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The convergent optimization via most promising area stochastic search (COMPASS) algorithm is a locally
convergent random search algorithm for solving discrete optimization via simulation problems. COMPASS
has drawn a significant amount of attention since its introduction. While the asymptotic convergence of
COMPASS does not depend on the problem dimension, the finite-time performance of the algorithm often
deteriorates as the dimension increases. In this paper, we investigate the reasons for this deterioration
and propose a simple change to the solution-sampling scheme that significantly speeds up COMPASS for
high-dimensional problems without affecting its convergence guarantee.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The COMPASS algorithm was first proposed by Hong and Nelson
[1] to solve discrete optimization via simulation (DOvS) problems.
In every iteration of the algorithm, a most promising area
(MPA) is constructed around the current sample-best solution by
randomly choosing some new solutions from the MPA, evaluating
(simulating) all of the chosen solutions (in the current and
previous iterations) based on a simulation-allocation rule, and
then selecting the solution with the sample-best performance.
Hong and Nelson [ 1] showed that, under some mild conditions, the
algorithm converges to the set of locally optimal solutions with
probability 1, as the amount of simulation effort goes to infinity
for DOVS problems with a finite or a countably infinite number
of solutions. Since its invention, COMPASS has drawn a significant
amount of attention and has been applied to solve problems from
various areas, including project management [3] and supply chain
design [4].

Hong and Nelson [2] later developed a framework for locally
convergent random search algorithms and showed that COMPASS
is a special case of the framework. The framework allowed
them to prove that only a subset of all chosen solutions - as
opposed to the accumulation of all solutions ever chosen - needs
to be simulated in each iteration to ensure local convergence;
this insight speeded up the algorithm significantly. Xu et al. [7]
embedded this modified COMPASS algorithm in software called
Industrial Strength COMPASS (ISC). ISC has three phases. In the first
phase, it conducts a global search and identifies several regions
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where there may exist good locally optimal solutions. In the second
phase, ISC applies COMPASS to each of the identified regions to
search for a locally optimal solution. In the third phase, ISC selects
the best of the locally optimal solutions it has discovered and
estimates the selected solution’s performance to a desired level of
precision. Xu et al. [7] compared ISC to OptQuest (OptTek Systems,
Inc.), a well-known commercial solver that is integrated into 13
simulation products (http://www.opttek.com/simulation.html).
They reported that ISC has competitive or superior performance
compared to OptQuest for problems with small to moderate
dimensions (5-10). For high-dimensional problems (e.g., 15 or 20),
however, ISC was significantly slower than OptQuest in identifying
good solutions and required a lot more (often 20 or 30 times more)
computational overhead, even though it eventually finds solutions
that are as good or better than OptQuest does.

To help COMPASS demonstrate real “industrial strength”, it
is important to investigate why COMPASS slows down for high-
dimensional problems and to provide modifications that alleviate
the problem. In this note, we report on such an investigation
whose primary finding is that the deterioration of COMPASS is
caused by the uniform solution-sampling scheme, used to choose
solutions from the MPA. Both empirical and analytical evidence
shows that uniform sampling is not efficient for finding better
solutions. To alleviate this problem, we suggest a coordinate
sampling scheme which randomly chooses solutions that differ in
only one coordinate from the current sample-best solution. Both
empirical and analytical evidence shows that this is a much more
efficient sampling scheme, especially when the dimension of the
problem is high. For a 15-dimensional quadratic problem that we
tested, the COMPASS algorithm using coordinate sampling reduces
the amount of simulation effort by at least 10 times and reduces the
computational overhead by at least 1000 times compared to using
uniform sampling. Because uniform sampling is widely used in
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Fig. 1. The performance deterioration of COMPASS as the dimension increases in terms of the number of solutions evaluated (left) and the CPU time (right).

many random search algorithms, due to its simplicity and intuitive
appeal, we believe that the knowledge we obtained for COMPASS
may also be valuable in speeding up other algorithms for high-
dimensional problems.

The remainder of this paper is organized as follows. In Section 2
we investigate two plausible reasons as to why COMPASS may slow
down for high-dimensional problems. In Section 3, we analyze the
coordinate sampling scheme. Numerical results are reported in
Section 4, followed by conclusions in the Appendix.

2. Uncovering the reason of deterioration

We are interested in solving the following problem:

minimize g(x) = E[G(X)] subjecttoxe ® =@ N z4 (1)

where x is a vector of d integer-ordered decision variables in a con-
vex feasible region @ C M%<, possibly defined by a set of constraints.
The random variable G(x) typically has no closed form, but can
be observed through simulation experiments at x. Without loss
of generality, we assume that & is a compact set and, therefore,
|®| < o0. By using the technique of bounding boxes of Hong and
Nelson [1], the results of this paper can be extended easily to the
problems where @ is unbounded.

Any iterative random search algorithm that solves Problem (1)
has two main components in each iteration: a solution-sampling
scheme that (randomly) chooses one or more feasible solutions
X, and an estimation scheme that decides how many simulation
observations to obtain for all chosen solutions [2]. Let V) denote
the set of all chosen solutions through iteration k, and let X;
denote the sample-best solution in iteration k. In each iteration
(say iteration k), COMPASS samples m solutions uniformly from the
most promising area (MPA), defined as

. X
Gy = {xe@:(x;:—y)r(x—"zﬂ,> >0,

Vyevkandy;zéf(j;}. (2)
Note that the inequality in Eq. (2) defines a cut that passes through
the mid-point of the line segment connecting y and X; and,
therefore, Gy includes all feasible solutions that are at least as close
to f(,’j as to other solutions in V}. Next the algorithm updates Vj
to include all newly sampled solutions and estimates g(x) for all
solutions x € 7V, based on a simulation-allocation rule. At the
end of the iteration, the algorithm selects the solution with the
lowest cumulative sample mean from all solutions in Vj as qu oy
Xu et al. [7] extended the definition of the MPA to allow the cut to
be placed adaptively at any point on the line segment. However,

this extension does not appear to improve the performance of
COMPASS for higher-dimensional problems.

Through a comprehensive empirical study, Xu et al. [7] showed
that the ISC algorithm, which uses COMPASS as its core, is efficient
in solving DOVS problems if the dimension of the problems is not
high. However, the performance of ISC deteriorates significantly
when the dimension of the problem increases. Because this
deterioration also happens even when the stochastic noise level of
the problem is low, we investigated the solution-sampling scheme
of COMPASS as a possible cause.

2.1. A simple numerical example

Consider the following problem:

subject to X € [—100, 100]“. (3)

Problem (3) is a very simple quadratic problem and its optimal
solution is located at x* = 0. The problem has no stochastic noise.
Therefore, we only need to evaluate a newly chosen solution once
to know its objective value. This allows us to eliminate the effect
of the estimation scheme and to focus solely on the solution-
sampling scheme used in COMPASS.

We first apply COMPASS on Problem (3) by varying the
dimension from 2 to 15. Because COMPASS is a random search
algorithm, we run it 10 times for each dimension and report the
average performance. In all the numerical experiments reported in
this note, we set m = 5, i.e., we sample five solutions from the MPA
in each iteration. To understand the level of deterioration as the
dimension of the problem increases, we examine two performance
measures. The first is the number of solutions that the algorithm
evaluates until it first hits the optimal solution x*, and the second
is the CPU time that the algorithm spends until it first hits x*. The
first measure quantifies the amount of simulation effort required
by COMPASS, and the second measure quantifies the amount of
computational overhead in running COMPASS (because the CPU
time for evaluating g (x) is negligible in this example). We plot the
two performance measures with respect to the dimension of the
problem in the two panels of Fig. 1.

From the left panel of Fig. 1, we can see that the number of
solutions required to first hit X* increases from an average of 204.4
for the 5-dimensional problem, to 1532.7 for the 10-dimensional
problem, and to 6575.4 for the 15-dimensional problem. This
implies that COMPASS needs significantly more simulation effort
to solve problems with higher dimension. From the right panel
of Fig. 1, we can see that the CPU time increases even faster. It
increases from 0.49 s for the 5-dimensional problem to 26.8 s for
the 10-dimensional problem, and to 1200.5 s (about 20 min) for
the 15-dimensional problem. This confirms that the computational
overhead of COMPASS grows extremely fast as the dimension
increases, which was also observed by Xu et al. [7].

minimize g(x) = X'x,
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2.2. Investigating the solution-sampling scheme

Note that the solution-sampling scheme of COMPASS includes
two components: the first is the construction of the MPA and the
second is the uniform sampling within the MPA. To understand the
deterioration of COMPASS for high-dimensional problems, we first
investigate the quality of the MPA. The MPA in Eq. (2) is constructed
such that it “includes all feasible solutions that are at least as
close to X; as to other solutions in V,” [1]. The idea behind this
construction is that the (locally) optimal solution is likely to be
closer to the current sample-best solution than to all other visited
solutions. Therefore, a good way to test the quality of the MPA
is to check how frequently the optimal solution is actually in the
MPA constructed in each iteration. We calculate this performance
measure for Problem (3) by varying the dimension of the problem
from 2 to 15 and running COMPASS 10 times for each dimension.
We find that the optimal solution X* is always in the MPA for all
iterations and all dimensions. This experiment suggests that at least
for this problem the MPA is of good quality, and we should analyze
the other component of the solution-sampling scheme to uncover
the reason for the deterioration.

Uniform sampling is popular in random search algorithms
because it gives every solution the same non-zero probability of
being sampled so that the optimal solution will not be missed
infinitely often if it is in the MPA. The nested partitions algorithms
of Shi and Olafsson [6] and Pichitlamken and Nelson [5], as well
as the COMPASS algorithm, use uniform sampling. Also, uniform
sampling is easy to implement. However, the efficiency of uniform
sampling is rarely studied in the literature.

To analyze this efficiency, we record the percentage of the
iterations that COMPASS samples a better solution (i.e., a solution
that is better than the current sample-best solution) until it first
hits x*. If the percentage is high, then the algorithm is likely to
improve on every iteration. Otherwise, it is likely to stay where
it is and waste effort in evaluating inferior solutions. In Fig. 2, we
plot the percentages with respect to the dimensions of Problem
(3). From the plot, we can see that the percentage goes down
very quickly. It reduces from 36.1% for the 5-dimensional problem,
to 11.1% for the 10-dimensional problem, and to only 4.01%
for the 15-dimensional problem. Therefore, when the dimension
of the problem is 15, even though five solutions are sampled
at every iteration, better solutions are only found in one out of
every 25 iterations on average. This means that the algorithm
spends too much effort sampling and evaluating inferior solutions
when the dimension is high. Furthermore, when the number of
sampled solutions increases, the MPA of Problem (2) becomes
more complicated and uniform sampling in the MPA becomes
more time-consuming to conduct. This explains the dramatically
increasing resource consumption that we have seen in the panels
of Fig. 1. Therefore, we conclude that the uniform sampling scheme
largely causes the deterioration of COMPASS for high-dimensional
problems.

2.3. Understanding uniform sampling

To understand the behavior of uniform sampling for high-
dimensional problems, we consider a simple model where the
MPA is a hypercube [—1, 1]%, the optimal solution is located at 0,
and the quality of the solution depends on its Euclidean distance
to 0. Suppose that the current sample-best solution is X* and
we relax the integrality requirement. Then all solutions in the d-
dimensional hypersphere 8(d) = {x : ||x|| < |X*||} have better
quality than the current sample-best solution X*, where |X||
denotes the Euclidean norm of x which is the distance between x
and 0 (see Fig. 3 for a 2-dimensional illustration). Let p(d) denote

0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2

percentage of improvement

0.1

O I I I I I I I
8 9 10 11 12 13 14 15
dimension

2 3 4 5 6 7

Fig. 2. The percentage of iterations that COMPASS finds a better solution as the
problem dimension increases.
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Fig. 3. The model of uniform sampling in the MPA.

the probability of sampling a solution that is better than X* in the
MPA. For uniform sampling this is

V(s Nn[-1, 14
p(d) = (()25 19

where V(A) denotes the volume of a d-dimensional set A. If
we sample m solutions independently from the MPA, then the
probability that at least one better solution will be sampled is given
by

P(d)=1—[1-p@)]"

where m = 5 in our experiments.

When we construct the MPA by using Eq. (2), the current
sample-best solution is often significantly away from the boundary
of the MPA. Suppose that ||X*|| = r < 1, which means that X* is
inside the inscribed hypersphere of the hyperbox. Then, by
Yoshioka [8],
V(s(d) B

2d 2r¢+1 ~2rd+ 1’
This upper bound on p(d) decreases very rapidly as d increases. This
provides intuition for the phenomenon that we observe in Fig. 2.

Although this model is a simplification, it explains why uniform
sampling in the MPA does not work well as the dimension of a
DOvS problem increases. The set of better solutions becomes a
smaller and smaller subset of the MPA. Hence, it becomes more
and more difficult for uniform sampling to identify better solutions
in the MPA. To speed up the performance of COMPASS for high-
dimensional problems we will have to look for other solution-
sampling schemes that are more likely to identify better solutions.

7/2pd 792

p(d) = (4)
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3. Speeding up COMPASS using coordinate sampling

From the analysis in Section 2, it is clear that the uniform
sampling scheme is a primary reason for the deterioration
of COMPASS for high-dimensional problems. To alleviate the
difficulty, we propose a simple solution-sampling scheme, called
coordinate sampling. It works as follows on iteration k of COMPASS.

Coordinate Sampling

Step 1. Uniformly sample an integer i from 1 to d.

Step 2. Determine the lower bound x4 and upper bound x,4 such
that [X; + xiqe;, Xj + xug€il C Cr, Xf + (g — 1)e; & C
and f(,j + (Xug + 1)e; & Gk, where e; is the ith column of a
d x d identity matrix, Gy is the MPA in iteration k and X; is
the sample-best solution in iteration k.

Step 3. Sample an integer solution uniformly from [X} + x,4€;, X} +
Xud€i].

Note that solutions sampled in this way will differ from X;
in only one coordinate. Furthermore, it is worthwhile to observe
that coordinate sampling is the first step of the revised mixed-D
algorithm that is used in COMPASS to conduct uniform sampling.
Therefore, the computational overhead of coordinate sampling is
significantly smaller than that of uniform sampling which requires
many steps. In the remainder of this section we explain why
we choose coordinate sampling, how it performs, and whether
it preserves the convergence properties of the original COMPASS
algorithm.

3.1. Understanding coordinate sampling

To understand the advantages of coordinate sampling, we use
the same model developed in Section 2.3. Given the model, the
set of better solutions is the hypersphere §(d) (see Fig. 4 for a
2-dimensional illustration). Note that conditional on coordinate
direction i being chosen, the probability of sampling a better
solution is |X{|. As all coordinate directions are sampled with an
equal probability 1/d, the coordinate sampling gives

TG,
p@) =~ > K|
i=1

where X* = (X, ...,
to show that

-
- <p@ <

%)T. Suppose that | X}|| = r. Then it is easy

[

where both bounds decrease at a much slower rate than the
one for uniform sampling (see Eq. (4)). Although the model is a
simplification, it suggests an advantage of coordinate sampling for
high-dimensional problems.

To test the validity of our analysis, we implement coordinate
sampling in COMPASS, apply it to solve Problem (3), and compare
it to the performance of the original COMPASS that uses uniform
sampling. We use the same settings as the ones in Section 2 and
report the results in Table 1, where “# evaluated solutions”, “CPU
time” and “% improvement” mean the average number of solutions
evaluated by COMPASS, the average CPU time, and the percentage
of iterations that the algorithm finds at least one better solution,
respectively, until the algorithm first hits the optimal solution.

From Table 1, it is clear that the COMPASS algorithm with
coordinate sampling is much more efficient in solving the problem
than that with uniform sampling, especially when the dimension
of the problem is high. When the dimension is 2, the difference
between the two algorithms is negligible. When the dimension
is 15, however, COMPASS with coordinate sampling evaluates
fewer than 10% of the solutions and spends less than 0.1% of

(1.1

Fig. 4. The model of coordinate sampling in the MPA.

Table 1
Uniform sampling vs. coordinate sampling.

CPU time

Dimension # evaluated
solutions

% improvement

Uniform Coordinate Uniform Coordinate Uniform Coordinate

2 359 39.8 0.0313  0.0094 88.3 83.8

5 204.4 121.2 0.489 0.048 36.1 70.6
10 1532.7 306.8 26.86 0.298 11.1 65.3
15 63754 5034 12005 0.989 4.01 58.0
20 - 737.4 - 2.580 - 51.7
30 - 1263.9 - 22.69 - 48.1
40 - 1832.4 - 110.4 - 44.4
50 - 2409.8 - 320.5 - 418

the computational overhead compared to COMPASS with uniform
sampling. These drastic differences can be explained using the
sampling efficiency shown in the last column of Table 1. When the
dimension is 15, coordinate sampling finds better solutions in 58%
of the iterations, while uniform sampling finds better solutions in
only 4% of them.

With the coordinate sampling scheme, COMPASS can be applied
to solve problems with much higher dimensions. As shown in
Table 1, it takes on average fewer than 2500 solutions and less than
6 min to solve a 50-dimensional problem that cannot be solved
using the original COMPASS algorithm in a reasonable amount of
time. From this experiment, we also learn that the computational
overhead of problems within 20 dimensions is generally not
high when coordinate sampling is used. Therefore, the constraint
pruning techniques of Xu et al. [7], which are proposed to reduce
the computational overhead, may be unnecessary for problems
within 20 dimensions.

3.2. Local convergence of COMPASS

When coordinate sampling is used, only solutions that differ
from the sample-best solution in one coordinate can be sampled
in each iteration. All solutions in the MPA that differ from the
sample-best solution in at least two coordinates are no longer
reachable at iteration k. When uniform sampling is used, however,
all solutions in the MPA have positive probability of being sampled.
This raises the question of whether the local convergence property
of the original COMPASS still holds under the coordinate sampling
scheme. To ensure the local convergence, Hong and Nelson [2]
showed that the sampling scheme and the estimation scheme of a
random search algorithm need to satisfy certain conditions. As our
new algorithm only changes the sampling scheme of the original
COMPASS, we show that the new sampling scheme still satisfies
the required condition. The proof of the proposition is included in
the Appendix.
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Fig. 5. The performance plot for the high-dimensional test problem: d = 5, 10, 15 and 20.

Proposition 1. The coordinate sampling scheme ensures that Pr{x €
8k} > Oforalx e LNGE;?_Q N Gk, where 8 is the set of newly
sampled solutions in iteration k, and LN (X) denotes the local neigh-
borhood of a solution X and includes all feasible solutions that have
Euclidean distance 1 fromx; ie, LNX) ={y€ O : [|x—y| = 1}.

Note that the estimation scheme of the original COMPASS
satisfies the required condition in [2], and Proposition 1 shows
that the coordinate sampling scheme also satisfies the required
condition. Then by Hong and Nelson [2] the local convergence
property of the original COMPASS still holds after replacing the
uniform sampling scheme by the coordinate sampling scheme.

For globally convergent random search algorithms such as
the nested partitions algorithms, coordinate sampling can no
longer ensure their global convergence because it is possible
that all solutions along the coordinate directions from X; are not
as good as X; but some other solutions are better. Therefore,
the algorithms may not converge to the set of globally optimal
solution even though X} is a locally optimal solution. To guarantee
global convergence, it is important for all solutions in the MPA
to be reachable in each iteration. This could be accomplished
by revising the coordinate sampling scheme by first picking a
random direction (not necessarily the coordinate direction) and
then sampling a solution along the direction and rounding it to
an integer solution (which is essentially the first step of the MIX-
D sampling algorithm of Pichitlamken and Nelson [5]). Then, all
solutions in the MPA are reachable and the global convergence can
still be maintained.

4. Numerical results

To evaluate the performance of COMPASS with coordinate
sampling, we ran the algorithm on the high-dimensional test

problem in [7], which was designed to illustrate the impact of
dimension. Let

d
G = —fexp {—V > it - s*f} +0.3g()| - ¢,
j=1

where g(x) = E[G(X)], y = 0.001, 8 = 10,000, £&* = 0, and €
is a standard normal random variable. The shape of the response
surface of this function is like an inverted multivariate normal
density function with a single globally optimal solution at x =
(&*,&*, ..., &) having value —10,000, and the stochastic noise
increases near the optimal solution. Let the feasible region be the
hyperbox defined by

mi/d mi/d
VU2 2

forj = 1,2,...,d with m = 10?°, where we round the bounds
to the nearest integer if necessary. The purpose of defining the
feasible region in this way is to keep the number of feasible
solutions (nearly) the same as the dimension changes, isolating
the impact of dimension from that of the number of feasible
solutions.

We tried d = 5, 10, 15 and 20 and plotted the results in Fig. 5.
We take the average of 25 trials for d = 5, 10 and 15. Because
COMPASS with uniform sampling is extremely slow when d =
20, we only plot one sample path. We see from the plots that,
although COMPASS with uniform sampling eventually finds the
optimal solution in all cases, COMPASS with coordinate sampling
can be significantly faster.

We have also experimented with other test problemsin [7] with
dimensions smaller than 6; COMPASS with coordinate sampling
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has at least as good performance as COMPASS with uniform
random sampling.
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Appendix

Proof of Proposition 1. Anyx € LN (X}_,) N C differs fromX}_,
in only one of the d coordinates, i.e., along one of the d coordinate
directions from X;_,. If we sample a solution using coordinate
sampling at iteration k, every direction has a probability of 1/d
being chosen and every coordinate direction has at most |@|
feasible solutions, where |®| denotes the number of solutions in
©. Thus,

1
Pr{sampling X} > ——.
{samp g}_dl@|

Because in total m solutions are sampled independently using
the coordinate sampling scheme at iteration k, then for any x €
LNX;_) N Cy,

Pr{x € 4}

v

1 — (1 — Pr{sampling x})™

] m
1—(1- >0
( d@&

This completes the proof of the proposition. O
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