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Outline
• Overview
• Part I - Models

• Vehicle allocation (integer linear)
• Financial plans (continuous nonlinear)
• Manufacturing and real options (integer 

nonlinear)
• Part II – Optimization Methods
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Overview
• Stochastic optimization 

• Traditional
• Small problems
• Impractical

• Current
• Integrate with large-scale optimization (stochastic 

programming)
• Practical examples
• Expanding rapidly
• Integration of financial and operation considerations
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Vehicle Allocation
• Decision:

• How to position empty freight cars?
NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

DEMAND: DAY 1: B to A:Mean Value=2
DAY 1: A to B:Mean Value=2

?

?
2

2
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• Maximize: Revenue-Cost
» MOVE TWO EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

RESULT: Net 2: A to B; Net 2: B to A
TOTAL(MV) = 4

3 1

2

2

Parameters: COST: 0.5 per empty car from A to B
REVENUE: 1.5 per full car from B to A, 1 from A to B

2

2
2

Vehicle Allocation: Mean Value 
Solution

IMA Tutorial, Stochastic Optimization, September 2002 6

• Find: Expected (Revenue-Cost)
» MOVE Two EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

Expected Value:

Net 2: A to B; 
Net 2: B to A (w.p. 2/3)

-1: B to A (w.p. 1/3)
TOTAL (EMV): 3

2

3 (w.p.2/3)

2

Suppose: Demand is Random (Expectation from A to B=2)
• 0 from A to B with prob. 1/3
• 3 from A to B with prob. 2/3 

2 (w.p. 2/3)

2
2

2 (w.p. 1/3)

1

Expectation of Mean Value
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• Maximize: Expected (Revenue-Cost)
» MOVE Three EMPTY CARS FROM A to B

NOW:

A

B

5 cars

0 cars

DAY 1: DAY 2:

A

B

A

B

Expected Value:

Net 2: A to B; 
Net 3: B to A (w.p. 2/3)

-1.5 : B to A (w.p. 1/3)
TOTAL (RP): 3.5
RP=Recourse Problem

2

3 (w.p.2/3)

2

Suppose: Demand is Random (as before)
GOAL: A solution to obtain highest expected value

3 (w.p. 2/3)

2
3

3 (w.p. 1/3)

1

Stochastic Program Solution
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INFORMATION and MODEL 
VALUE

• INFORMATION VALUE:
• FIND Expected Value with Perfect Information or Wait-and-

See (WS) solution:
• Know demand: if 3,  send 3 from A to B; If 0, send 0 from 

A to B: 
• Earn: 2  (AtoB) + (2/3) (3) + (1/3)0= 4 = WS

• Expected Value of Perfect Information (EVPI):
• EVPI = WS - RP = 4 - 3.5 = 0.5
• Value of knowing  future demand precisely

• MODEL VALUE:
• FIND EMV, RP
• Value of the Stochastic Solution (VSS):

• VSS = RP - EMV=3.5 - 3 = 0.5
• Value of using the correct optimization model
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INFORMATION/MODEL 
OBSERVATIONS

• EVPI and VSS:
• ALWAYS >= 0 (WS >= RP>= EMV)
• OFTEN DIFFERENT (WS=RP but RP > EMV and vice versa)
• FIT CIRCUMSTANCES:

• COST TO GATHER INFORMATION 
• COST TO BUILD MODEL AND SOLVE PROBLEM

• MEAN VALUE PROBLEMS:
• MV IS OPTIMISTIC  (MV=4 BUT EMV=3, RP=3.5)

• ALWAYS TRUE IF CONVEX AND RANDOM
• CONSTRAINT PARAMETERS

• VSS LARGER FOR SKEWED DISTRIBUTIONS/COSTS

IMA Tutorial, Stochastic Optimization, September 2002 10

STOCHASTIC PROGRAM
• ASSUME: Random demand on AB and BA
• GOAL: maximize expected profits 

• (risk neutral)
• DECISIONS: xij - empty from i to j

• yij(s) - full from i to j in scenario s (RECOURSE)
• (prob. p(s)) 

• FORMULATION:

Max -0.5xAB + Σ Σ Σ Σ s=s1,s2 p(s) (1.5 yAB(s) + 1.5 yBA(s))
s.t. xAB     +xAA           =  5  (Initial)

-xAB                                        + yBA(s) <= 0  (Limit BA)
-xAA                         + yAB(s)               <= 0  (Limit AB)

yBA(s) <= DBA(s)    (Demand BA)
+ yAB(s)<= DAB(s)    (Demand AB)

xAA, XAB, yAA(s), yAB (s)>=0
EXTENSIONS: Multiple stages;Constraint/objective 
complexity (Powell et al.)
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Financial Planning
• GOAL: Accumulate $G for tuition Y years from now
• Assume: 

• $ W(0) - initial wealth
• K - investments
• concave utility (piecewise linear)

G W(Y)

Utility

RANDOMNESS: returns r(k,t) - for k in period t
where Y                T decision periods
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FORMULATION
• SCENARIOS: σ ∈ Σσ ∈ Σσ ∈ Σσ ∈ Σ

• Probability, p(σσσσ)
• Groups, St

1, ..., St
St at t 

• MULTISTAGE STOCHASTIC NLP FORM:

max                         ΣΣΣΣσσσσ p(σ) ( σ) ( σ) ( σ) ( U(W( σσσσ , T) )
s.t. (for all σσσσ): ΣΣΣΣk x(k,1, σσσσ)                            = W(o)  (initial)

ΣΣΣΣk r(k,t-1, σσσσ) x(k,t-1, σσσσ)  - ΣΣΣΣk x(k,t, σσσσ) =  0 ,  all t >1;
ΣΣΣΣk r(k,T-1, σσσσ) x(k,T-1, σσσσ) - W( σσσσ , T)   =  0, (final);

x(k,t, σσσσ) >= 0, all k,t;
Nonanticipativity:

x(k,t, σσσσ’)  - x(k,t, σσσσ) =  0 if σσσσ’, σ ∈σ ∈σ ∈σ ∈ St
i for all t, i, σσσσ’, σσσσ

This says decision cannot depend on future.
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DATA and SOLUTIONS
• ASSUME:

• Y=15 years
• G=$80,000
• T=3 (5 year intervals)
• k=2 (stock/bonds)

• Returns (5 year):
• Scenario A: r(stock) = 1.25   r(bonds)= 1.14
• Scenario B: r(stock) = 1.06   r(bonds)= 1.12

• Solution: PERIOD SCENARIO STOCK BONDS
1 1-8 41.5 13.5
2 1-4 65.1 2.17
2 5-8 36.7 22.4
3 1-2 83.8 0
3 3-4 0 71.4
3 5-6 0 71.4
3 7-8 64.0 0
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Manufacturing Planning
• Goal: 

• Decide on coordinated production, distribution  
capacity and vendor contracts for multiple models in 
multiple markets (e.g., NA, Eur, LA, Asia)

• Traditional approach
• Forecast demand for each model/market
• Forecast costs
• Obtain piece rates and proposals
• Construct cash flows and discount

! Optimize for a single-point forecast
! Missing option value of flexible capacity 
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Real Options
• Idea:  Assets that are not fully used may still have option 

value (includes contracts, licenses)
• Value may be lost when the option is exercised (e.g., 

developing a new product, invoking option for second 
vendor)

• Traditional NPV analyses are flawed by missing the option 
value 

• Missing parts:
• Value to delay and learn
• Option to scale and reuse
• Option to change with demand variation (uncertainty)
• Not changing discount rates for varying utilizations
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Real Option Valuation for Capacity
• Goal: Production value with capacity K

• Compute uncapacitated value based on Capital Asset Pricing 
Model:

• St=  e-r(T-t)∫cTSTdF(ST)
• where cT=margin,F is distribution (with risk aversion),
• r is rate from CAPM (with risk aversion)

• Assume St now grows at riskfree rate, rf ; evaluate as if risk 
neutral:

• Production value = St  - Ct=   e-rf(T-t)∫cTmin(ST,K)dFf(ST)
• where Ff is distribution (with risk neutrality)

Sales Potential, ST

Capacity, K

Value at T
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Generalizations for Other 
Long-term Decisions

• Model: period t decisions: xt

• START:  Eliminate constraints on production
• Demand uncertainty remains
• Can value unconstrained revenue with market rate, r:

1/(1+r)t ct xt

IMPLICATIONS OF RISK NEUTRAL HEDGE:
Can model as if investors are risk neutral 

=> value grows at riskfree rate, rf

Future value: [1/(1+r)t ct (1+rf)t xt]

BUT: This new quantity is constrained
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New Period t Problem: Linear 
Constraints on Production

• WANT TO FIND (present value):
MAX [ ct xt (1+rf)t/(1+r)t |  At xt (1+rf)t/(1+r)t <= b]1/ (1+rf)t

EQUIVALENT TO:

MAX [ ct x |  At x <= b (1+r)t/(1+rf)t]1/ (1+r)t

MEANING:  To compensate for lower risk with constraints,
constraints expand and risky discount is used
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Constraint Modification
• FORMER CONSTRAINTS:  At xt <= bt

• NOW: At xt (1+rf)t/(1+r)t <= bt

•xt

•bt

•xt(1+rf)t/(1+r)t

•bt
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EXTREME CASES
All slack constraints:
1/ (1+r)t MAX [ ct x |  At x <= b (1+r)t/(1+rf)t]

becomes equivalent to:

1/ (1+r)t MAX [ ct x |  At x <= b]

i.e.  same as if unconstrained - risky rate

NO SLACK:
becomes equivalent to:

1/ (1+r)t [ct x= B-1b (1+r)t/(1+rf)t]=ct B-1b/(1+rf)t

i.e.  same as if deterministic- riskfree rate
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Example: Capacity Planning
• What to produce?
• Where to produce? (When?)
• How much to produce?

A
1

2

3
B

EXAMPLE: Models 1,2, 3 ; Plants A,B

Should B also build 2?
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Result: Stochastic Linear 
Programming Model

• Key: Maximize the Added Value with Installed Capacity
• Must choose best mix of models assigned to plants
• Maximize Expected Value over s[Σi,t e-rtProfit (i) Production(i,t,s) -

CapCost(i at j,t)Capacity (i at j,t)]
• subject to: MaxSales(i,t,s) >= Σ j Production(i at j,t,s)
• Σ i Production(i at j,t,s) <= e(r-rf)t Capacity (i,t) 
• Production(i at j,t,s) <= e(r-rf)t Capacity (i at j,t)
• Production(i at j,t,s) >= 0

• Need MaxSales(i,t,s) - random
• Capacity(i at j,0) - Decision in First Stage (now)

NOTE: Linear model that incorporates risk
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Result with Option Approach

• Can include risk attitude in linear model
• Simple adjustment for the uncertainty in 

demand
• Requirement 1: correlation of all demand to 

market
• Requirement 2: assumptions of market 

completeness
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Outline
• Overview
• Part I - Models

• Vehicle allocation (integer linear)
• Financial plans (continuous nonlinear)
• Manufacturing and real options (integer 

nonlinear)
• Part II – Optimization Methods
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General Stochastic Programming 
Model: Discrete Time

• Find x=(x1,x2,…,xT) and p (unknown 
distribution) to

minimize Ep [ ΣΣΣΣt=1
Tft(xt,xt+1,p) ]

s.t. xt ∈∈∈∈ Xt, xt nonanticipative p in P (distribution class)
P[ ht (xt,xt+1,pt,) <= 0 ] >= a (chance constraint)

General Approaches:
• Simplify distribution (e.g., sample) and form a mathematical 
program:

• Solve step-by-step (dynamic program)
• Solve as single large-scale optimization problem

•Use iterative procedure of sampling and optimization steps
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Simplified Finite Sample Model
• Assume p is fixed and random variables 

represented by sample ξi
t for t=1,2,..,T, i=1,…,Nt

with probabilities pi
t ,a(i) an ancestor of i, then 

model  becomes (no chance constraints):
minimize    ΣΣΣΣt=1

T ΣΣΣΣi=1
Nt pi

t ft(xa(i)
t,xi

t+1, ξξξξi
t) 

s.t. xi
t ∈∈∈∈ Xi

t
Observations?

• Problems for different i are similar – solving one may help to solve others

• Problems may decompose across i and across t yielding

•smaller problems (that may scale linearly in size)

•opportunities for parallel computation. 
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Outline

• Overview
• Part I - Models
• Part II – Optimization Methods

• Factorization/sparsity (interior point/barrier)
• Decomposition
• Lagrangian methods

• Conclusions. 
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SOLVING AS LARGE-SCALE 
MATHEMATICAL PROGRAM

• PRINCIPLES:
• DISCRETIZATION LEADS TO MATHEMATICAL PROGRAM BUT 

LARGE-SCALE
• USE STANDARD METHODS BUT EXPLOIT STRUCTURE

• DIRECT METHODS
• TAKE ADVANTAGE OF SPARSITY STRUCTURE

• SOME EFFICIENCIES
• USE SIMILAR SUBPROBLEM STRUCTURE

• GREATER EFFICIENCY
• SIZE

• UNLIMITED (INFINITE NUMBERS OF VARIABLES)
• STILL SOLVABLE (CAUTION ON CLAIMS)
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STANDARD APPROACHES
• Sparsity Structure Advantage

• PARTITIONING
• BASIS FACTORIZATION 
• INTERIOR POINT FACTORIZATION

• Similar/Small Problem Advantage
• DP APPROACHES: DECOMPOSITION

• BENDERS, L-SHAPED (VAN SLYKE – WETS)
• DANTZIG-WOLFE (PRIMAL VERSION)
• REGULARIZED (RUSZCZYNSKI)
• VARIOUS SAMPLING SCHEMES (HIGLE/SEN Stochastic 

Decomposition, Abridge Nested Decomposition)
• LAGRANGIAN METHODS
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Sparsity Methods: Stochastic 
Linear Program Example

• Two-stage Linear Model:
X1 = {x1| A x1 = b, x1 >= 0}
f0(x0,x1)=c x1
f1 (x1,x2

i,ξ2
i) = q x2

i if T x1 + W x2
i = ξ2

i, 
x2

i >= 0; + ∞ otherwise
• Result: min c x1 + ΣΣΣΣi=1

N1 p2
i q x2

i

s. t. A x1 = b, x1 >= 0
T x1 + W x2

i = ξ2
i, x2

i >= 0
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LP-BASED METHODS
• USING BASIS STRUCTURE

PERIOD 1 PERIO D 2

• MODEST GAINS FOR SIMPLEX

INTERIOR POINT 
MATRIX 
STRUCTURE= A’

A’D2A’T=

COMPLETE FILL-IN

A

T

T

T

T

W

W

W

W
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ALTERNATIVES FOR INTERIOR 
POINTS

• VARIABLE SPLITTING (MULVEY ET AL.)

• PUT IN EXPLICIT NONANTICIPATIVITY 
CONTRAINTS

= A’

NEW 

•RESULT
•REDUCED FILL-IN BUT LARGER MATRIX
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OTHER INTERIOR POINT 
APPROACHES

• USE OF DUAL FACTORIZATION OR 
MODIFIED SCHUR COMPLEMENT

A’T D2 A’=
=

RESULTS:
• SPEEDUPS OF 2 TO 20 
•  SOME INSTABILITY => INDEFINITE SYSTEM (VANDERBEI ET AL.

CZYZYK ET AL.)
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Outline

• Overview
• Part I - Models
• Part II – Optimization Methods

• Factorization/sparsity (interior point/barrier)
• Decomposition
• Lagrangian methods

• Conclusions. 
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SIMILAR/SMALL PROBLEM 
STRUCTURE: 

DYNAMIC PROGRAMMING VIEW
• STAGES: t=1,...,T
• STATES: xt -> Btxt(or other transformation)
• VALUE FUNCTION:

Qt(xt) = E[Qt(xt,ξt)] where
ξt is the random element and
Qt(xt,ξt)  = min ft(xt,xt+1,ξt) + Qt+1(xt+1)

s.t. xt+1 ∈ Xt+1t(,ξt) xt given
• SOLVE : iterate from T to 1
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LINEAR MODEL STRUCTURE
( )

0
..

min

1

111

1211

≥
=

+

x
hxWts

xQxc

( )( ) ( ) ( )( )∑
Ξ∈

−− =
tkt

ktkatktktkatt xprobxQ
,

,,1,,,1 ,Q
ξ

ξξ

( )( ) ( ) ( )
( ) ( ) ( )

0
..

min,Q

,

,1,1,,

,1,,,,1,

≥
−=

+=

−−

+−

kt

katkttkttktt

kttktkttktkatkt

x
xThxWts

xQxcx
ξξ

ξξ

Stage 1 Stage 2 Stage 3

x1 x3ξξξξ2 ξξξξ3
x2

• QN+1(xN) = 0, for all xN,

• Qt,k(xt-1,a(k)) is a piecewise linear, 
convex function of xt-1,a(k)



19

IMA Tutorial, Stochastic Optimization, September 2002 37

DECOMPOSITION METHODS
• BENDERS IDEA

• FORM AN OUTER LINEARIZATION 
OF Qt

• ADD CUTS ON FUNCTION :

Qt

LINEARIZATION AT ITERATION k
min at k : < Qt

new cut 
(optimality cut)

• USE AT EACH 
STAGE TO 
APPROX.  
VALUE 
FUNCTION

• ITERATE 
BETWEEN 
STAGES 
UNTIL ALL 
MIN = Qt

Feasible region

(feasibility cuts)
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Nested Decomposition
• In each subproblem, replace expected recourse function Qt,k(xt-

1,a(k)) with unrestricted variable θt,k
• Forward Pass:

• Starting at the root node and proceeding forward through the scenario tree, 
solve each node subproblem

• Add feasibility cuts as infeasibilities arise
• Backward Pass

• Starting in top node of Stage t = N-1, use optimal dual values in descendant 
Stage t+1 nodes to construct new optimality cut.  Repeat for all nodes in 
Stage t, resolve all Stage t nodes, then t       t-1. 

• Convergence achieved when

( )( ) ( )
( ) ( ) ( )

( )
( )

0

..
min,Q̂

,

,,,

,,,,

,1,1,,

,,,,,1,

≥
≥
≥+

−=
+=

−−

−

kt

ktktkt

ktktktkt

katkttkttktt

ktktkttktkatkt

x
y cutsfeasibilitdxD
 cutsoptimalityexE

xThxWts
xcx

θ
ξξ

θξξ

( )121 xQ=θ
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SAMPLE RESULTS 

• SCAGR7 PROBLEM SET

LOG (NO. OF VARIABLES)

LOG (CPUS)

3 4 5 6 7
1

2

3

4 Standard LP 
NESTED DECOMP.

PARALLEL: 60-80% EFFICIENCY IN SPEEDUP

OTHER PROBLEMS:   SIMILAR RESULTS
• ONLY <  ORDER OF MAGNITUDE SPEEDUP WITH STORM 

- TWO-STAGES - LITTLE COMMONALITY IN SUBPROBLEMS
- STILL ABLE TO SOLVE ORDER OF MAGNITUDE LARGER PROBLEMS
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Decomposition Enhancements
• Optimal basis repetition

• Take advantage of having solved one problem to solve others
• Use bunching to solve multiple problems from root basis
• Share bases across levels of the scenario tree
• Use solution of single scenario as hot start

• Multicuts
• Create cuts for each descendant scenario

• Regularization 
• Add quadratic term to keep close to previous solution

• Sampling
• Stochastic decomposition (Higle/Sen)
• Importance sampling (Infanger/Dantzig/Glynn)
• Multistage (Pereira/Pinto, Abridged ND)
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Pereira-Pinto Method
• Incorporates sampling into the general framework of 

the Nested Decomposition algorithm
• Assumptions:

• relatively complete recourse
• no feasibility cuts needed

• serial independence
• an optimality cut generated for any Stage t node is valid for all 

Stage t nodes

• Successfully applied to multistage stochastic water 
resource problems
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Pereira-Pinto Method
1. Randomly select H N-Stage scenarios
2. Starting at the root, a forward pass is made 

through the sampled portion of the scenario tree 
(solving ND subproblems)

3. A statistical estimate of the first stage objective 
value     is calculated using the total objective 
value obtained in each sampled scenario

the algorithm terminates if current first stage 
objective value c1x1 + θ1 is within a specified 
confidence interval of

4. Starting in sampled node of Stage t = N-
1,  solve all Stage t+1 descendant nodes 
and construct new optimality cut.  
Repeat for all sampled nodes in Stage t, 
then repeat for        t = t - 1

Sampled
Scenario #1

Sampled
Scenario #2

Sampled
Scenario #3

z

z
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Pereira-Pinto Method

• Advantages
• significantly reduces computation by 

eliminating a large portion of the scenario tree 
in the forward pass

• Disadvantages
• requires a complete backward pass on all 

sampled scenarios
• not well designed for bushier scenario trees

IMA Tutorial, Stochastic Optimization, September 2002 44

Abridged Nested Decomposition

• Also incorporates sampling into the general 
framework of Nested Decomposition

• Also assumes relatively complete recourse 
and serial independence

• Samples both the subproblems to solve and 
the solutions to continue from in the 
forward pass
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Abridged Nested Decomposition

4. For each selected Stage t-1 subproblem solution, sample Stage t
subproblems and solve selected subset

5. Sample Stage t subproblem solutions and branch in Stage t+1 only 
from selected subset

1

2

3

4

5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Forward Pass
1. Solve root node subproblem

2. Sample Stage 2 subproblems
and solve selected subset

3. Sample Stage 2 subproblem
solutions and branch in Stage 
3 only from selected subset 
(i.e., nodes 1 and 2)
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Abridged Nested Decomposition

Convergence Test
1. Randomly select H N-Stage scenarios.  For each sampled scenario, solve

subproblems from root to leaf to obtain total objective value for scenario
2. Calculate statistical estimate of the first stage objective value

• algorithm terminates if current first stage objective value c1x1 + θ1 is within a 
specified confidence interval of    ; else, a new forward pass begins

1

2

3

4

5

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Backward Pass
1. Starting in first branching 

node of Stage t = N-1,  solve 
all Stage t+1 descendant 
nodes and construct new 
optimality cut for all stage t
subproblems.  Repeat for all 
sampled nodes in Stage t, 
then repeat for t = t - 1

z

z
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Sample Computational Results
• Test Problems

• Dynamic Vehicle Allocation (DVA) problems of various 
sizes

• set of homogeneous vehicles move full loads between set of sites
• vehicles can move empty or loaded, remain stationary
• demand to move load between two sites is stochastic

• DVA.x.y.z
• x number of sites (8, 12, 16)
• y number of stages (4, 5)
• z number of distinct realizations per stage (30, 45, 60, 75)

• largest problem has > 30 million scenarios
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Computational Results (DVA.8)

0.0

500.0

1000.0

1500.0

2000.0

2500.0

DVA.8.4.30 DVA.8.4.45 DVA.8.4.60 DVA.8.4.75 DVA.8.5.30 DVA.8.5.45 DVA.8.5.60 DVA.8.5.75

Se
co

nd
s

AND
P&P

CPU Time (seconds)

Fleet Size 50
Links 72
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Outline

• Overview
• Part I - Models
• Part II – Optimization Methods

• Factorization/sparsity (interior point/barrier)
• Decomposition
• Lagrangian methods

• Conclusions. 
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Lagrangian-based Approaches
• General idea:

• Relax nonanticipativity
• Place in objective
• Separable problems

MIN    E [ ΣΣΣΣt=1
T ft(xt,xt+1) ]

s.t. xt ∈∈∈∈ Xt
xt nonanticipative

MIN       E [ ΣΣΣΣt=1
T ft(xt,xt+1) ]

xt ∈∈∈∈ Xt
+ E[w,x] + r/2||x-x||2

Update:  wt;  Project: x into N - nonanticipative space as x

Convergence: Convex problems - Progressive Hedging Alg. 
(Rockafellar and Wets)

Advantage: Maintain problem structure (networks)
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Lagrangian Methods and Integer 
Variables

• Idea: Lagrangian dual provides bound for primal 
but 

• Duality gap
• PHA may not converge

• Alternative: standard augmented Lagrangian
• Convergence to dual solution
• Less separability
• May obtain simplified set for branching to integer 

solutions
• Problem structure: Power generation problems

• Especially efficient on parallel processors
• Decreasing duality gap in number of generation units
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Outline

• Overview
• Part I - Models
• Part II – Optimization Methods

• Factorization/sparsity (interior point/barrier)
• Decomposition
• Lagrangian methods

• Conclusions. 
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SOME OPEN ISSUES
• MODELS

• IM PACT ON METHODS
• RELATION TO OTHER AREAS

• APPROXIMATIONS
• USE WITH SAMPLING METHODS
• COMPUTATION CONSTRAINED BOUNDS
• SOLUTION BOUNDS

• SOLUTION METHODS
• EXPLOIT SPECIFIC STRUCTURE
• MASSIVELY PARALLEL ARCHITECTURES
• LINKS TO APPROXIMATIONS
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CRITICISMS

• UNKNOWN COSTS OR DISTRIBUTIONS
• FIND ALL AVAILABLE INFORMATION
• CAN CONSTRUCT BOUNDS OVER ALL 

DISTRIBUTIONS
• FITTING THE INFORMATION

• STILL HAVE KNOWN ERRORS BUT 
ALTERNATIVE SOLUTIONS

• COMPUTATIONAL DIFFICULTY
• FIT MODEL TO SOLUTION ABILITY
• SIZE OF PROBLEMS INCREASING RAPIDLY
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View Ahead
• New Trends

• Methods for integer variables
• Capacity, suppliers, contracts
• Vehicle routing 

• Integrating simulation
• Sampling with optimization
• On-line optimization
• Low-discrepancy methods
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More Trends
• Modeling languages

• Ability to build stochastic programs directly
• Integrating across systems

• Using application structure
• Separation of problem (dimension reduction)
• Network properties
• Generalized versions of convexity
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Summary
• Increasing application base
• Value for solving the stochastic problem
• Efficient implementations 
• Opportunities for new results


