sigma, \mathrm{T}))$
s.t. (for all σ): $\Sigma_{\mathrm{k}} \mathbf{x}(\mathrm{k}, 1, \sigma) \quad=\mathrm{W}(0)$ (initial)
$\Sigma_{\mathrm{k}} \mathrm{r}(\mathrm{k}, \mathrm{t}-1, \sigma) \mathrm{x}(\mathrm{k}, \mathrm{t}-1, \sigma)-\Sigma_{\mathrm{k}} \mathrm{x}(\mathrm{k}, \mathrm{t}, \sigma)=0$, all $\mathrm{t}>1$;
$\Sigma_{\mathrm{k}} \mathrm{r}(\mathrm{k}, \mathrm{T}-1, \sigma) \mathrm{x}(\mathrm{k}, \mathrm{T}-1, \sigma)-\mathrm{W}(\sigma, \mathrm{T})=0$, (final); $x(k, t, \sigma)>=0$, all $k, t ;$
Nonanticipativity:
$\mathbf{x}\left(\mathbf{k}, \mathbf{t}, \sigma^{\prime}\right)-\mathbf{x}(\mathbf{k}, \mathbf{t}, \sigma)=0$ if $\sigma^{\prime}, \sigma \in \mathbf{S}_{\mathrm{i}}^{\mathbf{t}}$ for all $\mathbf{t}, \mathbf{i}, \sigma^{\prime}, \sigma$ This says decision cannot depend on future.

DATA and SOLUTIONS

- ASSUME:
- $Y=15$ years
- $\mathbf{G}=\$ \mathbf{8 0 , 0 0 0}$
- $T=3$ (5 year intervals)
- k=2 (stock/bonds)
- Returns (5 year):
- Scenario A: r(stock) $=\mathbf{1 . 2 5} \mathbf{r}$ (bonds)=1.14
- Scenario B: r(stock) = $\mathbf{1 . 0 6} \quad \mathbf{r}($ bonds $)=1.12$
- Solution: PERIOD SCENARIO STOCK

ERIOD	SCENARIO	STOCK	BONDS
1	$1-8$	41.5	13.5
2	$1-4$	65.1	2.17
2	$5-8$	36.7	22.4
3	$1-2$	83.8	0
3	$3-4$	0	71.4
3	$5-6$	0	71.4
3	$7-8$	64.0	0

IMA Tutorial, Stochastic Optimization, September 2002

Manufacturing Planning

- Goal:
- Decide on coordinated production, distribution capacity and vendor contracts for multiple models in multiple markets (e.g., NA, Eur, LA, Asia)
- Traditional approach
- Forecast demand for each model/market
- Forecast costs
- Obtain piece rates and proposals
- Construct cash flows and discount
\rightarrow Optimize for a single-point forecast
\rightarrow Missing option value of flexible capacity

Real Options

- Idea: Assets that are not fully used may still have option value (includes contracts, licenses)
- Value may be lost when the option is exercised (e.g., developing a new product, invoking option for second vendor)
- Traditional NPV analyses are flawed by missing the option value
- Missing parts:
- Value to delay and learn
- Option to scale and reuse
- Option to change with demand variation (uncertainty)
- Not changing discount rates for varying utilizations

Real Option Valuation for Capacity

- Goal: Production value with capacity K
- Compute uncapacitated value based on Capital Asset Pricing Model:
- $\mathrm{S}_{\mathrm{t}}=\mathrm{e}^{-\mathrm{r}(\mathrm{T}-\mathrm{t})} \mathrm{c}_{\mathrm{T}} \mathrm{S}_{\mathrm{T}} \mathrm{dF}\left(\mathrm{S}_{\mathrm{T}}\right)$
- where $\mathrm{c}_{\mathrm{T}}=$ margin, F is distribution (with risk aversion),
- r is rate from CAPM (with risk aversion)
- Assume S_{t} now grows at riskfree rate, r_{f}; evaluate as if risk neutral:
- Production value $\left.=\mathrm{S}_{\mathrm{t}}-\mathrm{C}_{\mathrm{t}}=\mathrm{e}^{-\mathrm{rf}} \mathrm{f}^{(\mathrm{T}-\mathrm{t}}\right) \int \mathrm{c}_{\mathrm{T}} \min \left(\mathrm{S}_{\mathrm{T}}, \mathrm{K}\right) \mathrm{dF}_{\mathrm{f}}\left(\mathrm{S}_{\mathrm{T}}\right)$

Generalizations for Other Long-term Decisions

- Model: period t decisions: x_{t}
- START: Eliminate constraints on production
- Demand uncertainty remains
- Can value unconstrained revenue with market rate, r :

$$
1 /(1+r)^{t} c_{t} x_{t}
$$

IMPLICATIONS OF RISK NEUTRAL HEDGE:
Can model as if investors are risk neutral => value grows at riskfree rate, \mathbf{r}_{f}

Future value: $\left[1 /(1+r)^{t} c_{t}\left(1+r_{f}\right)^{t} \mathbf{x}_{t}\right]$
BUT: This new quantity is constrained

- WANT TO FIND (present value):
$\left.1 /\left(1+r_{f}\right)^{t} / \max \left[c_{t} x_{t}\left(1+r_{t}\right)^{t /(1+r}\right)^{t} \mid A_{t} x_{t}\left(1+r_{r}\right)^{t}(1+r)^{t}<=b\right]$

EQUIVALENT TO:
$1 /(1+r)^{t} \int \operatorname{Max}\left[C_{t} x \mid A_{t} x<=b(1+r)^{\left.t /\left(1+r_{f}\right)^{t}\right]}\right.$

MEANING: To compensate for lower risk with constraints, constraints expand and risky discount is used

Constraint Modification

- FORMER CONSTRAINTS: $\mathrm{A}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}<=\mathrm{b}_{\mathrm{t}}$
- NOW: $\mathrm{A}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}\left(1+\mathrm{r}_{\mathrm{f}}\right)^{\mathrm{t}}(1+\mathrm{r})^{\mathrm{t}}<=\mathrm{b}_{\mathrm{t}}$

EXTREME CASES

All slack constraints:
$\left.1 /(1+r)^{t} \int \operatorname{MAX}\left[C_{t} x \mid A_{t} x<=b(1+r)^{t /\left(1+r_{f}\right.}\right)^{t}\right]$
becomes equivalent to:
$1 /(1+r)^{t} \int \operatorname{MAX}\left[C_{t} x \mid A_{t} x<=b\right]$
i.e. same as if unconstrained - risky rate

NO SLACK:
becomes equivalent to:
$1 /(1+r)^{t} \int\left[c_{t} x=B^{-1} b(1+r)^{t} /\left(1+r_{f}\right)^{t}\right]=c_{t} B^{-1} b /\left(1+r_{f}\right)^{t}$
i.e. same as if deterministic- riskfree rate

Example: Capacity Planning

- What to produce?
- Where to produce? (When?)
- How much to produce?

EXAMPLE: Models 1,2, 3 ; Plants A,B

Should B also build 2?

Result: Stochastic Linear Programming Model

- Key: Maximize the Added Value with Installed Capacity
- Must choose best mix of models assigned to plants
- Maximize Expected Value over s[$\Sigma_{\mathrm{i}, \mathrm{t}} \mathrm{e}^{-\mathrm{rt}}$ Profit (i) Production(i,t,s) $\operatorname{CapCost}(\mathrm{i}$ at $\mathrm{j}, \mathrm{t})$ Capacity (i at $\mathrm{j}, \mathrm{t})$]
- subject to: $\operatorname{MaxSales}(\mathrm{i}, \mathrm{t}, \mathrm{s})>=\Sigma_{\mathrm{j}} \operatorname{Production(i}$ at $\left.\mathrm{j}, \mathrm{t}, \mathrm{s}\right)$
- $\left.\Sigma_{i} \operatorname{Production(i~at~j}, \mathrm{t}, \mathrm{s}\right)<=\mathrm{e}^{(\mathrm{r-r} \mathrm{f}} \mathrm{f} \mathrm{t}$ Capacity (i, t)
- Production(i at j,t,s) <= $\left.e^{(r-r} \mathrm{f}\right) \mathrm{t}$ Capacity (i at j,t)
- Production(i at j,t,s) >=0
- Need MaxSales(i,t,s) - random
- Capacity(i at j,0) - Decision in First Stage (now)

NOTE: Linear model that incorporates risk

Result with Option Approach

- Can include risk attitude in linear model
- Simple adjustment for the uncertainty in demand
- Requirement 1: correlation of all demand to market
- Requirement 2: assumptions of market completeness

Outline

- Overview
- Part I - Models
- Vehicle allocation (integer linear)
- Financial plans (continuous nonlinear)
- Manufacturing and real options (integer nonlinear)
- Part II - Optimization Methods

General Stochastic Programming Model: Discrete Time

- Find $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{T}}\right)$ and p (unknown distribution) to
minimize $E_{p}\left[\Sigma_{t=1}{ }^{\top} f_{t}\left(x_{t}, x_{t+1}, p\right)\right]$
s.t. $\quad x_{t} \in X_{t}, x_{t}$ nonanticipative p in P (distribution class)

P[$\left.h_{t}\left(x_{t}, x_{t+1}, p_{t}\right)<=0\right]>=a$ (chance constraint)

General Approaches:

- Simplify distribution (e.g., sample) and form a mathematical program:
- Solve step-by-step (dynamic program)
- Solve as single large-scale optimization problem
-Use iterative procedure of sampling and optimization steps

Simplified Finite Sample Model

- Assume p is fixed and random variables represented by sample $\xi_{t}{ }_{\mathrm{t}}$ for $\mathrm{t}=1,2, . ., \mathrm{T}, \mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{t}}$ with probabilities $\mathrm{p}_{\mathrm{t}}^{\mathrm{i}}, \mathrm{a}(\mathrm{i})$ an ancestor of i , then model becomes (no chance constraints):
minimize $\quad \Sigma_{t=1}{ }^{\top} \Sigma_{i=1}{ }^{N_{t}} p_{t}^{i} f_{t}\left(x^{a(i)}{ }_{t}, x^{i}{ }_{t+1}, \xi_{t}^{i}\right)$
s.t. $\quad X_{t}^{i} \in X_{t}^{i}$

Observations?

- Problems for different i are similar - solving one may help to solve others
- Problems may decompose across i and across t yielding
-smaller problems (that may scale linearly in size)
-opportunities for parallel computation.

Outline

- Overview

- Part I - Models
- Part II - Optimization Methods
- Factorization/sparsity (interior point/barrier)
- Decomposition
- Lagrangian methods

- Conclusions

SOLVING AS LARGE-SCALE MATHEMATICAL PROGRAM

- PRINCIPLES:
- DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT LARGE-SCALE
- USE STANDARD METHODS BUT EXPLOIT STRUCTURE
- DIRECT METHODS
- TAKE ADVANTAGE OF SPARSITY STRUCTURE
- SOME EFFICIENCIES
- USE SIMILAR SUBPROBLEM STRUCTURE
- GREATER EFFICIENCY
- SIZE
- UNLIMITED (INFINITE NUMBERS OF VARIABLES)
- STILL SOLVABLE (CAUTION ON CLAIMS)

STANDARD APPROACHES

- Sparsity Structure Advantage
- PARTITIONING
- BASIS FACTORIZATION
- INTERIOR POINT FACTORIZATION
- Similar/Small Problem Advantage
- DP APPROACHES: DECOMPOSITION
- BENDERS, L-SHAPED (VAN SLYKE - WETS)
- DANTZIG-WOLFE (PRIMAL VERSION)
- REGULARIZED (RUSZCZYNSKI)
- VARIOUS SAMPLING SCHEMES (HIGLE/SEN Stochastic Decomposition, Abridge Nested Decomposition)
- LAGRANGIAN METHODS

Sparsity Methods: Stochastic Linear Program Example

- Two-stage Linear Model:

$$
\begin{aligned}
& \mathrm{X}_{1}=\left\{\mathrm{x}_{1} \mid \mathrm{Ax} \mathrm{x}_{1}=\mathrm{b}, \mathrm{x}_{1}>=0\right\} \\
& \mathrm{f}_{0}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)=\mathrm{cxx}_{1} \\
& \mathrm{f}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\mathrm{i}}, \xi_{2}{ }^{\mathrm{i}}\right)=\mathrm{q} \mathrm{x}_{2}{ }^{\mathrm{i}} \text { if } \mathrm{Tx}_{1}+\mathrm{W} \mathrm{x}_{2}{ }^{\mathrm{i}}=\xi_{2}{ }^{\mathrm{i}}, \\
& \quad \mathrm{x}_{2}{ }^{\mathrm{i}}>=0 ;+\infty \text { otherwise }
\end{aligned}
$$

- Result: $\operatorname{minc} \mathrm{x}_{1}+\Sigma_{\mathrm{i}=1}{ }^{\mathrm{N} 1} \mathbf{p}_{2}{ }^{\mathrm{i}} \mathrm{q}{ }^{\mathrm{i}}{ }^{\mathrm{i}}$
s. t. $A \mathrm{x}_{1}=\mathrm{b}, \mathrm{x}_{1}>=0$
$T \mathrm{x}_{1}+\mathrm{W} \mathrm{x}_{2}{ }^{\mathrm{i}}=\xi_{2}{ }^{\mathrm{i}}, \mathrm{x}_{2}{ }^{\mathrm{i}}>=0$

LP-BASED METHODS

- USING BASIS STRUCTURE

ALTERNATIVES FOR INTERIOR POINTS

- VARIABLE SPLITTING (MULVEY ET AL.)
- PUT IN EXPLICIT NONANTICIPATIVITY CONTRAINTS

-RESULT

OTHER INTERIOR POINT APPROACHES
 - USE OF DUAL FACTORIZATION OR MODIFIED SCHUR COMPLEMENT

RESULTS:

- SPEEDUPS OF 2 TO 20
- SOME INSTABILITY => INDEFINITE SYSTEM (VANDERBEI ET AL. CZYZYA ETHORAL.

Outline

- Overview
- Part I - Models
- Part II - Optimization Methods
- Factorization/sparsity (interior point/barrier)
- Decomposition
- Lagrangian methods
- Conclusions

SIMILAR/SMALL PROBLEM STRUCTURE:
 DYNAMIC PROGRAMMING VIEW

- STAGES: $\mathrm{t}=1, \ldots, \mathrm{~T}$
- STATES: $\mathrm{x}_{\mathrm{t}}->\mathrm{B}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}$ (or other transformation)
- VALUE FUNCTION:
$Q_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}\right)=\mathrm{E}\left[\mathrm{Q}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}, \xi_{\mathrm{t}}\right)\right]$ where
ξ_{t} is the random element and
$\mathrm{Q}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}, \xi_{\mathrm{t}}\right)=\min \mathrm{f}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{x}_{\mathrm{t}+1}, \xi_{\mathrm{t}}\right)+Q_{\mathrm{t}+1}\left(\mathrm{x}_{\mathrm{t}+1}\right)$
s.t. $x_{t+1} \in X_{t+1 \mathrm{t}}\left(\xi_{\mathrm{t}}\right) \quad \mathrm{x}_{\mathrm{t}}$ given
- SOLVE : iterate from T to 1

LINEAR MODEL STRUCTURE

$$
\begin{aligned}
& \min c_{1} x_{1}+Q_{2}\left(x_{1}\right) \\
& \text { s.t. } \quad W_{1} x_{1}=h_{1} \\
& x_{1} \geq 0 \\
& Q_{1}\left(x_{t-1, l(k)}\right)=\sum_{\xi_{k, t} \in \varepsilon_{t}} p r o b\left(\xi_{t, k}\right) \mathrm{Q}_{t, k}\left(x_{1-1,(k)}, \xi_{t, k}\right) \\
& \mathrm{Q}_{t, k}\left(x_{t-1, t k)}, \xi_{t, k}\right)=\min c_{1}\left(\xi_{t, k}\right) x_{t, k}+Q_{t+1}\left(x_{t, k}\right) \\
& \text { s.t. } W_{1} x_{t, k}=h_{1}\left(\xi_{t, k}\right)-T_{t-1}\left(\xi_{t, t,}\right) x_{t-1, t(k)} \\
& x_{t, k} \geq 0
\end{aligned}
$$

- $Q_{N+1}\left(x_{N}\right)=0$, for all x_{N},
- $Q_{t, k}\left(x_{t-1, a(k)}\right)$ is a piecewise linear,

IMA Tuorial, Stochastic ofonvex funcancion Supentiop of of $x_{t-1, a(k)}$

DECOMPOSITION METHODS

- BENDERS IDEA

- FORM AN OUTER LINEARIZATION OF Q_{t}
- USE AT EACH
- ADD CUTS ON FUNCTION : STAGE TO
 APPROX. VALUE FUNCTION
- ITERATE BETWEEN STAGES UNTIL ALL
$\operatorname{MIN}=Q_{\mathbf{t}}$

Nested Decomposition

- In each subproblem, replace expected recourse function $Q_{t, k}\left(x_{t-}\right.$ $\left.{ }_{1, a(k)}\right)$ with unrestricted variable $\theta_{t, k}$
- Forward Pass:
- Starting at the root node and proceeding forward through the scenario tree, solve each node subproblem

$$
\begin{aligned}
\left.\hat{\mathrm{Q}}_{t, k}\left(x_{t-1, a(k)}, \xi_{t, k}\right)=\begin{array}{llll}
\min & c_{t}\left(\xi_{t, k}\right) x_{t, k}+\theta_{t, k} & \\
\text { s.t. } & W_{t} x_{t, k} & & h_{t}\left(\xi_{t, k}\right)-T_{t-1}\left(\xi_{t, k}\right) x_{t-1, a(k)} \\
& E_{t, k} x_{t, k}+\theta_{t, k} & \geq & e_{t, k} \quad \text { (optimality cuts) } \\
& D_{t, k} x_{t, k} & \geq d_{t, k} \quad \text { (feasibilit y cuts) } \\
\text { - Add feasibility cuts as infeasibilities arise } & \geq 0
\end{array}\right)
\end{aligned}
$$

- Backward Pass
- Starting in top node of Stage $\mathrm{t}=\mathrm{N}-1$, use optimal dual values in descendant Stage $t+1$ nodes to construct new optimality cut. Repeat for all nodes in Stage t , resolve all Stage t nodes, then $\mathrm{t} \rightarrow \mathrm{t}-1$.
- Convergence achieved when

$$
\theta_{1}=Q_{2}\left(x_{1}\right)
$$

SAMPLE RESULTS

- SCAGR7 PROBLEM SET
 LOG (CPUS)

LOG (NO. OF VARIABLES)
PARALLEL: 60-80\% EFFICIENCY IN SPEEDUP
OTHER PROBLEMS: SIMILAR RESULTS

- ONLY < ORDER OF MAGNITUDE SPEEDUP WITH STORM
- TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
- STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS

Decomposition Enhancements

- Optimal basis repetition
- Take advantage of having solved one problem to solve others
- Use bunching to solve multiple problems from root basis
- Share bases across levels of the scenario tree
- Use solution of single scenario as hot start
- Multicuts
- Create cuts for each descendant scenario
- Regularization
- Add quadratic term to keep close to previous solution
- Sampling
- Stochastic decomposition (Higle/Sen)
- Importance sampling (Infanger/Dantzig/Glynn)
- Multistage (Pereira/Pinto, Abridged ND)

Pereira-Pinto Method

- Incorporates sampling into the general framework of the Nested Decomposition algorithm
- Assumptions:
- relatively complete recourse
- no feasibility cuts needed
- serial independence
- an optimality cut generated for any Stage t node is valid for all Stage t nodes
- Successfully applied to multistage stochastic water resource problems

Pereira-Pinto Method

1. Randomly select $H N$-Stage scenarios
2. Starting at the root, a forward pass is made through the sampled portion of the scenario tree (solving ND subproblems)
3. A statistical estimate of the first stage objective value is calculated using the total objective value obtained in $\bar{z}^{\bar{z}}$ each sampled scenario
the algorithm terminates if current first stage objective value $c_{l} x_{l}+\theta_{l}$ is within a specified confidence interval of
4. Starting in sampled node of Stage $\mathrm{t}=\mathrm{N}$ 1 , solve all Stage $t+1^{2}$ descendant nodes and construct new optimality cut.

Repeat for all sampled nodes in Stage t, then repeat for $t=t-1$

Pereira-Pinto Method

- Advantages
- significantly reduces computation by eliminating a large portion of the scenario tree in the forward pass
- Disadvantages
- requires a complete backward pass on all sampled scenarios
- not well designed for bushier scenario trees

Abridged Nested Decomposition

- Also incorporates sampling into the general framework of Nested Decomposition
- Also assumes relatively complete recourse and serial independence
- Samples both the subproblems to solve and the solutions to continue from in the forward pass

Abridged Nested Decomposition

Forward Pass

1. Solve root node subproblem
2. Sample Stage 2 subproblems and solve selected subset
3. Sample Stage 2 subproblem solutions and branch in Stage 3 only from selected subset (i.e., nodes 1 and 2)

4. For each selected Stage $t-1$ subproblem solution, sample Stage t subproblems and solve selected subset
5. Sample Stage t subproblem solutions and branch in Stage $t+1$ only from selected subset

Abridged Nested Decomposition

Backward Pass

1. Starting in first branching node of Stage $t=\mathbf{N}-1$, solve all Stage $\mathbf{t}+1$ descendant nodes and construct new optimality cut for all stage t subproblems. Repeat for all sampled nodes in Stage t, then repeat for $\mathbf{t}=\mathbf{t - 1}$

Convergence Test

1. Randomly select $H N$-Stage scenarios. For each sampled scenario, solve subproblems from root to leaf to obtain total objective value for scenario
2. Calculate statistical estimate of the first stage objective value $\overline{\boldsymbol{z}}$

- algorithm terminates if current first stage objective value $c_{l} x_{l}+\theta_{l}$ is within a specified confidence interval of \bar{z} else, a new forward pass begins

Sample Computational Results

- Test Problems
- Dynamic Vehicle Allocation (DVA) problems of various sizes
- set of homogeneous vehicles move full loads between set of sites
- vehicles can move empty or loaded, remain stationary
- demand to move load between two sites is stochastic
- DVA.x.y.z
- x number of sites $(8,12,16)$
- y number of stages $(4,5)$
- $z \quad$ number of distinct realizations per stage $(30,45,60,75)$
- largest problem has > 30 million scenarios

Computational Results (DVA.8)

Outline

- Overview

- Part I - Models
- Part II - Optimization Methods
- Factorization/sparsity (interior point/barrier)
- Decomposition
- Lagrangian methods

- Conclusions

Lagrangian-based Approaches

- General idea:
- Relax nonanticipativity
- Place in objective
- Separable problems

Update: w_{t}; Project: x into N - nonanticipative space as $\underline{\mathrm{x}}$
Convergence: Convex problems - Progressive Hedging Alg.
(Rockafellar and Wets)
Advantage: Maintain problem structure (networks)

Lagrangian Methods and Integer Variables

- Idea: Lagrangian dual provides bound for primal but
- Duality gap
- PHA may not converge
- Alternative: standard augmented Lagrangian
- Convergence to dual solution
- Less separability
- May obtain simplified set for branching to integer solutions
- Problem structure: Power generation problems
- Especially efficient on parallel processors
- Decreasing duality gap in number of generation units

Outline

- Overview

- Part I - Models
- Part II - Optimization Methods
- Factorization/sparsity (interior point/barrier)
- Decomposition
- Lagrangian methods
- Conclusions

SOME OPEN ISSUES

- MODELS
- IM PACT ON METHODS
- RELATION TO OTHER AREAS
- APPROXIMATIONS
- USE WITH SAMPLING METHODS
- COMPUTATION CONSTRAINED BOUNDS
- SOLUTION BOUNDS
- SOLUTION METHODS
- EXPLOIT SPECIFIC STRUCTURE
- MASSIVELY PARALLEL ARCHITECTURES
- LINKS TO APPROXIMATIONS

CRITICISMS

- UNKNOWN COSTS OR DISTRIBUTIONS
- FIND ALL AVAILABLE INFORMATION
- CAN CONSTRUCT BOUNDS OVER ALL DISTRIBUTIONS
- FITTING THE INFORMATION
- STILL HAVE KNOWN ERRORS BUT ALTERNATIVE SOLUTIONS
- COMPUTATIONAL DIFFICULTY
- FIT MODEL TO SOLUTION ABILITY
- SIZE OF PROBLEMS INCREASING RAPIDLY

View Ahead

- New Trends
- Methods for integer variables
- Capacity, suppliers, contracts
- Vehicle routing
- Integrating simulation
- Sampling with optimization
- On-line optimization
- Low-discrepancy methods

More Trends

- Modeling languages
- Ability to build stochastic programs directly
- Integrating across systems
- Using application structure
- Separation of problem (dimension reduction)
- Network properties
- Generalized versions of convexity

Summary

- Increasing application base
- Value for solving the stochastic problem
- Efficient implementations
- Opportunities for new results

