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Abstract

This paper studies the optimal control of, interaction between, and relative

value of two types of flexibility under Markov models of demand and production:

process flexibility and inventory flexibility. In our model, process flexibility is

generated by a multi-functional production facility that can produce two types

of products, and inventory flexibility is manifested in firm-driven one-way prod-

uct substitution. Both process flexibility and inventory flexibility are important

drivers of supply chain performance and are strategic design considerations. To

compare the value generated by these two types of flexibility, we model a dynam-

ically controlled two-product, make-to-stock system with stochastic processing

times and stochastic demand. We characterize the complex joint optimal pro-

duction and post-production policy for a special case and numerically show that

a simply structured multi-threshold policy is a near-optimal heuristic policy for

the general case. We gain further insight into the impact of system parameters

on the value of process flexibility and inventory flexibility via a comprehensive

numerical study. We find that: (i) the model exhibits much greater benefit

from process flexibility than inventory flexibility for nearly all of the cases, and

(ii) for a wide range of capacity and cost parameters, process flexibility and in-

ventory flexibility complement each other, so pursuing both forms of flexibility

is effective.

Keywords: Production and inventory systems, product substitution, inventory

flexibility, process flexibility, Markov Decision Process, multi-threshold heuristic

algorithm.
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1 Introduction

Flexibility is a general concept that is often viewed as a firm’s ability to match production

to demand in the face of uncertainty and variability. Incorporating flexibility in a firm’s

supply chain has received considerable attention due to the uncertainty stemming from the

characteristics of the contemporary markets such as product proliferation, increased cus-

tomization, short product life cycles, changes in technology, and most importantly demand

uncertainty. Process flexibility, whereby a multi-functional production facility can produce

multiple products (and switch between them without cost or lost time), provides an effec-

tive way of coping with uncertainty. In terms of when the flexibility is utilized, process

flexibility is a form of production flexibility as it is used during the production phases of a

product. Thus, it is limited by the fact that this decision must be made in anticipation of

future demand. Examples of flexibility that seek to mitigate the ill effects of anticipating

demand include component commonality and delayed differentiation (postponement).

We use the term post-production flexibility to refer to a mechanism applied after pro-

duction has completed. We highlight a form of post-production flexibility known as product

substitution, which refers to the use of one product (component) to satisfy the demand for

a different product (component). In this paper, we model product substitution as a deci-

sion made by the firm to steer demand based on current inventory levels at the moment a

demand arrives.

In our model the firm, not the customer, makes the decision to substitute. For cases in

which one product is superior to the other, the firm has the option to meet a demand for

the lower-quality product by making a dynamic upgrade offer to customer to substitute an

in-stock item of the higher-quality product. This type of substitution, where only one of

the products substitutes for the other is known as “one-way substitution” or “downward

substitution”. One-way substitution occurs in many settings such as semiconductor chips

where a faster processor can be substituted for a slower processor (Hsu and Bassok, 1999)

and usage of cadillac boxes as a method of customization at IBM (Rao et al., 2004). Product

substitution is a source of flexibility because it makes the stocks of some products “multi-

functional”, in the sense that inventory of the higher-quality product can be used to meet

either its own demand or for the demand of lower-quality products. This paper refers to
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the flexibility provided through product substitution as inventory flexibility. In terms of

when the flexibility is utilized, inventory flexibility is a form of post-production flexibility.

Other examples of post-production flexibility are customer-driven product substitution and

dynamic pricing.

Surveying the salient process flexibility literature, we find that Fine and Freund (1990),

Gupta et al. (1992), Van Mieghem (1998), and Bish and Wang (2004) examine investments

in dedicated production facilities versus flexible production facilities. Chod and Rudi (2005)

analyze the effect of demand variance and correlation on flexible capacity and expected

profits. They quantify the value of process flexibility by comparing a firm with flexible

facility to a firm with dedicated facilities when the investment costs are the same. Goyal

and Netessine (2007) study the impact of competition and demand uncertainty on capacity

decisions and adoption of process flexibility. Jordan and Graves (1995) look at partial

process flexibility, where a production facility can produce a subset of products considered,

so that the structure of process flexibility takes the form of a chain. They show that,

in a single-stage supply chain with multiple products and plants, adding partial process

flexibility in the right way can achieve nearly all the benefits of total process flexibility.

Graves and Tomlin (2003) extend this work to multi-stage supply chains. All the papers

mentioned so far focus on settings with stochastic demands and deterministic production

processes. Iravani et al. (2005) analyze the effect of the partial process flexibility structure

on the performance in single-stage supply chains. They propose an index that effectively

determines the performance ranking of different structures.

In the literature on substitution, Bassok et al. (1999), Smith and Agrawal (2000), and

Rao et al. (2004) focus on single-period, multiproduct inventory models with stochastic

demand and one-way substitution. Smith and Agrawal (2000) provides a review of litera-

ture on the product substitution in various contexts such as retailing, yield management,

and resource allocation. Bassok et al. (1999) study a single-period, multiproduct inventory

model with one-way substitution and zero production lead time. Their model is designed

as a two-stage decision problem with an ordering stage and an allocation stage. They sug-

gest a greedy algorithm that solves the allocation stage optimally and prove the optimality

of a base-stock policy. Hsu et al. (2005) consider a finite-horizon, multiproduct inventory

problem with deterministic demand and one-way substitution. They provide a dynamic
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programming algorithm and a heuristic to solve the problem. Hsu and Bassok (1999) con-

sider a single-period, multiproduct production/inventory system with random production

yield and one-way substitution. They present methods to solve the model for the optimal

allocation and the optimal production input quantities. Rao et al. (2004) analyze a single-

period, multiproduct production/inventory system with one-way substitution and setup

costs. In both Hsu and Bassok (1999) and Rao et al. (2004), it is assumed that production

capacity is infinite and products always become available before demand is realized.

In this paper, we compare flexibility types utilized at different stages of the supply

chain by focusing on a commonly practiced form of production flexibility as well as post-

production flexibility. For this purpose, we analyze a dynamically controlled model of a

two-product, make-to-stock system utilizing both process flexibility and inventory flexibility

to satisfy stochastic demands. Process flexibility is incorporated via a multi-functional

facility capable of producing both of the products with limited capacity (and with stochastic

processing times). Inventory flexibility is manifested in the form of one-way substitution,

which allows the firm to meet demand for lower-quality product using stock of higher-quality

product. The model we treat could also arise in a manufacturing environment involving

assembly of end products from substitutable components produced within the firm. Our

managerial insights and analysis provide several important contributions to the literature.

After partially characterizing the structural properties of the joint optimal production and

substitution policy, we present a much simpler multi-threshold policy that can be used

as an alternative to the optimal policy. Through a very extensive test suite with more

than 75,000 cases, we verify that the multi-threshold heuristic we propose performs very

well for a wide range of model parameters. We also present managerial insights in the

form of observations related to the interaction between, and comparison of flexibility types

utilized at different stages of the supply chain by focusing on the process and the inventory

flexibilities.

To summarize, some of the interesting questions we answer with our managerial insights

and analysis are as follows: (1) What are the structural properties of the joint optimal pro-

duction and substitution policy, and is there a much simpler and cost effective alternative

to the optimal policy? (2) What is the impact of the system parameters such as production

capacities, demand rates, and different costs on the value of inventory flexibility or process
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flexibility? (3) Is the value of inventory (process) flexibility higher for systems with or with-

out process (inventory) flexibility? (4) Under what circumstances does process flexibility

have more value than inventory flexibility, or vice versa?

In Section 2, we present the details of the model and construct the corresponding Markov

Decision Process (MDP) formulation. Section 3 explores the structure of an optimal policy,

Section 4 characterizes an important special case, and Section 5 uses extensive numerical

analysis to gain interesting and practical insights into the above issues.

2 Model Formulation

The firm produces products of type i ∈ {1, 2} in its multi-functional production facility

at an average rate µi. Without loss of generality, we let product 1 and product 2 denote

higher-quality and lower-quality products, respectively. The firm must decide which type

of product to make (or whether to stay idle) at any instant of time in anticipation of future

demand. This is the proactive form of flexibility in our model. The firm keeps the finished

products in inventory in order to satisfy demands quickly and to manage limited capacity

and production/demand variability (i.e., it is a make-to-stock system). We assume that

the products have independent demand arrival processes with arrival rate λi for type i.

The firm is allowed to use one-way substitution to meet demand for product 2 using

stock of product 1, the higher quality product of two similar offerings. This is the reactive

form of flexibility in our model in the sense of being applied after observing demand. In

one-way substitution, product 1 may be substituted for product 2 in all cases (and the

consumer pays the lower price for product 2), but the market will not accept product

2 as a substitute for product 1. The inventory flexibility is augmented by the fact that

our model allows substitution even when product 2 is not out of stock. In addition, we

allow more inventory flexibility by letting the firm decide either to substitute or not to

substitute an order for product 2 with product 1. These substitution options above may be

attractive in some states due to the stochastic processing times, stochastic demands, and

cost differentials of the products.

The firm incurs a substitution cost of C ≥ 0 per substitution to account for the net

lost profit which may include any necessary conversion costs. The firm incurs an inventory

holding/carrying cost of hi, i = 1, 2, per item per unit time for product i kept in inventory.
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Whenever a unit demand for product 1 finds the stock empty, a lost sales cost of P1 is

incurred to account for lost profit as well as loss of goodwill. An alternate interpretation

of the lost sales cost is that it is a proxy for the firm’s cost for expediting (e.g., overtime,

subcontracting) to supplement its regular production at a net cost of Pi per product i = 1, 2.

In the face of a demand for product 2, the firm makes the choice of whether or not to

substitute a product 1 (provided it is available). Observe that under stockout of product

2, a demand for product 2 will result in an immediate penalty of P2 if product 1 is not

substituted and C if it is.

We model the demand for product i as a Poisson process with rate λi and production

times for product i follow an exponential distribution with rate µi. This allows us to utilize

the MDP model to study the structure of the joint optimal production and substitution

policy. Let ni(t) ∈ Z+, where Z+ is the set of non-negative integers {0, 1, 2, . . .}, represent

the inventory level of product i at time t. Then the state of the inventory process at time

t is given by the row vector n(t) = (n1(t), n2(t)) in the state space S = Z+× Z+.

A control policy π states the action taken at any time given the current state of the

system n(t). At any time, the control action set for state n(t) is a union of allowable

production and substitution actions. For any state n(t), allowable production actions are

idling, producing item 1, and producing item 2. Upon arrival of a customer requesting

product 2, allowable upgrading actions are: (i) offer an upgrade (if item 1 is available), and

(ii) do not offer an upgrade.

Let α ∈ (0, 1) denote the discount rate. Also, let h(n(t)) =
∑2

i=1 hini(t) be the inventory

holding cost rate function, where hi > 0 is the unit holding cost rate of product i. We

assume that h1 ≥ h2 due to the increased quality and value of product 1. Let li(t) be

the accumulated lost sales of product i up to time t, and s(t) be the accumulated number

of substitutions up to time t. We require P1 > P2 for consistency with our modeling

of asymmetric settings in which one item has strictly better quality and thus one-way

substitution. We seek to find the optimal control policy π∗ that minimizes the firm’s total

discounted cost over an infinite horizon given as follows:

inf
π

Eπ
n0

[ ∫ ∞

0

e−αth(n(t))dt + C

∫ ∞

0

e−αtds(t) +
2∑

i=1

Pi

∫ ∞

0

e−αtdli(t)

]
, (1)

where Eπ
n0

denotes the expectation over demand, for a given policy π and initial inventory
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levels n0 = (n1(0), n2(0)). We are also interested in the firm’s total average cost given as:

inf
π

lim
T→∞

1

T

(
Eπ

n0

[ ∫ T

0

h(n(t))dt + C

∫ T

0

ds(t) +
2∑

i=1

Pi

∫ T

0

dli(t)

])
. (2)

Without loss of generality, we redefine the time scale such that ν + α = 1, where

ν = λ1 + λ2 + µ1 + µ2 is the uniformization rate. Let the unit row vectors be defined as

e1 = (1, 0) and e2 = (0, 1). Also, let I(R) be the indicator function of event R. By the

uniformization device of Lippman (1975), the optimality equation of the MDP for (1) can

be compactly written as:

Vα(n) = h(n) + λ1

[
Vα(n− e1I(n1>0)) + P1I(n1=0)

]
+ λ2Ts Vα(n) + Tp Vα(n) (3)

where the operators Ts and Tp are defined as:

Ts Vα(n) = min

{
Vα(n− e2I(n2>0)) + P2I(n2=0) : No upgrading; or if n1 = 0,
Vα(n− e1) + C : Upgrading.

(4)

and

Tp Vα(n) = min





(µ1 + µ2)Vα(n) : Idling,
µ1Vα(n + e1) + µ2Vα(n) : Produce item 1,
µ1Vα(n) + µ2Vα(n + e2) : Produce item 2.

(5)

In (3), Vα(n) is the optimal total discounted cost over an infinite horizon when the

initial inventory levels are n = (n1, n2). The first term in (3) is the holding cost incurred

at state n. The terms with λ1 (a product 1 demand arrival) either denote the lost sales

cost incurred in the case of a stockout of product 1 or denote the new state of the system

when a demand for the product 1 is met from inventory. The third term in (3), Ts Vα(n),

corresponds to the choice between upgrading or not upgrading. Provided that there is a

product 1 in the inventory, the firm might choose to upgrade a demand for the lower quality

item, product 2, and satisfy it with product 1 by incurring a substitution cost of C. If the

firm chooses not to upgrade the demand for product 2, it either meets the demand from

the inventory or incurs a lost sales cost in case of a stockout for product 2. The last term

in (3), Tp Vα(n), denotes the choice between idling, producing a product 1, and producing

a product 2.

As it is never optimal to keep infinitely many items in inventory, we can set an upper

bound on n. As a result, the long-run average cost problem can be obtained as the limit

of discounted cost problem as the discounting rate α goes to zero (see Weber and Stidham
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(1987) and Véricourt et al. (2002)). The structural properties of the discounted cost case

are retained for the average cost case. In the average cost case, the optimality equation of

the MDP is:

V (n) + g = h(n) + λ1

[
V (n− e1I(n1>0)) + P1I(n1=0)

]
+ λ2Ts V (n) + Tp V (n) (6)

where g is the optimal cost per unit time, V is the optimal relative value function, and the

operators Ts and Tp are as defined before.

Having presented the model in detail, we can now describe accurately some related

research. While the heuristics and insights we obtain are dramatically different than those

of Hu et al. (2008) and Zhao et al. (2008), the MDP model we formulated independently

of them does share some similar features, even though they model transshipment.

Hu et al. (2008) address the optimal control of inventory and transhipment for a firm

that produces a single product in two locations and faces capacity uncertainty in those

production facilities. They employ a periodic setting with lost sales, focus on the structure

of the optimal policy, and provide results of the sensitivity of the optimal policy with

respect to model parameters. In their periodic review setting, at the beginning of each

period, the firm determines the desired production quantity at each location. After the

production and demand uncertainties are revealed, firm decides how much inventory to

transship from one location to the other and unsatisfied demand is lost. Their model

allows for heterogenous parameters at each location, so their setting can be considered as

a model with two products (as in our paper), each product corresponding to a location. In

that case, transshipment would be a “two-way substitution” and would generate inventory

flexibility. However, in that case, as each production facility is dedicated to a product

as opposed to flexible facilities that could produce both products, their model would not

have process flexibility generated via multi-functional facilities. Furthermore, our model is

designed as a dynamically controlled queueing system in continuous time, as opposed to a

periodic control model.

Zhao et al. (2008) also focus on characterizing the optimal control of inventory and

transhipment for a firm that produces a single product in two locations, but they model

each location as a single-server make-to-stock queueing system, where a customer demand is

backordered if it is not immediately satisfied. They propose three heuristics for the problem.
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In their setting, each facility can either produce for its default location or produce and

transship to the other location with a transshipment cost. The firm also has the option to

transship on hand inventory to meet demand after incurring the same transshipment cost.

Even though the models are similar, the differences between them are very significant. Our

model focuses on a single facility model with two products and lost sales, whereas Zhao et

al. (2008) utilizes a two facility model with one product and backordering. Similar to Hu et

al. (2008), Zhao et al. (2008) can also be interpreted as a two-product model by considering

each location as a product. But in that case, it can be observed that the process flexibility

mechanics of their model is not well-suited for a two-product setting with substitution.

Each facility produces one of the products without any additional cost, but production of

the other product incurs a transshipment cost. The same transshipment cost is also used as

the inventory substitution cost. In Section 6 as a part of our numerical study, in addition

to our single-facility model, we also use a two-facility model. That model is closer to, but

still different than the one used in Zhao et al. (2008) due to the cost structure and the

backordering assumption in that paper.

Both Hu et al. (2008) and Zhao et al. (2008) utilize inventory flexibility generated by

“two-way substitution.” Even though two-way product substitution is suitable for trans-

shipment models with a single product, its applicability is questionable for a two-product

setting with firm-driven product substitution, which requires the customer to accept the

offer. One-way substitution successfully represents the phenomenon where a higher-quality

product is offered as an alternative to the lower-quality product. In this sense, a model

of two-way substitution would only be realistic in rare cases where the actual or perceived

quality/price difference of the products is negligible. One-way substitution is much more

prevalent as a practical business practice.

3 Complexity of the Structure of the Joint Optimal

Policy

In this section, we study the behavior of the joint optimal production and substitution

policy. We first show the non-monotonic behavior of the optimal policy, and then illustrate

the impact of the optimal substitution policy on production decisions.
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3.1 Complex Non-monotonic Behavior of the Joint Optimal Con-
trol Policy

In order to understand the structural properties of the joint optimal production and substi-

tution policy, we performed an extensive numerical study. It revealed that the joint optimal

policy is state-dependent with a very complex structure. Furthermore, the structure of the

production policy, and to a lesser extent, substitution policy, is sensitive to the model pa-

rameters. We illustrate this with the examples in Figures 1 to 3, which show the optimal

production and substitution policies for a system based on the parameters λ1 = 4, λ2 = 5,

h1 = 1.5, h2 = 1, P1 = 15, P2 = 10, and with different production rate combinations.
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Figure 1: The optimal policy for the case with λ1 = 4, λ2 = 5, µ1 = 6, µ2 = 7, h1 = 1.5, h2 = 1,
P1 = 15, P2 = 10, and C = 2. Left: Production policy; Right: Upgrading policy.
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Figure 2: The optimal policy for the example in Figure 1, when µ2 is reduced from 7 to 4. Left:
Production policy; Right: Upgrading policy.

Figure 2 shows the optimal production and substitution policy when the production

rate of product 2, µ2, in the example in Figure 1 is reduced from 7 to 4. In this case,

low production capacity for product 2 (i.e., λ2 = 5 > µ2 = 4) and ample production

capacity for product 1 (λ1 = 4 < µ1 = 6) substantially increases the use of upgrading (i.e.,

Figure 2.Right has more states with upgrading than Figure 1.Right). Furthermore, it is
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Figure 3: The optimal policy for the example in Figure 1, when µ1 is reduced from 6 to 3. Left:
Production policy; Right: Upgrading policy.

more attractive to produce product 1 when inventory of both products are low, due to the

inadequate capacity for product 2 combined with excess capacity for product 1. That is to

say, production of product 1 combined with upgrading is a better strategy than producing

product 2 (which still incurs lost sale penalty costs, P2, due to inadequate capacity). Finally,

the reduction in the production rate for product 2, µ2, shifts the threshold separating

product 2 production and idling towards higher product 1 inventory values (i.e., build

higher inventory levels). In summary, Figure 2 illustrates how a capacity shortage for

product 2 allows the manufacturer to use upgrading as a device to convert product 1

capacity to product 2 capacity.

In Figure 3, the example in Figure 1 is changed in only one respect: the production

rate of product 1, µ1, is reduced from 6 to 3. In this case, low production capacity for

product 1 (λ1 = 4 > µ1 = 3) and high production capacity for product 2 (λ2 = 5 < µ2 = 7)

substantially decreases the use of upgrading. Hence, Figure 3.Right has less states with

upgrading than Figure 1.Right. Even if there is a product 2 stockout, upgrading is used

sparingly – requiring at least 14 items of product 1 in inventory for upgrading to become

beneficial. The reduction in the production capacity of product 1 forces the multi-functional

facility to adjust its production policy. When both items are near stockout, the firm no

longer prefers to produce product 1, because production times of product 1 are too long.

Indeed, a loss rate of 1 product 1 job and 5 product 2 jobs per unit time is ensured if the

server were devoted exclusively to product 1 production.

The nonmonotonic behavior of the optimal production and substitution policy, as shown

in the above figures, adds to the complexity of the structure of the optimal policy and

further emphasizes on the need for simple and cost-effective heuristic policies.
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Figure 4: The optimal production policy when the upgrading option is removed. Left: For the
case in Fig. 1; Right: For the case in Fig. 2.

3.2 The Impact of Substitution on an Optimal Production Policy

It is helpful to illustrate the role of product substitution, which can be identified simply

by removing the upgrading option from the model. The resulting contrast between the

optimal production policy with product substitution and that without can be seen in Figure

1.Left and Figure 4.Left, respectively. The main qualitative difference is the modification

of the production decisions when the inventory of product 1 (product 2) is high (is low).

Without substitution, when product 2 inventory is zero, the system will always produce

either product 1 or product 2. With substitution, it is optimal not to produce product 2

at all when product 1 inventory is high enough, even when product 2 inventory is empty.

The reason can be observed from Figure 1.Right. For each product 2 inventory level, there

is a product 1 inventory level above which we use product 1 to satisfy product 2 demands.

Therefore, even if product 2 inventory is extremely low, or even zero, if product 1 inventory

is sufficiently high we will upgrade product 2 demands and do not need to produce product

2. In this case, Figure 1.Right shows that if product 2 inventory is empty, it is optimal to

upgrade when there are at least 8 of type 1 in inventory; however, we require at least 24

product 1 in inventory to start upgrading if there is a product 2 in inventory.

As mentioned before, due to the capacity shortage for product 2, upgrading is more

important for the case given in Figure 2 than the case given in Figure 1. Therefore, the

change in the production policy in Figure 2.Left is more significant when the upgrading

option is removed, as seen in Figure 4.Right.

Above all, our intention in this section is to convey how the number of parameters and

the complexity of the joint production and substitution policy (e.g., non-monotonic behav-
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ior) makes the characterization of the optimal policy very difficult in general. Nevertheless,

for cases in which production rates are equal (i.e., µ1 = µ2), we are able to characterize the

structure of the optimal production and substitution policy in the next section.

4 Characterization of an Optimal Policy for Equal

Production Rates

We provide a detailed analysis of the joint optimal production and substitution policy when

the production rates of the two products are equal, i.e., µ1 = µ2 = µ. Taking computer

assembly as an example, the time it takes to assemble the hard disks or CPU’s in different

desktop models may be exactly the same, regardless of the hard disk storage capacity

or CPU speed. Modular design of components is a strategic decision made to increase

flexibility, and therefore the case of homogeneous service times more likely to occur in

practice than one might otherwise suspect.

For the equal production rate case, we define the optimality equation of the MDP given

in (3) using the operator Ts as given in (4) and defining the operators T and Tp as follows:

Vα(n) = TVα(n) = h(n) + λ1

[
Vα(n− e1I(n1>0)) + P1I(n1=0)

]
+ λ2Ts Vα(n) + µTp Vα(n) (7)

Tp Vα(n) = min
{

Vα(n), Vα(n + e1), Vα(n + e2)
}

. (8)

For our analysis, it is convenient to define the first difference operator, Di, as well as

the second difference operator, Dij, on real-valued functions v defined over the state space

S for i, j ∈ {1, 2} as:

Div(n) = v(n + ei)− v(n)

Dijv(n) = Di(Djv(n)).

The following Proposition is key to our main result regarding the optimal policy. The

proofs of Proposition 1 and Theorem 1 can be found in online Appendix A.

Proposition 1 Let U be the set of functions on the state space S which satisfy the prop-

erties P1 to P4 given below. If a function v ∈ U , then Ts v ∈ U , Tp v ∈ U , and Tv ∈ U .

P1 Supermodularity: D12v(n) ≥ 0

P2 Diagonal dominance: D11v(n) ≥ D12v(n), D22v(n) ≥ D12v(n)

P3 Convexity: D11v(n) ≥ 0, D22v(n) ≥ 0

P4 Lower bound: D1v(n) ≥ −P1, D2v(n) ≥ −P2.
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Furthermore, the optimal cost function Vα∈ U .

Theorem 1 presents our main results regarding the structure of the optimal production

and substitution policy when the production rates are equal.

Theorem 1 The joint optimal production and substitution policy has the following prop-

erties:

(i) If idling is optimal at state n ∈ S, then idling is also optimal at states n + e1 and

n + e2.

(ii) If producing the higher quality product (product 1) is optimal at state n ∈ S with

n1 ≥ 1, then producing product 1 is also optimal at states n− e1 and n− e1 + e2.

(iii) If producing the lower quality product (product 2) is optimal at state n ∈ S with

n2 ≥ 1, then producing product 2 is also optimal at states n− e2 and n− e2 + e1.

(iv) If upgrading the demand for product 2 is optimal at state n ∈ S, then it is also optimal

to upgrade at states n + e1, and if n2 ≥ 1, at state n− e2.

Some of the properties listed in Theorem 1 for systems with equal production rates do

not hold for the general case when µ1 6= µ2. For example, Figure 3.Left shows that, if

producing product 1 is optimal at state n ∈ S with n1 ≥ 1, then producing product 1 is

not necessarily optimal at state n− e1 when µ1 6= µ2. Similarly, Figure 2.Left shows that,

if producing product 2 is optimal at state n ∈ S with n2 ≥ 1, then producing product 2 is

not necessarily optimal at state n− e2 when µ1 6= µ2. Lastly, Figure 1.Right shows that, if

upgrading is optimal at state n ∈ S with n2 ≥ 1, it is not necessarily optimal to upgrade

at state n− e2 when µ1 6= µ2.

As shown in Figures 1, 2, and 3, and supported by the examples provided above, the

structure of the joint optimal production and substitution policy is complex. This motivates

the need for cost efficient and easy-to-implement policies. In the next section, we present

such a policy and show that our multi-threshold policy, while considerably simpler than

the optimal, has a cost close to that of the optimal policy.

5 Multi-threshold Policy

We see that the joint optimal production and substitution policy is not easy to implement in

practice. This motivates the need for a near optimal heuristic policy with a simple structure
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that can be used instead to approximate the joint optimal production and substitution

policy. We construct a multi-threshold policy to capture some features of the optimal

production and substitution policy combinations presented in Figures 1 to 3 based upon

the insights and knowledge obtained from our extensive numerical study and Theorem

1. As illustrated in Figures 5 and 6, for different parameter combinations, the proposed

policy consists of two different policies with a total of five non-negative parameters which

are interdependent:

• Production policy: Three parameters of the multi-threshold policy, A1, A2, and A3

(with A1 ≥ A2), constitute the production side of the multi-threshold policy.

• Substitution policy: Two parameters, B1 and B2, determine the substitution decisions

of the multi-threshold policy.

Let Si denote the set of states at which the firm produces product i = 1, 2, and let

Su denote the set of states at which it upgrades the demand. Then the proposed multi-

threshold policy can be expressed as follows:

Produce product 1: If n ∈ S1 = {n : n1 < A2 or A2 + A3 < n1 < A1, A3 < n2}
(or equivalently S1 = {n : n1 < A1, n 6∈ S2})

Produce product 2: If n ∈ S2 = {n : A2 ≤ n1 ≤ A2 + A3, n2 ≤ A3}
Idle: If not producing product 1 or product 2, i.e., n 6∈ S1 and n 6∈ S2

Upgrade: If n ∈ Su = {n : B1 < n1, n2 ≤ B2}

Figure 6.Right shows the general structure of the substitution policy for the proposed

multi-threshold policy. Figures 5 and 6.Left show the production decisions of the multi-

threshold policy for different combinations of parameters A1, A2, and A3. In Figure 5.Left,

A1 > A2 + A3, in Figure 5.Right, A2 + A3 ≥ A1 > A2, and finally in Figure 6.Left,

A2 + A3 ≥ A1 = A2 holds.

The multi-threshold policy has several cases formed by different combinations of pro-

duction (substitution) policy related parameters A1, A2, and A3 (B1 and B2). In the next

section, we analyze a representative case of the proposed multi-threshold policy.
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Figure 5: Multi-threshold policy examples. Left: Production policy for the case with A1 = 27,
A2 = 4, and A3 = 20, Right: Production policy for the case with A1 = 22, A2 = 6, and A3 = 22.
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Figure 6: Multi-threshold policy examples. Left: Production policy for the case with A1 = A2 =
15, and A3 = 20, Right: Upgrade policy for the case with B1 = 5 and B2 = 24.

5.1 Exact Analysis of the Multi-threshold Policy When 0 < B1 <

A2 ≤ A1 ≤ A2 + A3 and 0 ≤ A3 ≤ B2

We now develop a queueing model to analyze a representative case of the multi-threshold

policy. Analyses of the other cases are similar and therefore omitted. We formulate and

solve an exact model of the case where 0 < B1 < A2 ≤ A1 ≤ A2 + A3 and 0 ≤ A3 ≤ B2

(cases in both Figure 5.Right and Figure 6 are examples) to obtain the system’s performance

measures such as average total cost per unit time and average number of substitutions per

unit time.

Upon fixing the control policy used, the MDP model reduces to a continuous-time

Markov chain that can be analyzed to obtain performance measures such as average in-
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ventory, average number of lost sales for product 1 and 2, and respective costs. For this

purpose, we define πi,j to represent the steady-state probability that the number of prod-

ucts 1 and 2 in the firms’ inventory are i and j, respectively. Due to the idle action region,

the state space of the resulting Markov chain is positive recurrent on only a single, finite

class of states given as Ω = {πi,j : 0 ≤ i ≤ A2, 0 ≤ j ≤ A3 + 1}. It can be shown that

the Markov chain defined on Ω is ergodic, the steady-state probabilities exist and they are

unique (Kulkarni, 1995).

The balance equations of the Markov chain are presented in online Appendix B. Let

the generating function for the steady-state probabilities be defined as follows:

Π(v, w) =

A2∑
i=0

A3+1∑
j=0

viwjπi,j.

We have the following Proposition:

Proposition 2 The generating function Π(v, w) for the steady state probabilities πi,j of

the model is:

Π(v, w) =
1

H(v, w)

{
λ1w(v − 1)N1(v, w) + λ2

(
v(w − 1)N2(v, w) + (w − v)N3(v, w)

)

+ µ1vw(1− v)
(N4(v, w) + vA2wA3+1πA2,A3+1

)
+ µ2vw(w − 1)N4(v, w)

)}
(9)

where

H(v, w) = λ1w(v − 1) + λ2v(w − 1) + µ1vw(1− v) (10)

Nk(v, w) =





∑A3+1
j=0 wjπ0,j : k = 1

∑B1

i=0 viπi,0 : k = 2

∑A2

i=B1+1

∑A3+1
j=0 viwjπi,j : k = 3

∑A3

j=0 vA2wjπA2,j : k = 4

(11)

The balance equations of the Markov chain could, in principle, be solved directly. How-

ever, this approach limits the size of the problem that can be solved with finite computing

power. Thus, it is useful to exploit the structural properties of the balance equations to

obtain efficient algorithms. We present two approaches to overcome this problem.
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Our first approach incorporates generating function analysis to reduce the dimension

of the system of equations to be solved. Notice that the generating function Π(v, w) in

(9) has (A2 − B1 + 1)(A3 + 2) + B1 unknown probabilities. The algorithm presented in

online Appendix B shows how to obtain the steady-state probabilities in (9) by solving

(A2−B1 + 1)(A3 + 2) + B1 equations instead of solving all of the (A2 + 1)(A3 + 2) balance

equations. An (A3 +1)B1 reduction in balance equations could be significant. For example,

if A2 = A3 = 50 and B1 = 49, then obtaining the probabilities by using all of the balance

equations involves solving 2652 equations, whereas only 153 equations are required through

the algorithm provided in online Appendix B.

Our second approach avoids solving a system of equations to get the unknown probabil-

ities. This approach, detailed in online Appendix C, exploits the Markov chain’s structure

in such a way that, by setting π0,A3+1 = 1, we obtain the un-normalized values of the

state probabilities via a recursion on the state space. Afterwards, the actual value of the

probability for each state can be recovered by simply dividing the un-normalized value by

the sum of the un-normalized values for all states.

Let E(I1) and E(I2) be the average inventories for the products 1 and 2, respectively.

E(I1) and E(I2) can be obtained as follows:

E(I1) =

A2∑
i=1

h1

( A3+1∑
j=1

πi,j

)
=

∂Π(v, 1)

∂v

∣∣∣∣
v=1

and E(I2) =

A3+1∑
j=1

h2

( A2∑
i=1

πi,j

)
=

∂Π(1, w)

∂w

∣∣∣∣
w=1

Similarly, let E(L1) and E(L2) be the average lost sales per unit time for products 1

and 2, respectively. E(L1) and E(L2) are given as follows:

E(L1) = λ1

A3+1∑
j=0

π0,j = λ1N1(1, 1) and E(L2) = λ2

B1∑
i=0

πi,0 = λ2N2(1, 1).

where N1(1, 1) and N2(1, 1) represent the proportion of time a product 1 and a product 2

lost sale happens, respectively. Note that, N2(1, 1) =
∑B1

i=0 πi,0 is the proportion of time

that a lost sale for product 2 happens, as the firm is upgrading product 2 demands to

product 1 whenever n2 = 0 and n1 > B1 under the multi-threshold policy.

Lastly, the average number of substitution per unit time, denoted by E(S), is given as

follows:

E(S) = λ2

A2∑
i=B1+1

A3+1∑
j=0

πi,j = λ2N3(1, 1).
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Therefore, the total average cost per unit time, E[TC], is:

E[TAC] =
2∑

i=1

(hiE(Ii) + PiE(Li)) + CE(S) (12)

= h1
∂Π(v, 1)

∂v

∣∣∣∣
v=1

+ h2
∂Π(1, w)

∂w

∣∣∣∣
w=1

+λ1P1N1(1, 1) + λ2(P2N2(1, 1) + CN3(1, 1)). (13)

As Proposition 2 shows, the average total cost per unit time given in (12) is a function

of A2, A3, and B1. Optimal values can be found by searching for the A∗
2, A

∗
3, and B∗

1

values that minimize (12) subject to the constraints 0 < B1 < A2 ≤ A1 ≤ A2 + A3 and

0 ≤ A3 ≤ B2.

5.2 Cost Effectiveness of the Multi-Threshold Policy

In this section, we present the results of the numerical study conducted to investigate

whether the performance of the multi-threshold policy is close to that of the optimal joint

production and substitution policy.

The relative cost difference (i.e., the error percentage) between the optimal integrated

production and substitution policy and the multi-threshold policy is defined as follows:

∆ =
TAC(A,B)− TC∗

TC∗ × 100%

where TC∗ is the total average cost per unit time under the joint optimal production and

substitution policy and TC(A,B) is the total average cost per unit time under the optimal

multi-threshold policy computed via (12) with parameter vectors A = {A∗
1, A

∗
2, A

∗
3} and

B = {B∗
1 , B

∗
2}.

Our numerical study, which is based on the test suite introduced in the Appendix,

shows that the proposed multi-threshold policy performs extremely well. The average error

percentage for over 75,000 cases is only 0.54%, and in approximately 95.1% of the test cases

the error percentage is less than or equal to 3%. The maximum error percentage for the

test suite is found as 6.78%. Our numerical study indicates that the multi-threshold policy

is a good candidate to be used instead of the optimal joint production and substitution

policy.
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6 Production Flexibility versus Post-Production Flex-

ibility

In this section, we investigate the following questions: (1) What is the impact of the system

parameters such as production capacities, substitution costs, lost sales costs, and holding

costs on the value of inventory flexibility or process flexibility? (2) Is the value of adding

inventory (or process) flexibility higher in systems which already have one types of flexibility

(inventory or process) compared to those that have neither types of flexibility? (3) Under

what circumstances does process flexibility have more value than inventory flexibility, or

vice versa?

These are important questions of strategic managerial interest that give seek to gain

insight into the value of proactive process flexibility and/or reactive inventory flexibility.

Our work above indicated our finding that optimal policies and performance for this class of

problems are complex and cannot be obtained in closed form. To address these questions,

the best way is via computation of optimal performance over a wide range of settings. We

have done just that, and our test suite consists of more than 23,400 cases. The test suite,

which is described in more detail in the Appendix, is designed to cover a wide range for

the ratio of lost sales cost to holding cost, (Pi/hi from 1 to 100 for i = 1, 2), and the ratio

of lost sales cost to substitution cost, (Pi/C ranges from 0.5 to 100). The product arrival

rate and production rate combinations tested include cases with 0.5 ≤ λi/µi ≤ 2, ranging

from low utilization through high utilization, including cases in which nearly half of the

arrivals overflow and are lost in the absence of process flexibility or inventory flexibility.

6.1 Alternative System Settings

Some of the questions analyzed in the following sections involve the interaction between,

and comparison of, inventory flexibility and process flexibility. Therefore, besides the multi-

functional model in Section 2, we also need to develop a model to find the firm’s optimal

cost when it utilizes dedicated (non-flexible) production facilities.

We now present a model to find the firm’s optimal cost when it utilizes two production

facilities, each dedicated to produce one of the products, instead of using a multi-functional

facility to produce both. Similar to Section 2, we formulate the system as an MDP and
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unless stated otherwise, we use the definitions introduced in that section.

Let µD
i be the production rate of the facility dedicated to produce product i = 1, 2.

Using Ts as given in (4) and the operator Tp defined below, the average cost optimality

equation for the MDP is:

V (n) + g = h(n) + λ1

[
V (n− e1I(n1>0)) + P1I(n1=0)

]
+ λ2Ts V (n) + Tp V (n) (14)

Tp V (n) = min





(µD
1 + µD

2 )V (n) : Idling,
µD

1 V (n + e1) + µD
2 V (n) : Produce item 1,

µD
1 V (n) + µD

2 V (n + e2) : Produce item 2,
µD

1 V (n + e1) + µD
2 V (n + e2) : Produce item 1 and 2.

(15)

The differences between this model and (6) are the terms related to production decisions,

given by equations (5) and (15). In the dedicated facility case, we have four possible actions:

(i) both of the facilities are idling, (ii) the facility for product 2 is idling while the other

facility is producing product 1, and (iii) the facility for product 1 is idling while the other

facility is producing product 2, and lastly (iv) both facilities are producing.

Note that, µi is the capacity of our multi-functional facility (i.e., number of product i

produced per unit time), if the multi-functional facility is devoted to product i. Since the

multi-functional facility does not always produce one type of product in our base model,

we consider µD
i , the capacity of the dedicated system for product i, to be a fraction of the

capacity µi. The fraction is proportional to the demand for product i, so:

µD
i =

( λi

λ1 + λ2

)
µi =⇒ µi =

(λ1 + λ2

λi

)
µD

i for i = 1, 2. (16)

While referring to the alternative system settings, we use the subscript i (subscript ni)

for systems with inventory flexibility (no inventory flexibility) and subscript p (subscript

np) for process flexibility (no process flexibility). Alternative system settings considered

are presented in Figure 7.

Production 
Facilties Inventories Demand

Product 1

Product 2

System: ni/np

Production 
Facilties Inventories Demand

Product 1

Product 2

System: i/np

Production 
Facilty Inventories Demand

Product 1

Product 2

System: ni/p

Production 
Facilty Inventories Demand

Product 1

Product 2

System: i/p

Figure 7: Alternative system settings with varying flexibility levels.

Note that the system presented in Section 2 corresponds to the system i/p and the

systems introduced in this section correspond to the system i/np in Figure 7. The MDP
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model for the system ni/np (system ni/p) can simply be obtained from the MDP model

for the system i/np (system i/p), by removing the “upgrading” action from the operator

Ts given in (4).

6.2 Value of Inventory Flexibility

We would like to know if, and by how much, inventory flexibility can reduce the total

average cost. Furthermore, we would also like to analyze the interaction between process

flexibility and inventory flexibility. Before we introduce the measures that we use to analyze

the value of inventory flexibility, we need to define TCi/p as the firm’s total average cost

per unit time in systems with inventory flexibility and process flexibility. Similarly, TCni/p,

TCi/np, and TCni/np denote the firm’s total average cost per unit time in alternative system

settings discussed in Section 6.1. In order to measure the value of inventory flexibility, we

consider the following measures:

IP =
TCni/p − TCi/p

TCni/np

× 100% ; INP =
TCni/np − TCi/np

TCni/np

× 100%.

where IP (INP , respectively) represent the firm’s relative cost saving due to adding inventory

flexibility to a system which already has (does not have) process flexibility. These measures

can be compared because both use the system with no flexibility (i.e., the ni/np system)

as a benchmark (in the denominator).

We obtained the metrics IP and INP for the broad test suite defined in the Appendix,

where for each parameter combination we parameterized our base system (i.e., system

ni/np) using (16). Table 1 provides summary information on IP and INP , as the numerical

study is too large to present in detail. Note that IP − INP represents how much the benefit

of inventory flexibility is higher in systems that already have process flexibility compared

to systems without process flexibility.

Table 1: Performance measure statistics.
IP INP IP − INP

Average Value 4.58% 1.65% 2.92%
Maximum Value 79.32% 25.49% 72.05%
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6.2.1 Impact of Process Flexibility on the Value of Inventory Flexibility

As Table 1 shows, the value of inventory flexibility can be very significant, i.e., up to 25.49%

in systems with no production flexibility, and up to 79.32% in systems with production

flexibility. Furthermore, the value of inventory flexibility is larger in systems that already

have production flexibility, i.e., IP − INP is nonnegative. We observed this in 78.2% of

our cases. This led us to the following observation. In the rest of the paper we refer to

P1−P2 as the “difference between lost sales costs,” and we refer to h1−h2 as the “difference

between inventory holding costs.”

Observation 1 In most cases, the benefit of inventory flexibility is higher in systems that

already have production flexibility compared to systems without production flexibility. How-

ever, as the production capacity of the lower-quality product decreases, systems without

production flexibility might benefit more from inventory flexibility than systems with pro-

duction flexibility. In such cases, IP − INP is reduced further when the difference between

lost sales costs decreases.

One would expect that the INP values dominate the IP values in most cases, since

IP represents the value of the inventory flexibility added as a second option on top of the

process flexibility, whereas INP represents the value of the inventory flexibility added as the

first option to a system with no flexibility at all. However, as stated in Observation 1, it is

perhaps surprising that the existence of process flexibility increases the value of inventory

flexibility in majority of the cases by providing better capacity allocation through a multi-

functional facility. Furthermore, a multi-functional facility also helps mitigate the increased

risk of product 1 stockouts when inventory flexibility is used, further complementing the

effectiveness of inventory flexibility.

On the other hand, as the capacity for product 2 in the base system with no flexibility

decreases, as noted in Observation 1, after some point the benefit of capacity pooling of

the multi-functional facility starts reducing the value of inventory flexibility.

The maximum value of both IP and INP is obtained when the substitution cost, C, is

zero. If we restrict attention to the case C = 0, the average IP − INP difference increases

to 4.57%, further supporting Observation 1.

As we mentioned above, the capacity pooling of the multi-functional facility might

reduce the value of inventory flexibility in a system that already has process flexibility
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(i.e., decreasing IP ). To observe the impact of the degree of process flexibility on value of

inventory flexibility, we replaced the fully flexible production models for ni/p and i/p that

are rightmost in Figure 7 with models that have only limited (server 2 can produce both

types 1 and 2 now) as shown in Figure 8.

Production 
Facilties Inventories Demand

Product 1

Product 2

System: ni/p

Production 
Facilties Inventories Demand

Product 1

Product 2

System: i/p

Figure 8: Alternative system settings with one-way process flexibility.

The two systems in Figure 8 have process flexibility, but only a lower level process

flexibility, which we call “one-way” flexibility. Note that facility 2 in the figure can produce

both types of products, while facility 1 can only produce product of type 1. As product

1 has higher lost sales cost and inventory holding cost than product 2 in our model, the

value of one-way process flexibility that can shift capacity to product 1 would typically be

higher than the one that can shift capacity to product 2. One-way process flexibility does

not introduce full capacity pooling and it cannot shift capacity to product 2. We repeated

the numerical study. As expected after Observation 1 (however, still an interesting result in

itself), in general, the benefit of inventory flexibility is higher in systems that already have

one-way production flexibility compared to systems without one-way production flexibility.

In this case, IP − INP is negative in only less than 0.1% of the cases, and the maximum

and the average IP − INP values increase to 81.9% and 7%, respectively. This indicates

that process and inventory flexibility continue to be complementary to each other.

6.2.2 Impact of System Parameters on the Value of Inventory Flexibility

We have also investigated the numerical study to identify the impact of systems parameters

on the value of inventory flexibility, which lead us to the following observation, which we

will then explain.

Observation 2 The value of inventory flexibility INP (IP ) increases as any of the following

occurs: (1) substitution cost C decreases, (2) the production capacity for the higher-quality

product increases, (3) production capacity for the lower-quality product decreases, (4) the
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difference between lost sales costs or (5) the difference between inventory holding costs

decrease.

The intuition behind this can be understood as follows. When the production capacity

for product 1 is large, it is easier for the system to build up product 1 inventory, therefore

increasing the chances that a higher-quality product will be available for substitution, if

needed. A reduction in the production capacity for product 2 also increases the value of

inventory flexibility, as without substitution the system will suffer more frequent product

2 stockouts. An increase in the lost sales cost of product 2 increases the value of inventory

flexibility, as the alternative to substitution is higher lost sales of product 2 per unit time.

Similarly, higher inventory holding cost for product 2 also increases the value of inventory

flexibility, because substitution becomes more attractive and reduces the inventory require-

ment for product 2. The effects of the lost sales cost and inventory holding cost of product

1 can be explained similarly.

6.3 Value of Process Flexibility

We have also evaluated the value of process flexibility through the following two metrics:

PI =
TCi/np − TCi/p

TCni/np

× 100% ; PNI =
TCni/np − TCni/p

TCni/np

× 100%.

Table 2 provides summary information on PI and PNI . We observed that the value

of process flexibility in systems without inventory flexibility can be up to 80.9%, with an

average of 29.9%. These numbers are 80.9% and 32.8% for systems that already have

inventory flexibility.

Table 2: Performance measure statistics.
PI PNI PI − PNI

Average Value 32.82% 29.90% 2.92%
Maximum Value 80.92% 80.90% 72.05%

6.3.1 Impact of Inventory Flexibility on the Value of Process Flexibility

Note that PI−PNI represents how much the benefit of process flexibility is higher in systems

that already have inventory flexibility compared to systems without inventory flexibility.

It is easy to show that, PI −PNI = IP − INP , which results in the same observation as that

in Observation 1, rephrased for process flexibility. Specifically, we will have:
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Observation 3 In most cases, the benefit of process flexibility is higher in systems that al-

ready have inventory flexibility compared to systems without inventory flexibility. However,

as the production capacity of the lower-quality product decreases, systems without inventory

flexibility might benefit more from process flexibility than systems with inventory flexibil-

ity. In such cases, PI − PNI reduces further when the difference between lost sales costs

decreases.

6.3.2 Impact of System Parameters on the Value of Process Flexibility

The following closely related observations, 4 and 5, present the impact of systems pa-

rameters on the value of process flexibility in systems with inventory flexibility as well as

without.

Observation 4 In systems without flexibility, when the production capacity of the higher-

quality product becomes sufficiently small, the value of adding process flexibility PI (PNI)

increases as any of the following occurs: (1) the production capacity for the lower-quality

product increases, (2) the difference between lost sales costs increases, or (3) the difference

between inventory holding costs decreases.

Observation 5 In systems without flexibility, when the production capacity of the lower-

quality product becomes sufficiently small, the value of adding process flexibility PI (PNI)

increases as any of the following occurs: (1) the production capacity for the higher-quality

product increases, (2) the difference between lost sales costs decreases, or (3) the difference

between inventory holding costs increases.

In scenarios where process flexibility provides value mainly by shifting capacity to a

product type, say i, the value of the process flexibility increases when the differences be-

tween the product cost parameters emphasize the importance of product type i. However,

because product 1 is assumed to have higher holding and lost sales costs due to its quality,

shifting capacity to product 2 usually generates less value than vice versa.

6.4 Process Flexibility versus Inventory Flexibility

We now compare the value of process flexibility only (PNI) to the value of inventory flexi-

bility only (INP ) in Table 3. Note that PNI − INP would be positive if the value of process

flexibility is larger than the value of inventory flexibility. Based on the results of our

numerical study, we can present the following observation:
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Table 3: Performance measure statistics.
PNI INP PNI − INP

Average Value 29.90% 1.65% 28.25%
Maximum Value 80.90% 25.49% 80.90%

Observation 6 In general, process flexibility results in more cost savings than inventory

flexibility. The benefit of process flexibility over inventory flexibility increases as the pro-

duction capacity for the lower-quality product increases, or the difference between lost sales

costs increases.

We observed that in 99.05% of the cases the value of process flexibility is at least as

large as the value of inventory flexibility. On average, the value of process flexibility is

28.2% more than the value of inventory flexibility for the test suite, with a maximum

advantage (PNI−INP ) of 80.9%. Only 0.95% of the cases showed INP −PNI to be positive,

the maximum being 5.4%. These cases corresponds to the situation where the value of

inventory flexibility is very high and the value of process flexibility is low at the same

time. This occurs when the production capacity for the higher-quality product is high,

production capacity for the lower-quality product is low, the substitution cost C is low,

and the difference in inventory holding costs and the lost sales costs of both products

are small. All these conditions favor producing product 1 all the time and use it as a

substitution for product 2.

One might think that the substitution cost, C, is the main reason for the performance

difference between process flexibility and inventory flexibility stated in Observation 6.

Specifically, one might consider substitution cost C as a per unit cost of utilizing inventory

flexibility, while utilizing process flexibility (switching from producing one type of product

to the other) is costless. To investigate this, we eliminated the substitution cost (i.e., we

set C = 0), which maximizes the effectiveness of inventory flexibility, but the average value

of process flexibility is still higher than the value of inventory flexibility by 24.1%, and the

maximum difference is still 80.9%. Furthermore, in approximately 97.7% of the cases the

value of process flexibility is at least as large as the value of inventory flexibility. Therefore,

the substitution cost is not the main reason why the value of process flexibility is typically

higher.
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The other reason that one might consider as the driver of the superior performance of

process flexibility over inventory flexibility is the fact that we compare one-way inventory

flexibility to “two-way” process flexibility. To check this claim, we repeated our numerical

study and compared inventory flexibility (i.e., systems ni/np and i/np) in Figure 7 to

one-way process flexibility introduced in Figure 8. We found that process flexibility still

outperforms inventory flexibility in 90.6% of the cases, and the average and maximum

PNI − INP values are 23.9% and 84.2%, respectively.

All other things being equal, the key reason that process flexibility adds more value

than inventory flexibility is as follows. To utilize inventory flexibility, the system must

hold more inventory of product 1 than systems with process flexibility. Thus, the inven-

tory levels (costs) in systems with inventory flexibility can be significantly larger than that

in systems with process flexibility. Further, process flexibility (which we have character-

ized as controllable at the time of production as opposed to the post-production nature

of inventory flexibility) offers the greater ability to align production and inventory allo-

cation/substitution with the cost structure. Further perspective is provided in the next

section.

7 Conclusion

We analyzed the joint control of production in a flexible process and inventory manage-

ment via one-way product substitution of finished goods. We provide a detailed analysis

of the properties of the joint optimal production and substitution policy for the case of

homogeneous production rates. We also propose a multi-threshold policy as an effective

but simpler surrogate for the optimal policy for the more complex case of heterogeneous

production rates. Our extensive numerical study shows that our multi-threshold policy is

nearly optimal. We provide insights into the value of inventory flexibility generated by the

one-way product substitution option and process flexibility generated by a multi-functional

facility. We also compare the value of inventory flexibility to both the value of two-way pro-

cess flexibility generated by a multi-functional facility as well as one-way process flexibility

in a system with a dedicated and a flexible facility.

We found that inventory flexibility is not effective in every situation; however, it

shouldn’t be overlooked as its value can be substantial. The value of inventory flexibility
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increases as any of the following occur: (1) substitution cost decreases, (2,3) the production

capacity for the higher-quality (lower-quality) product increases (decreases), or (4,5) the

difference between lost sales costs or inventory holding costs decrease.

Our numerical study showed that inventory flexibility and process flexibility typically

complement each other, i.e., the benefit of inventory flexibility is higher in systems that

already have production flexibility compared to systems without production flexibility and

vice versa. Moreover, we found this to be true for both two-way and one-way process

flexibilities.

Finally, our numerical study suggests that in an overwhelming majority of cases, the

value of process flexibility exceeds the value of inventory flexibility in the form of one-way

firm-driven product substitution. Both capacity and cost considerations play an important

role in the value of substitution. Two-way process flexibility benefits from the value of

capacity control and pooling, which in our study exceeds the value of inventory flexibility

in the majority of the cases. However, it should be noted that the value of substitution

could exceed the value of process flexibility in rare situations favoring substitution. Because

the model of process flexibility was two-way, we also created a special model of one-way

process flexibility and once again observed the dominance of even one-way process flexibility

over inventory flexibility.

To summarize the intuition, we find it helpful to characterize process flexibility as

occurring at the time of production and prior to demand realization. In contrast, firm-

driven inventory flexibility via substitution occurs post-production and post-demand. Our

numerical studies reveal that the strength of process flexibility lies in its greater ability

to proactively build more accurately sized inventories in alignment with the firm’s cost

structure. On the other hand, it is intuitive that one-way inventory flexibility, which is

post-production, is more limited in it’s ability to shape inventory to reduce cost. The

weakness of process flexibility is that it is anticipative of future demand, which allows

inventory flexibility as a post-demand mechanism, to complement process flexibility. Thus,

our models suggest that firms should consider to employ both process as well as inventory

flexibility as complementary forms of flexibility.
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APPENDIX: Design of the Numerical Experiment

To investigate the performance of the multi-threshold policy (and also numerically investi-

gate process and inventory flexibility), we examined the problems generated from the com-

bination of the following set of parameters: λi ∈ {6, 8, 10} and µi ∈ {3, 4, 6, 8, 10, 13, 16},
P2 ∈ {0.10P1, 0.25P1, 0.50P1, 0.75P1, 0.95P1}, P1 ∈ {5, 10, 25, 50, 100}, h1 ∈ {1, 1.5, 2.5, 5},
h2 ∈ {1}, and C ∈ {0, 1, 2.5, 5, 10}. Recall from Section 2 that P1 > P2, so for any lost sales

cost of the higher quality product, P1, we generate different lost sales cost values for the

lower quality product by taking 10%, 25%, 50%, 75%, and 95% of P1. Since simultaneously

increasing the holding costs and the lost sales costs of both of the products does not change

the insights, we set the inventory holding cost of the lower quality product, h2, to be 1 and

vary h1, P1, and P2. To avoid trivial cases where it is optimal not to produce item i, we

require the lost sales cost for item i, Pi, to observe Pi ≥ hi. We eliminate those cases with

C > P1 − P2 to avoid testing cases in which the substitution cost is relatively very large

and thereby avoid biasing the test suite against the use of substitution. Overall, our test

suite consists of more than 75,000 cases.

The test suite is designed to cover a wide range for the ratio of lost sales cost to holding

cost, Pi/hi, and the ratio of lost sales cost to substitution cost, Pi/C for i = 1, 2. In our

test suite P1/h1 ranges from 1 to 100 and P2/h2 ranges from 1 to 95. Excluding cases

where C = 0, P1/C ranges from 0.5 to 100, whereas P2/C ranges from 0.1 to 95. Due

to the asymmetry in the items and therefore the model parameters, the aforementioned

ratios for the products 1 and 2 have slightly different but comparable ranges. Some of the

product arrival rate and production rate combinations in the test suite lead to extreme

and unrealistic cases, therefore we limit our analysis to the cases with 0.5 ≤ λi/µi ≤ 2

for i = 1, 2. Thus, we include low utilization through high utilization and even systems in

which nearly half of the arrivals overflow and are lost in the absence of process flexibility

or inventory flexibility.

The test suite is also used to numerically investigate process and inventory flexibility.

For this purpose, each parameter combination is taken as a dedicated system and the

comparable flexible system is obtained by (16). The resulting dedicated system and flexible

system pair is considered as a valid case if each system is valid under the assumptions

discussed above. Overall, our test suite to investigate process and inventory flexibility

consists of more than 23,400 case pairs. As the performance measures for each case of the

test suite are calculated by using the results of a code that converges, performance measures

and the difference of performance measures that are within 0.01% of zero are taken as zero.
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ONLINE APPENDICES

ONLINE APPENDIX A

Recall that, for any real-valued function v(n), with n ∈ S, the first difference operator Di and
the second difference operators Dij , with i, j ∈ {1, 2}, were defined as:

Div(n) = v(n + ei)− v(n) i ∈ {1, 2}
Dijv(n) = Di(Djv(n)) i, j ∈ {1, 2}.

Furthermore, U was defined as the set of functions v on S with the following properties:

P1 Supermodularity: D12v(n) ≥ 0
P2 Diagonal dominance: D11v(n) ≥ D12v(n), D22v(n) ≥ D12v(n)
P3 Convexity: D11v(n) ≥ 0, D22v(n) ≥ 0
P4 Lower bound: D1v(n) ≥ −P1, D2v(n) ≥ −P2.

It should be noted that D12v ≥ 0, D11v ≥ D12v, and D22v ≥ D12v imply D11v ≥ 0 and D22v ≥ 0.
Therefore, supermodularity (P1) and diagonal dominance (P2) together imply convexity in both
coordinates n1 and n2 (P3).

By (8), (4), and (7) we have the following operators on any function v ∈ U :

Tp v(n) = min
{

v(n), v(n + e1), v(n + e2)
}

Ts v(n) = min
{

v(n− e2I(n2>0)) + P2I(n2=0), v(n− e1) + C
}

T v(n) = h(n) + λ1

(
v(n− e1I(n1>0)) + P1I(n1=0)

)
+ λ2Ts v(n) + µTp v(n).

so that for the equal production rate case, where µ1 = µ2 = µ, the optimality equation (7)
becomes:

Vα(n) = TVα(n).

PROOF OF PROPOSITION 1:

To prove Proposition 1, we will show that, if v ∈ U , then Tp v ∈ U , Ts v ∈ U , and T v ∈ U . This
way, we show that the operators Tp, Ts, and T preserve the properties P1-P4. Then, similar
to Véricourt et al. (2002) and Ha (2000), a direct application of value iteration on the optimality
equation Vα(n) = TVα(n) implies that the optimal cost function Vα belongs to U . To see this,
note that V0 ∈ U , where V0 is the zero function on the state space S, and the optimal cost function
Vα is given by limn→∞TnV0.

We will now show that, if v ∈ U , then Tp v ∈ U , Ts v ∈ U , and T v ∈ U . The proof is similar to
that of Lemma 2 in Ha (1997). The proof is presented in three parts:

Proof for Tp v ∈ U :

We first show that, if v ∈ U , then Tp v ∈ U . The proof of Lemma 2 in Ha (1997) shows that
when v is supermodular and has diagonal dominance, the operator Tp v is supermodular and
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has diagonal dominance (P1 and P2). P1 and P2 together implies P3, the convexity of Tp v
in both coordinates. Therefore, we need to show that the lower bound is preserved under the
minimization operation, giving us P4.

Take any v ∈ U and let w be a function of (u,n), where u ∈ {0, 1, 2} and n = (n1, n2) ∈ S, defined
as

w(u,n) = (1/2)(1− u)(2− u)v(n) + u(2− u)v(n + e1) + (1/2)u(u− 1)v(n + e2)

=





v(n) : if u = 0,
v(n + e1) : if u = 1,
v(n + e2) : if u = 2.

Furthermore, for a fixed u,

D1w(u,n) = w(u,n + e1)− w(u,n) =





D1v(n) : if u = 0,
D1v(n + e1) : if u = 1,
D1v(n + e2) : if u = 2.

Therefore, for any u, D1w(u,n) ≥ −P1 as v ∈ U . Similarly, D2w(u,n) ≥ −P2 and hence, w has
P4.

By definition, we have
Tp v(n) = minu∈{0,1,2}w(u,n).

We need to show that for any n, D1Tp v(n) ≥ −P1 and D2Tp v(n) ≥ −P2. Let u1, u2 ∈ {0, 1, 2}
be the optimal indices at n and n + e1, respectively. Then,

Tp v(n) = minu∈{0,1,2}w(u,n) = w(u1,n)
Tp v(n + e1) = w(u2,n + e1).

We have,

D1Tp v(n) = w(u2,n + e1)− w(u1,n)
≥ w(u2,n + e1)− w(u2,n) (as w(u1,n) ≤ w(u2,n))
= D1w(u2,n) ≥ −P1.

Similarly, let u1, u2 ∈ {0, 1, 2} be the optimal indices at n and n + e2, respectively. Then,

Tp v(n) = w(u1,n) and Tp v(n + e2) = w(u2,n + e2).

We have,

D2Tp v(n) = w(u2,n + e2)− w(u1,n)
≥ w(u2,n + e2)− w(u2,n) (as w(u1,n) ≤ w(u2,n))
= D2w(u2,n) ≥ −P2.

Proof for Ts v ∈ U :

Take any function v ∈ U and let w be a function of (u,n) with n ∈ S and u ∈ {0, 1} if n1 > 0,
and u = 0 if n1 = 0, defined as follows

w(u,n) = (1− u)
[
v(n− e2I(n2>0)) + P2I(n2=0)

]
+ u

[
v(n− e1) + C

]

=
{

v(n− e2I(n2>0)) + P2I(n2=0) : if u = 0,

v(n− e1) + C : if u = 1 and n1 > 0.
(17)
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By the definition of the domain of u, when n1 = 0, u = 0 is the only possibility and the function
w becomes:

w(0, 0, n2) = v(n− e2I(n2>0)) + P2I(n2=0)

For any u,

D1w(u,n) = w(u,n + e1)− w(u,n) =





D1v(n) : if u = 0 and n2 = 0,
D1v(n− e2) : if u = 0 and n2 > 0,
D1v(n− e1) : if u = 1 and n1 > 0.

(18)

D2w(u,n) = w(u,n + e2)− w(u,n) =




−P2 : if u = 0 and n2 = 0,
D2v(n− e2) : if u = 0 and n2 > 0,
D2v(n− e1) : if u = 1 and n1 > 0.

(19)

Therefore, for any u, v ∈ U implies that the function w satisfies P4. Furthermore, when n1 > 0,
w is supermodular in (u, n2) as D2w(u,n) is increasing in u (see Topkis (1978)). To see this,
notice that when n1 > 0,

−P2 ≤ D2v(n− e2) ≤ D2v(n− e1) by P4 and P2, respectively.

From (19) we have,

D12w(u,n) = D21w(u,n) =





0 : if u = 0 and n2 = 0,
D12v(n− e2) : if u = 0 and n2 > 0,
D12v(n− e1) : if u = 1 and n1 > 0.

(20)

Since v is supermodular, for any u, w is also supermodular (P1) in n. From (18) and (19), we
have

D11w(u,n) =





D11v(n) : if u = 0 and n2 = 0,
D11v(n− e2) : if u = 0 and n2 > 0,
D11v(n− e1) : if u = 1 and n1 > 0.

(21)

D22w(u,n) =





D2v(n) + P2 : if u = 0 and n2 = 0,
D22v(n− e2) : if u = 0 and n2 > 0,
D22v(n− e1) : if u = 1 and n1 > 0.

(22)

By the convexity of v, we have D11v(n) ≥ 0 and by P4 we have D2v(n) ≥ −P2. Furthermore,
v has diagonal dominance. Therefore, for any u, w has diagonal dominance (P2) in n. As w is
supermodular and has diagonal dominance, for any u, w is convex (P3) in n. For any u, w satisfy
P1 to P4 and therefore w ∈ U .

By definition,
Ts v(n) = minu w(u,n). (23)

We need to show that supermodularity, diagonal dominance, and lower bound are preserved under
the minimization operation.

Supermodularity of Ts v

We need to show that for any n,

D12Ts v(n) ≥ 0 ⇒ D1(D2Ts v(n)) ≥ 0
Ts v(n + e1 + e2) + Ts v(n) ≥ Ts v(n + e1) + Ts v(n + e2) (24)
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Let u1 and u2 be the minimizers at (n + e1 + e2) and n, respectively. Therefore, u1, u2 ∈ {0, 1}
(u2 = 0 if n1 = 0) and

Ts v(n + e1 + e2) = w(u1,n + e1 + e2) and Ts v(n) = w(u2,n). (25)

We consider two cases: (i) u1 ≥ u2 and (ii) u1 < u2.

Case 1: u1 ≥ u2,

Ts v(n + e1) + Ts v(n + e2) ≤ w(u1,n + e1) + w(u2,n + e2) by definition (23),
= w(u1,n + e1 + e2) + w(u2,n)−D2w(u1,n + e1) + D2w(u2,n)
≤ w(u1,n + e1 + e2) + w(u2,n)−D2w(u2,n + e1) + D2w(u2,n)

as D2w(u,n + e1) is increasing in u (n1 > 0 at n + e1),
= w(u1,n + e1 + e2) + w(u2,n)−D21w(u2,n)
≤ w(u1,n + e1 + e2) + w(u2,n)

as for any u, w is supermodular in n,
= Ts v(n + e1 + e2) + Ts v(n) by (25).

The proof above is still valid when n1 = 0.

Case 2: u1 < u2,

As u1, u2 ∈ {0, 1}, we have u1 = 0 and u2 = 1. Furthermore, n1 > 0 as otherwise u2 = 0 and this
case does not exist.

Ts v(n + e1) + Ts v(n + e2) ≤ w(1,n + e1) + w(0,n + e2) by definition (23),
= 2v(n) + C by (17),
= v(n + e1)−D1v(n) + v(n− e1) + D1v(n− e1) + C

= v(n + e1) + v(n− e1) + C −D11v(n− e1)
≤ v(n + e1) + v(n− e1) + C as v is convex, D11v ≥ 0,
= Ts v(n + e1 + e2) + Ts v(n) by (17) and (25).

Diagonal dominance of Ts v

We need to show that for any n, D11Ts v(n) ≥ D12Ts v(n) and D22Ts v(n) ≥ D21Ts v(n). This
is equivalent to showing:

D22Ts v(n) ≥ D21Ts v(n)
Ts v(n + 2e2) + Ts v(n + e1) ≥ Ts v(n + e1 + e2) + Ts v(n + e2) (26)

and

D11Ts v(n) ≥ D12Ts v(n)
Ts v(n + 2e1) + Ts v(n + e2) ≥ Ts v(n + e1 + e2) + Ts v(n + e1) (27)

Verification of both (26) and (27) is similar to that of (24). We start by showing (26). Let u1 and
u2 be the minimizers at (n + 2e2) and (n + e1), respectively. Therefore, u1, u2 ∈ {0, 1} (u1 = 0 if
n1 = 0) and

Ts v(n + 2e2) = w(u1,n + 2e2) and Ts v(n + e1) = w(u2,n + e1). (28)
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We consider two cases: (i) u1 ≥ u2 and (ii) u1 < u2.

Case 1: u1 ≥ u2,

Ts v(n + e1 + e2) + Ts v(n + e2) ≤ w(u2,n + e1 + e2) + w(u1,n + e2) by definition (23),
= D2w(u2,n + e1) + w(u2,n + e1) + w(u1,n + e2)
≤ D2w(u2,n + e2) + w(u2,n + e1) + w(u1,n + e2)

as for any u, w is supermodular in n,
≤ D2w(u1,n + e2) + w(u2,n + e1) + w(u1,n + e2)

as D2w(u,n + e2) is increasing in u when n1 > 0,
= w(u1,n + 2e2) + w(u2,n + e1)
= Ts v(n + 2e2) + Ts v(n + e1) by (28).

The proof above is still valid when n1 = 0. To see this, note that when n1 = 0, we have
u1 = 0 and u2 = 0 (as u1 ≥ u2 in this case). Therefore, D2w(u2,n + e2) is defined and
D2w(u2 = 0,n + e2) = D2w(u1 = 0,n + e2) when n1 = 0.

Case 2: u1 < u2,

In this case, u1 = 0 and u2 = 1.

Ts v(n + e1 + e2) + Ts v(n + e2) ≤ w(1,n + e1 + e2) + w(0,n + e2) by definition (23),
= v(n + e2) + C + v(n) by (17),
= w(0,n + 2e2) + w(1,n + e1) by (17),
= Ts v(n + 2e2) + Ts v(n + e1) by (28).

The proof above is still valid when n1 = 0, as we are using u = 1 only for states with n1 > 0.

To verify (27), we take the function w in (17) and redefine it by interchanging the roles of the
indices u = 0 and u = 1. For any function v ∈ U , let ŵ be a function of (u,n) with n ∈ S and
u ∈ {0, 1} if n1 > 0, and u = 1 if n1 = 0, defined as follows

ŵ(u,n) = u
[
v(n− e2I(n2>0)) + P2I(n2=0)

]
+ (1− u)

[
v(n− e1) + C

]

=
{

v(n− e2I(n2>0)) + P2I(n2=0) : if u = 1,

v(n− e1) + C : if u = 0 and n1 > 0.
(29)

By the definition of the domain of u, when n1 = 0, u = 1 is the only possibility and the function
ŵ becomes:

ŵ(1, 0, n2) = v(n− e2I(n2>0)) + P2I(n2=0)

In equations (18) to (22), if we replace u = 0 with u = 1, and vice versa, they still hold for ŵ.
Therefore, for any u, v ∈ U implies that ŵ ∈ U . Furthermore, when n1 > 0, ŵ is supermodular
in (u, n1) as D1ŵ(u,n) is increasing in u. To see this, notice that the equivalent of (18) for ŵ is:

D1ŵ(u,n) =





D1v(n) : if u = 1 and n2 = 0,
D1v(n− e2) : if u = 1 and n2 > 0,
D1v(n− e1) : if u = 0 and n1 > 0.

To see this, notice that when n1 > 0,

D1v(n− e1) ≤ D1v(n− e2) by P2 and D1v(n− e1) ≤ D1v(n) by P3.
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For the function ŵ, we have
Ts v(n) = minu ŵ(u,n). (30)

To verify (27), let u1 and u2 be the minimizers at (n+2e1) and (n+ e2), respectively. Therefore,
u1, u2 ∈ {0, 1} (u2 = 1 if n1 = 0) and

Ts v(n + 2e1) = ŵ(u1,n + 2e1) and Ts v(n + e2) = ŵ(u2,n + e2). (31)

We consider two cases: (i) u1 ≥ u2 and (ii) u1 < u2.

Case 1: u1 ≥ u2,

Ts v(n + e1 + e2) + Ts v(n + e1) ≤ ŵ(u2,n + e1 + e2) + ŵ(u1,n + e1) by definition (30),
= D1ŵ(u2,n + e2) + ŵ(u2,n + e2) + ŵ(u1,n + e1)
≤ D1ŵ(u2,n + e1) + ŵ(u2,n + e2) + ŵ(u1,n + e1)

as for any u, ŵ is supermodular in n,
≤ D1ŵ(u1,n + e1) + ŵ(u2,n + e2) + ŵ(u1,n + e1)

as D1ŵ(u,n + e1) is increasing in u and n1 > 0 at n + e1,
= ŵ(u1,n + 2e1) + ŵ(u2,n + e2)
= Ts v(n + 2e1) + Ts v(n + e2) by (31).

The proof above is still valid when n1 = 0, as u1 = u2 = 1 in this case and we have D1ŵ(u2 =
1,n + e1) = D1ŵ(u1 = 1,n + e1).

Case 2: u1 < u2,

In this case, u1 = 0 and u2 = 1.

Ts v(n + e1 + e2) + Ts v(n + e1) ≤ ŵ(1,n + e1 + e2) + ŵ(0,n + e1) by definition (30),
= v(n + e1) + C + v(n) by (29),
= ŵ(0,n + 2e1) + ŵ(1,n + e2) by (29),
= Ts v(n + 2e1) + Ts v(n + e2) by (31).

The proof above is still valid when n1 = 0, as we are using u = 0 only for states with n1 > 0.
This concludes our proof for the diagonal dominance of Ts v.

Lower bound of Ts v

The proof is similar to the lower bound proof of Tp v. We need to show that for any n,
D1Ts v(n) ≥ −P1 and D2Ts v(n) ≥ −P2. Let u1 and u2 be the minimizers at n and n + e1,
respectively. Therefore, u1, u2 ∈ {0, 1} (u1 = 0 if n1 = 0) and,

Ts v(n) = w(u1,n) and Ts v(n + e1) = w(u2,n + e1).

We have,

D1Ts v(n) = w(u2,n + e1)− w(u1,n) ≥ w(u1,n + e1)− w(u1,n)
as u2 is the minimizer at n + e1,

= D1w(u1,n) ≥ −P1.
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Similarly, let u1 and u2 be the optimal indices at n and n + e2, respectively. Therefore, u1, u2 ∈
{0, 1} (u1 = u2 = 0 if n1 = 0) and,

Ts v(n) = w(u1,n) and Ts v(n + e2) = w(u2,n + e2).

We have,

D2Ts v(n) = w(u2,n + e2)− w(u1,n) ≥ w(u2,n + e2)− w(u2,n)
as u1 is the minimizer at n,

= D2w(u2,n) ≥ −P2.

The proof still holds when n1 = 0, as we have u1 = u2 = 0 in that case.

Proof for T v ∈ U :

We have shown that, if v ∈ U , then Tp v ∈ U and Ts v ∈ U . We conclude the proof by showing
that, if v ∈ U , then we also have T v ∈ U . Now define

g(n) = v(n− e1I(n1>0)) + P1I(n1=0)

then we have,

T v(n) = h(n) + λ1g(n) + λ2Ts v(n) + µTp v(n).

We show that, if v ∈ U then g ∈ U . Basically, g(n) is w(0,n) (as defined in (17)) with the indices
2 replaced by 1. As v has the properties P1-P4 jointly for both dimensions, the result follows.
To see this, note that

D1g(n) =
{ −P1 : if n1 = 0,

D1v(n− e1) : if n1 > 0.
D2g(n) =

{
D2v(n) : if n1 = 0,
D2v(n− e1) : if n1 > 0.

D11g(n) =
{

D1v(n) + P1 : if n1 = 0,
D11v(n− e1) : if n1 > 0.

D22g(n) =
{

D22v(n) : if n1 = 0,
D22v(n− e1) : if n1 > 0.

D12g(n) =
{

0 : if n1 = 0,
D12v(n− e1) : if n1 > 0.

U is closed under addition and multiplication by nonnegative scalars. Therefore, for any function
h ∈ U , we have T v ∈ U whenever v ∈ U . A linear function h with nonnegative constants is an
element of U , as h(n) = h1n1 + h2n2, with h1, h2 ≥ 0, is supermodular, has diagonal dominance,
and has a lower bound of zero.

PROOF OF THEOREM 1:

All costs are nonnegative and the set of feasible actions is finite for every state n ∈ S. There-
fore, by Proposition 11 in Section 5.4 of Bertsekas (1987), there exists an optimal stationary policy.

Proof of (i):
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Recall that, by (8)

Tp Vα(n) = min
{

Vα(n), Vα(n + e1), Vα(n + e2)
}

= min
{

0,D1Vα(n),D2Vα(n)
}

+ Vα(n) (32)

Therefore, if idling is optimal at state n, we have:

min
{

0,D1Vα(n),D2Vα(n)
}

= 0 ⇔ D1Vα(n) ≥ 0 and D2Vα(n) ≥ 0. (33)

As Vα ∈ U , Vα satisfies P1 to P4. We have,

(33) and P3 ⇒ D1Vα(n + e1) ≥ D1Vα(n) ≥ 0
(33) and P1 ⇒ D2Vα(n + e1) ≥ D2Vα(n) ≥ 0.

Therefore, idling is optimal at state n + e1. Similarly, idling is also optimal at state n + e2

because

(33) and P1 ⇒ D1Vα(n + e2) ≥ D1Vα(n) ≥ 0
(33) and P3 ⇒ D2Vα(n + e2) ≥ D2Vα(n) ≥ 0.

Proof of (ii) and (iii):

If producing item 1 is optimal at state n, then by (32):

min
{

0,D1Vα(n),D2Vα(n)
}

= D1Vα(n) ⇒ D1Vα(n) ≤ D2Vα(n). (34)

Note that, idling can not be optimal at n− e1 by Theorem 1, Part (ii). Hence, producing item
1 is optimal at state n− e1 if and only if the following holds:

D1Vα(n− e1) ≤ D2Vα(n− e1) (35)

By using D12Vα(n) = D21Vα(n) and diagonal dominance, P2, we obtain the following inequality:

D1Vα(n)−D2Vα(n) ≤ D1Vα(n + e1)−D2Vα(n + e1) ∀ n ∈ S. (36)

Replacing n by n− e1 in (36) and using (34), we show that (35) holds

D1Vα(n− e1)−D2Vα(n− e1) ≤ D1Vα(n)−D2Vα(n) ≤ 0.

Therefore, if it is optimal to produce item 1 at n with n1 > 0, then it is also optimal to produce
item 1 at n− e1.

We now show that, if producing item 2 is optimal at state n, then it is also optimal to produce
item 2 at state n− e2. If producing item 2 is optimal at state n, then:

min
{

0,D1Vα(n),D2Vα(n)
}

= D2Vα(n) ⇒ D2Vα(n) ≤ D1Vα(n). (37)

Note that, idling can not be optimal at n− e2 by Theorem 1, Part (ii). Hence, producing item
2 is optimal at state n− e2 if and only if the following holds:

D2Vα(n− e2) ≤ D1Vα(n− e2) (38)
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By using D12Vα(n) = D21Vα(n) and diagonal dominance, P2, we obtain the following inequality:

D1Vα(n)−D2Vα(n) ≥ D1Vα(n + e2)−D2Vα(n + e2) ∀ n ∈ S. (39)

Replacing n by n− e2 in (39) and using (37), we show that (38) holds:

D1Vα(n− e2)−D2Vα(n− e2) ≥ D1Vα(n)−D2Vα(n) ≥ 0.

Therefore, if it is optimal to produce item 2 at n with n2 > 0, then it is also optimal to produce
item 2 at n− e2.

We now go back to our statement about item 1. We have shown that if it is optimal to produce
item 1 at n with n1 > 0, then it is also optimal to produce item 1 at n− e1. Furthermore, in
this case, producing item 2 at n− e1 + e2 can not be optimal. Because, we have also shown that
if it is optimal to produce item 2 at n with n2 > 0, then it is also optimal to produce item 2 at
n− e2. Hence, to prove that producing item 1 is optimal at n− e1 + e2 whenever it is optimal
at n, it suffices to show that

D1Vα(n− e1 + e2) ≤ 0 (40)

As producing item 1 is optimal at n, we know that D1Vα(n) ≤ 0. Combining this with diagonal
dominance P2 applied to state n− e1, we obtain (40) as follows:

D1Vα(n− e1 + e2) ≤ D1Vα(n) ≤ 0

We now go back to our statement about item 2. We have shown that if it is optimal to produce
item 2 at n with n2 > 0, then it is also optimal to produce item 2 at n− e2. Furthermore, in
this case, producing item 1 at n + e1 − e2 can not be optimal. Because, we have also shown that
if it is optimal to produce item 1 at n with n1 > 0, then it is also optimal to produce item 1 at
n− e1. Hence, to prove that producing item 2 is optimal at n + e1 − e2 whenever it is optimal
at n, it suffices to show that

D2Vα(n + e1 − e2) ≤ 0 (41)

As producing item 2 is optimal at n, we know that D2Vα(n) ≤ 0. Combining this with diagonal
dominance P2 applied to state n− e2, we obtain (41) as follows:

D2Vα(n + e1 − e2) ≤ D2Vα(n) ≤ 0

Proof of (iv):

If upgrading is optimal at state n with n1 > 0, then:

Vα(n) + P2 ≥ Vα(n− e1) + C ⇒ C − P2 ≤ D1Vα(n− e1) if n2 = 0, (42)
Vα(n− e2) ≥ Vα(n− e1) + C if n2 > 0. (43)

At state n + e1, we need to show that:

C − P2 ≤ D1Vα(n) if n2 = 0, (44)
Vα(n + e1 − e2) ≥ Vα(n) + C if n2 > 0. (45)

(42) and P3 imply (44). P2 applied to state n− e1 − e2 and (43) give (45) as follows:

D1Vα(n− e1) ≤ D1Vα(n− e2) ⇒ Vα(n)− Vα(n− e1) ≤ Vα(n + e1 − e2)− Vα(n− e2)
⇒ Vα(n + e1 − e2)− Vα(n) ≥ Vα(n− e2)− Vα(n− e1) ≥ C.
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We are left with showing that if upgrading is optimal at state n, then it is also optimal at state
n− e2. To prove this, we will show that whenever upgrading is not optimal at a state n, it is also
not optimal at state n + e2. If upgrading is not optimal at state n, then:

Vα(n) + P2 ≤ Vα(n− e1) + C ⇒ C − P2 ≥ D1Vα(n− e1) if n2 = 0, (46)
Vα(n− e2) ≤ Vα(n− e1) + C if n2 > 0. (47)

At state n + e2, we need to show that:

Vα(n) ≤ Vα(n− e1 + e2) + C (48)

If n2 = 0, then (46) and P4 applied to state n− e1 give (48) as follows:

D1Vα(n− e1) ≤ C − P2 ≤ C + D2Vα(n− e1)
⇒ D1Vα(n− e1)−D2Vα(n− e1) ≤ C ⇒ Vα(n) ≤ Vα(n− e1 + e2) + C.

If n2 > 0, then P2 applied to state n− e1 − e2 and (47) give (48) as follows:

D2Vα(n− e2) ≤ D2Vα(n− e1) ⇒ Vα(n)− Vα(n− e1 + e2) ≤ Vα(n− e2)− Vα(n− e1)
and Vα(n− e2)− Vα(n− e1) ≤ C ⇒ Vα(n)− Vα(n− e1 + e2) ≤ C
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ONLINE APPENDIX B

PROOF OF PROPOSITION 2:

The balance equations of the proposed policy when 0 < B1 < A2 ≤ A1 ≤ A2+A3 and 0 ≤ A3 ≤ B2

are:

µ1π0,0 = λ1π1,0 + λ2π0,1 (49)
(µ1 + λ1)πi,0 = λ1πi+1,0 + λ2πi,1 + µ1πi−1,0 i = 1, .., B1 − 1 (if B1 > 1) (50)
(µ1 + λ2)π0,j = λ1π1,j + I(j≤A3)λ2π0,j+1 j = 1, .., A3 + 1 (51)

(µ1 + λ1 + λ2)πi,j = λ1πi+1,j + I(j≤A3)λ2πi,j+1 + µ1πi−1,j i = 1, .., B1 − 1, (52)
j = 1, .., A3 + 1 (if B1 > 1)

(µ1 + λ1)πB1,0 = (λ1 + λ2)πB1+1,0 + λ2πB1,1 + µ1πB1−1,0 (53)
(µ1 + λ1 + λ2)πB1,j = (λ1 + λ2)πB1+1,j + I(j≤A3)λ2πB1,j+1 + µ1πB1−1,j j = 1, .., A3 + 1

(54)
(µ1 + λ1 + λ2)πi,j = (λ1 + λ2)πi+1,j + µ1πi−1,j i = B1 + 1, .., A2 − 1, (55)

j = 0, .., A3 + 1 (if B1 + 1 < A2)
(µ2 + λ1 + λ2)πA2,j = µ1πA2−1,j + I(j≥1)µ2πA2,j−1 j = 0, .., A3 (56)
(λ1 + λ2)πA2,A3+1 = µ1πA2−1,A3+1 + µ2πA2,A3 . (57)

Note that (50) and (52) exist only when B1 > 1. Similarly, (55) exists only when B1 + 1 < A2.
If we multiply both sides of each equation related to state (i, j) with vi and wj , and add up the

43



similar equations (e.g., we sum (50) over i = 1, .., B1 − 1), we obtain the following:

µ1π0,0 = λ1π1,0 + λ2π0,1

(µ1 + λ1)
B1−1∑

i=1

viπi,0 = λ1

B1−1∑

i=1

viπi+1,0 + λ2

B1−1∑

i=1

viπi,1 + µ1

B1−1∑

i=1

viπi−1,0

(if B1 > 1)

(µ1 + λ2)
A3+1∑

j=1

wjπ0,j = λ1

A3+1∑

j=1

wjπ1,j + λ2

A3∑

j=1

wjπ0,j+1

(µ1 + λ1 + λ2)
B1−1∑

i=1

A3+1∑

j=1

viwjπi,j = λ1

B1−1∑

i=1

A3+1∑

j=1

viwjπi+1,j + λ2

B1−1∑

i=1

A3∑

j=1

viwjπi,j+1

+µ1

B1−1∑

i=1

A3+1∑

j=1

viwjπi−1,j (if B1 > 1)

(µ1 + λ1)vB1πB1,0 = (λ1 + λ2)vB1πB1+1,0 + λ2v
B1πB1,1 + µ1v

B1πB1−1,0

(µ1 + λ1 + λ2)
A3+1∑

j=1

vB1wjπB1,j = (λ1 + λ2)
A3+1∑

j=1

vB1wjπB1+1,j + λ2

A3∑

j=1

vB1wjπB1,j+1

+µ1

A3+1∑

j=1

vB1wjπB1−1,j

(µ1 + λ1 + λ2)
A2−1∑

i=B1+1

A3+1∑

j=0

viwjπi,j = (λ1 + λ2)
A2−1∑

i=B1+1

A3+1∑

j=0

viwjπi+1,j

+µ1

A2−1∑

i=B1+1

A3+1∑

j=0

viwjπi−1,j (if B1 + 1 < A2)

(µ2 + λ1 + λ2)
A3∑

j=0

vA2wjπA2,j = µ1

A3∑

j=0

vA2wjπA2−1,j + µ2

A3∑

j=1

vA2wjπA2,j−1

(λ1 + λ2)vA2wA3+1πA2,A3+1 = µ1v
A2wA3+1πA2−1,A3+1 + µ2v

A2wA3+1πA2,A3 .

Then, if necessary, we add terms to both sides of each equation to make the multiplier of left-
hand sides of each equation equal to (µ1 + µ2 + λ1 + λ2). Furthermore, we arrange the terms in
right-hand side so that πi,j , the steady-state probability of state (i, j), is multiplied with viwj .
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Let Λ = µ1 + µ2 + λ1 + λ2. Then, we obtain:

Λπ0,0 = (λ1 + λ2)π0,0 + (
λ1

v
)vπ1,0 + (

λ2

w
)wπ0,1 + µ2π0,0

Λ
B1−1∑

i=1

viπi,0 = λ2

B1−1∑

i=1

viπi,0 + (
λ1

v
)

B1−1∑

i=1

vi+1πi+1,0 + (
λ2

w
)

B1−1∑

i=1

viwπi,1

+(µ1v)
B1−1∑

i=1

vi−1πi−1,0 + µ2

B1−1∑

i=1

viπi,0 (if B1 > 1)

Λ
A3+1∑

j=1

wjπ0,j = λ1

A3+1∑

j=1

wjπ0,j + (
λ1

v
)

A3+1∑

j=1

vwjπ1,j + (
λ2

w
)

A3∑

j=1

wj+1π0,j+1

+µ2

A3+1∑

j=1

wjπ0,j

Λ
B1−1∑

i=1

A3+1∑

j=1

viwjπi,j = (
λ1

v
)

B1−1∑

i=1

A3+1∑

j=1

vi+1wjπi+1,j + (
λ2

w
)

B1−1∑

i=1

A3∑

j=1

viwj+1πi,j+1

+(µ1v)
B1−1∑

i=1

A3+1∑

j=1

vi−1wjπi−1,j + µ2

B1−1∑

i=1

A3+1∑

j=1

viwjπi,j

(if B1 > 1)

ΛvB1πB1,0 = λ2v
B1πB1,0 + (

λ1 + λ2

v
)vB1+1πB1+1,0 + (

λ2

w
)vB1wπB1,1

+(µ1v)vB1−1πB1−1,0 + µ2v
B1πB1,0

Λ
A3+1∑

j=1

vB1wjπB1,j = (
λ1 + λ2

v
)

A3+1∑

j=1

vB1+1wjπB1+1,j + (
λ2

w
)

A3∑

j=1

vB1wj+1πB1,j+1

+(µ1v)
A3+1∑

j=1

vB1−1wjπB1−1,j + µ2

A3+1∑

j=1

vB1wjπB1,j

Λ
A2−1∑

i=B1+1

A3+1∑

j=0

viwjπi,j = (
λ1 + λ2

v
)

A2−1∑

i=B1+1

A3+1∑

j=0

vi+1wjπi+1,j

+(µ1v)
A2−1∑

i=B1+1

A3+1∑

j=0

vi−1wjπi−1,j + µ2

A2−1∑

i=B1+1

A3+1∑

j=0

viwjπi,j

(if B1 + 1 < A2)

Λ
A3∑

j=0

vA2wjπA2,j = (µ1v)
A3∑

j=0

vA2−1wjπA2−1,j + (µ2w)
A3∑

j=1

vA2wj−1πA2,j−1

+µ1

A3∑

j=0

vA2wjπA2,j

ΛvA2wA3+1πA2,A3+1 = µ1v
A2wA3+1πA2,A3+1 + (µ1v)vA2−1wA3+1πA2−1,A3+1

+(µ2w)vA2wA3πA2,A3 + µ2v
A2wA3+1πA2,A3+1.

We add all the equations and obtain a single equation. By the definition of the generating function,
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left-hand side of the equations add up to ΛΠ(v, w) = (µ1 + µ2 + λ1 + λ2)Π(v, w)

(µ1 + µ2 + λ1 + λ2)Π(v, w) = λ1

A3+1∑

j=0

wjπ0,j + (
λ1

v
)

A2∑

i=1

A3+1∑

j=0

viwjπi,j + λ2

B1∑

i=0

viπi,0 (58)

+(
λ2

w
)

B1∑

i=0

A3+1∑

j=1

viwjπi,j + (
λ2

v
)

A2∑

i=B1+1

A3+1∑

j=0

viwjπi,j

+µ1

A3+1∑

j=0

vA2wjπA2,j + (µ1v)
A2−1∑

i=0

A3+1∑

j=0

viwjπi,j

+µ2

(
Π(v, w)−

A3∑

j=0

vA2wjπA2,j

)
+ (µ2w)

A3∑

j=0

vA2wjπA2,j .

We now use Nk(v, w), defined by (11), in (58) and obtain

(µ1(1− v) + λ1(1− 1
v
) + λ2(1− 1

w
))Π(v, w) = λ1(1− 1

v
)N1(v, w) + λ2(1− 1

w
)N2(v, w)

λ2(
1
v
− 1

w
)N3(v, w) + µ2(w − 1)N4(v, w)

+µ1(1− v)
(N4(v, w) + vA2wA3+1πA2,A3+1

)
.

After multiplying both sides with vw, we obtain the generating function presented in Proposition
2:

Π(v, w) =
1

(µ1vw(1− v) + λ1w(v − 1) + λ2v(w − 1))

{
λ1w(v − 1)N1(v, w) (59)

+λ2

(
v(w − 1)N2(v, w) + (w − v)N3(v, w)

)

+µ1vw(1− v)
(N4(v, w) + vA2wA3+1πA2,A3+1

)
+ µ2vw(w − 1)N4(v, w)

}

Π(v, w) =
G(v, w)
H(v, w)

(60)

where G(v, w) = λ1w(v − 1)N1(v, w) + λ2v(w − 1)N2(v, w) + λ2(w − v)N3(v, w)
+µ1vw(1− v)

(N4(v, w) + vA2wA3+1πA2,A3+1

)
+ µ2vw(w − 1)N4(v, w)

and H(v, w) = µ1vw(1− v) + λ1w(v − 1) + λ2v(w − 1)) as given in (10).

The generating function Π(v, w) given in (59) includes (A2 − B1 + 1)(A3 + 2) + B1 unknown
steady state probabilities. Below, we present a 3-step algorithm that shows how to obtain the
steady-state probabilities in Π(v, w) by solving (A2 −B1 + 1)(A3 + 2) + B1 equations instead of
solving all of the (A2 + 1)(A3 + 2) balance equations.

Step 1: In this step, we obtain two equations by using the L’Hospital’s rule and the properties
of the generating functions. The unknowns in these two equations are the unknowns in the gen-
erating function Π(v, w) in (59), therefore no new unknowns are introduced.

Let G(v, w) be the numerator of the generating function Π(v, w) in (60). According to the law
of total probability, Π(1, 1) = 1. However, both the numerator and denominator of Π(v, w) go to
zero when (v, w) approaches to (1, 1). We apply L’Hospital’s rule on Π(v, w) with respect to v
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and w separately and obtain 2 equations as follows:

Π(1, 1) = limv→1Π(v, 1) = limv→1
G(v, 1)
H(v, 1)

=
limv→1

∂G(v,1)
∂v

limv→1
∂H(v,1)

∂v

= 1

∂G(v, 1)
∂v

= λ1

(N1(v, 1) + (v − 1)
∂N1(v, 1)

∂v

)
+ λ2

(−N3(v, 1) + (1− v)
∂N3(v, 1)

∂v

)

+µ1

(
(1− 2v)(vA2πA2,A3+1 +N4(v, 1))

+(v − v2)(A2v
A2−1πA2,A3+1 +

∂N4(v, 1)
∂v

)
)

(61)

∂G(v, 1)
∂v

∣∣∣
v=1

= λ1N1(1, 1)− λ2N3(1, 1)− µ1

(
πA2,A3+1 +N4(1, 1)

)

H(v, 1) = µ1v(1− v) + λ1(v − 1) ⇒ ∂H(v, 1)
∂v

∣∣∣
v=1

= λ1 − µ1.

Thus,
λ1N1(1, 1)− λ2N3(1, 1)− µ1

[
πA2,A3+1 +N4(1, 1)

]
= λ1 − µ1. (62)

On the other hand,

Π(1, 1) = limw→1Π(1, w) = limw→1
G(1, w)
H(1, w)

=
limw→1

∂G(1,w)
∂w

limw→1
∂H(1,w)

∂w

= 1

∂G(1, w)
∂w

= λ2

(
N2(1, w) +N3(1, w) + (w − 1)(

∂N2(1, w)
∂w

+
∂N3(1, w)

∂w
)
)

+µ2

(
(2w − 1)N4(1, w)) + (w2 − w)

∂N4(1, w)
∂w

)
)

∂G(1, w)
∂w

∣∣∣
w=1

= λ2

(N2(1, 1) +N3(1, 1)
)

+ µ2N4(1, 1))

H(1, w) = λ2(w − 1) ⇒ ∂H(1, w)
∂w

∣∣∣
w=1

= λ2.

Therefore,
λ2

[N2(1, 1) +N3(1, 1)
]
+ µ2N4(1, 1) = λ2. (63)

Step 2: In this step, we obtain (A2 − B1 − 1)(A3 + 2) equations from the balance equations
of the continuous time Markov chain representation of the multi-threshold policy. The balance
equations of the multi-threshold policy for the case we are analyzing are provided in (49) to (57).
The unknowns in these (A2 − B1 − 1)(A3 + 2) linearly independent equations are the unknowns
in the generating function Π(v, w) in (59), therefore no new unknowns are introduced.

If A2 = B1 + 1, we skip Step 2 and execute Step 3. If A2 ≥ B1 + 2, then equations (56)
when j = 0, . . . , A3 and equation (57) provide A3 + 2 equations in total. If A2 > B1 + 2 also
holds, then equations (55) when i = B1 + 2, . . . , A2 − 1, j = 0, . . . , A3 + 1 provide additional
(A2−B1−2)(A3 +2) equations. Notice that we choose (A2−B1−1)(A3 +2) linearly independent
equations and they do not introduce new unknowns as the steady state probabilities they contain
are already in Π(v, w).

Step 3: In this step we obtain 2A3 + B1 + 2 additional equations by using the properties of the
generating functions. The total number of equations obtained in Steps 1 to 3 is equal to the
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number of unknowns, i.e., (A2 −B1 + 1)(A3 + 2) + B1.

Since Π(v, w) is bounded when v and w are bounded, any finite v and w pair which is the root of
the denominator H(v, w), should also be the root of the numerator, i.e., should solve G(v, w) = 0.
If we choose 2A3 + B1 + 2 linearly independent root pairs (v, w) of H(v, w) and substitute them
into G(v, w), we obtain 2A3 + B1 + 2 equations in the form G(v, w) = 0. For a chosen vk, the
root of H(v, w) can be found as follows:

H(vk, wk) = λ1wk(vk − 1) + λ2vk(wk − 1) + µ1vkwk(1− vk) = 0 ⇒
wk =

λ2vk

−µ1v2
k + (µ + λ1 + λ2)vk − λ1

and G(vk, wk) = 0.

Through Steps 1,2 and 3, we have constructed a linear system with (A2 − B1 + 1)(A3 + 2) + B1

equations and same number of unknowns. This system of equations can be solved to obtain the
steady state probabilities involved. Note that obtaining the probabilities by solving the balance
equations requires solving (A2+1)(A3+2) equations, therefore the algorithm given above requires
(A3 + 1)B1 fewer equations.
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ONLINE APPENDIX C

Recall that the balance equations of the proposed policy when 0 < B1 < A2 ≤ A1 ≤ A2 + A3 and
0 ≤ A3 ≤ B2 are provided in online Appendix B with (49) to (57). Note that (50) and (52) exist
only when B1 > 1. Similarly, (55) exists only when B1 +1 < A2. The steady state probabilities π
can be obtained by the algorithm presented below. Let π̂i,j be the temporary, un-normalized value
of the probability πi,j obtained via the algorithm. We start by setting π̂0,A3+1 = 1 and obtain
π̂i,j for the rest of the states iteratively. Afterwards, the actual values of the state probabilities
are obtained by normalizing the π̂ values as follows:

πi,j =
π̂i,j∑A2

i=0

∑A3+1
j=0 π̂i,j

, i = 0, .., A2, j = 0, .., A3 + 1. (64)

Step 1:

In this step, starting from π̂0,A3+1, we find the values of π̂i,A3+1, for i = 0, .., A2, and lastly find
π̂A2,A3 . Let π̂0,A3+1 = 1. (51) implies

λ1π1,A3+1 = (µ1 + λ2)π̂0,A3+1 ⇒ π̂1,A3+1 =
µ1 + λ2

λ1
.

If B1 = 1, then by (54):

(λ1 + λ2)πB1+1,A3+1 = (µ1 + λ1 + λ2)π̂B1,A3+1 − µ1π̂B1−1,A3+1 ⇒
π2,A3+1 = π̂1,A3+1 +

µ1

λ1 + λ2
(π̂1,A3+1 − π̂0,A3+1)

π̂2,A3+1 =
µ1 + λ2

λ1
+

µ1

λ1 + λ2

(µ1 + λ2

λ1
− 1

)
.

If B1 > 1, then we find π̂i,A3+1, i = 2, .., B1 by using (52) successively as follows:

λ1πi,A3+1 = (µ1 + λ1 + λ2)π̂i−1,A3+1 − µ1π̂i−2,A3+1 ⇒
πi,A3+1 =

(
1 +

µ1 + λ2

λ1

)
π̂i−1,A3+1 − µ1

λ1
π̂i−2,A3+1.

Balance equations are for the multi-threshold policy when A2 > B1. By using (54) and (55), we
find π̂i,A3+1, for i = B1 + 1, .., A2, as follows:

(λ1 + λ2)πi,A3+1 = (µ1 + λ1 + λ2)πi−1,A3+1 − µ1πi−2,A3+1 ⇒
πi,A3+1 − πi−1,A3+1 =

µ1

λ1 + λ2
(πi−1,A3+1 − πi−2,A3+1) for i = B1 + 1, .., A2

πB1+1,A3+1 − π̂B1,A3+1 =
µ1

λ1 + λ2
(π̂B1,A3+1 − π̂B1−1,A3+1)

πi,A3+1 − πi−1,A3+1 =
( µ1

λ1 + λ2

)i−B1

(π̂B1,A3+1 − π̂B1−1,A3+1) for i = B1 + 1, .., A2.

Therefore,

πi,A3+1 = π̂B1,A3+1 +
i−B1∑

k=1

( µ1

λ1 + λ2

)k
(π̂B1,A3+1 − π̂B1−1,A3+1) for i = B1 + 1, .., A2

πi,A3+1 =
i−B1∑

k=0

( µ1

λ1 + λ2

)k
π̂B1,A3+1 −

i−B1∑

k=1

( µ1

λ1 + λ2

)k
π̂B1−1,A3+1. (65)
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Starting by setting π̂0,A3+1 to 1, we showed how to obtain the values of π̂i,A3+1, i = 1, .., A2,
sequentially by only using the probabilities calculated earlier in the algorithm. Lastly, π̂A2,A3 can
be obtained from (57) as follows:

πA2,A3 =
λ1 + λ2

µ2
π̂A2,A3+1 − µ1

µ2
π̂A2−1,A3+1. (66)

Step 2:

Let j = A3 be the initial value of the index j. If j is zero, then we skip Step 2 and go to Step 3,
otherwise we execute Step 2. After each execution of this step, we reduce the value of the index
j by one and repeat the step until j becomes zero. At the beginning of each Step 2 execution,
the values of π̂i,k (for i = 0, .., A2 and k ≥ j + 1) and π̂A2,j are known. With each execution of
Step 2, we calculate the values of π̂i,j , for i = 0, .., A2 − 1 (balance equations are for the multi-
threshold policy when A2 > 0), and also obtain π̂A2,j−1. In this step, for a given j, we represent
the unknown probabilities πi,j , for i = 0, .., A2 − 2, in terms of the unknown πA2−1,j . Then, we
solve for πA2−1,j which gives us π̂i,j , for i = 0, .., A2 − 1. Lastly, we calculate π̂A2,j−1.

Balance equations are for the multi-threshold policy when A2 > B1 Therefore, either A2 > B1 +1
(balance equations (55) exist) or A2 = B1 + 1 holds. If A2 > B1 + 1, then by (55) we have:

µ1πi−1,j = (µ1 + λ1 + λ2)πi,j − (λ1 + λ2)πi+1,j for i = B1 + 1, .., A2 − 1

⇒ πA2−2,j − πA2−1,j =
λ1 + λ2

µ1
(πA2−1,j − π̂A2,j)

πi−1,j − πi,j =
λ1 + λ2

µ1
(πi,j − πi+1,j) =

(λ1 + λ2

µ1

)A2−i
(πA2−1,j − π̂A2,j)

for i = B1 + 1, .., A2 − 1.

Therefore,

πi,j − πA2−1,j =
A2−(i+1)∑

k=1

(λ1 + λ2

µ1

)k
(πA2−1,j − π̂A2,j) for i = B1, .., A2 − 2

πi,j =
A2−(i+1)∑

k=0

(λ1 + λ2

µ1

)k
πA2−1,j −

A2−(i+1)∑

k=1

(λ1 + λ2

µ1

)k
π̂A2,j (67)

for i = B1, .., A2 − 2.

If A2 = B1 + 1, instead of (67), we simply have the following:

πB1,j = πA2−1,j and πB1+1,j = π̂A2,j . (68)

Balance equation (54) gives

πB1−1,j = πB1,j +
λ1 + λ2

µ1
(πB1,j − πB1+1,j)− λ2

µ1
π̂B1,j+1. (69)

Equation (67) (or (68) if A2 = B1 + 1), combined with (69) gives us πB1−1,j in terms of πA2−1,j ,
i.e., we have the following:

πB1−1,j − πB1,j =
(λ1 + λ2

µ1

)A2−B1

(πA2−1,j − π̂A2,j)− λ2

µ1
π̂B1,j+1 (70)

πB1−1,j =
A2−B1∑

k=0

(λ1 + λ2

µ1

)k
πA2−1,j −

A2−B1∑

k=1

(λ1 + λ2

µ1

)k
π̂A2,j − λ2

µ1
π̂B1,j+1. (71)
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We have obtained πi,j , for i = B1 − 1, .., A2 − 2 in terms of πA2−1,j . We now proceed to find
πi,j , for i = 0, .., B1 − 2, in terms of πB1−1,j and πB1,j . As the balance equations are for the
multi-threshold policy when B1 > 0, either B1 = 1, or B1 > 1 holds.

Case 1:

If B1 = 1, (51) implies

π0,j = πB1−1,j =
λ1

µ1 + λ2
πB1,j +

λ2

µ1 + λ2
π̂0,j+1. (72)

In this case, by simply setting (71) = (72) and using (67) (or (68) if A2 = B1 + 1) for πB1,j , we
obtain π̂A2−1,j , as πA2−1,j is the only unknown. Rest of the values π̂i,j , for i = 1, .., A2 − 2 (if
A2 − 1 > B1) can be obtained by using (67) and π̂0,j can be obtained from (72).
We finish Step 2 by obtaining π̂A2,j−1 from the balance equation (56):

πA2,j−1 =
(
1 +

λ1 + λ2

µ2

)
π̂A2,j − µ1

µ2
π̂A2−1,j .

Case 2:

If B1 > 1, then from (52) we have:

πi−1,j =
µ1 + λ2

µ1
πi,j +

λ1

µ1
(πi,j − πi+1,j)− λ2

µ1
π̂i,j+1 for i = 1, .., B1 − 1 (73)

πi−1,j − πi,j =
λ2

µ1
πi,j +

λ1

µ1
(πi,j − πi+1,j)− λ2

µ1
π̂i,j+1 for i = 1, .., B1 − 1. (74)

By using (73) and (74), we present an iterative method that gives πi,j , for i = 0, .., B1 − 2, in
terms of πB1−1,j and πB1,j . By (73) and (74), we have:

πB1−2,j =
µ1 + λ2

µ1
πB1−1,j +

λ1

µ1
(πB1−1,j − πB1,j)− λ2

µ1
π̂B1−1,j+1

πB1−2,j − πB1−1,j =
λ2

µ1
πB1−1,j +

λ1

µ1
(πB1−1,j − πB1,j)− λ2

µ1
π̂B1−1,j+1.

Let K(n), for n ∈ N0, be 2× 3 matrices with K(0) a matrix of zeros and K(n), with n ≥ 1 defined
as follows:

K(1) =

[
µ1+λ2

µ1

λ1
µ1

λ2
µ1

λ2
µ1

λ1
µ1

λ2
µ1

]
and K(n) =

[
µ1+λ2

µ1

λ1
µ1

λ2
µ1

λ1
µ1

]
K(n−1) for n ≥ 2.

Then,

[
πB1−2,j

πB1−2,j − πB1−1,j

]
=

[
µ1+λ2

µ1

λ1
µ1

λ2
µ1

λ2
µ1

λ1
µ1

λ2
µ1

]


πB1−1,j

πB1−1,j − πB1,j

−π̂B1−1,j+1


 = K(1)




πB1−1,j

πB1−1,j − πB1,j

−π̂B1−1,j+1


 .

After some algebra, it can be shown that the iterative solution to the difference equation is:

[
πi,j

πi,j − πi+1,j

]
= K((B1−1)−i)




πB1−1,j

πB1−1,j − πB1,j

−π̂B1−1,j+1


−

B1−i∑

k=2

K(B1−k−i)
3 π̂B1−k,j+1 (75)

for i = 0, .., B1 − 2.
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where Kn
3 denote the 3rd column of the matrix Kn. Kn, for n = 1, .., B1−1, can easily be obtained

by programs like Excel. Furthermore, we need to calculate the K matrices once for the whole
algorithm, as they are independent of the row index j.

It should be noted that with equations (70) - (71) we have obtained πB1−1,j and πB1−1,j − πB1,j

in terms of the unknown πA2−1,j and the known π̂ values. Therefore, (75) gives πi,j , for i =
0, .., B1 − 2, in terms of the unknown πA2−1,j and the known π̂ values. By (75), we have:

π0,j = K(B1−1)
1,1 πB1−1,j + K(B1−1)

1,2 (πB1−1,j − πB1,j)−
B1∑

k=1

K(B1−k)
3 π̂B1−k,j+1 (76)

π1,j = K(B1−2)
1,1 πB1−1,j + K(B1−2)

1,2 (πB1−1,j − πB1,j)−
B1−1∑

k=1

K(B1−1−k)
3 π̂B1−k,j+1, (77)

where K(n)
r,c is the rth row, cth column element of K(n). Balance equation (51) implies:

π0,j =
λ1

µ1 + λ2
π1,j +

λ2

µ1 + λ2
π̂0,j+1. (78)

By using (76), (77) and (78), we obtain:

C1πB1−1,j + C2(πB1−1,j − πB1,j) = C3, (79)

where the constants C1 - C3 are as follows:

C1 =
(
K(B1−1)

1,1 − λ1

µ1 + λ2
K(B1−2)

1,1

)

C2 =
(
K(B1−1)

1,2 − λ1

µ1 + λ2
K(B1−2)

1,2

)

C3 =
B1∑

k=1

K(B1−k)
3 π̂B1−k,j+1 − λ1

µ1 + λ2

B1−1∑

k=1

K(B1−1−k)
3 π̂B1−k,j+1 +

λ2

µ1 + λ2
π̂0,j+1.

We replace πB1−1,j and (πB1−1,j − πB1,j) in (79) with (71) and (70), respectively, and obtain
πA2−1,j , as it is the only unknown in (79).

Now that we know π̂A2−1,j , we obtain π̂i,j , for i = B1, .., A2 − 2, by using (67) (or by (68) if
A2 = B1 + 1). By using π̂A2−1,j in (71), we obtain π̂B1−1,j . And by using π̂B1−1,j and π̂B1,j in
(75), we obtain π̂i,j , for i = 0, .., B1 − 2.

Lastly, by the balance equation (56), we have:

πA2,j−1 =
(
1 +

λ1 + λ2

µ2

)
π̂A2,j − µ1

µ2
π̂A2−1,j .

Step 3:

In this step, we will finish the algorithm by finding the π̂i,0 values for i = 0, .., A2 − 1. At this
point, we already have all of the π̂i,j values for j ≥ 1 and we also have the π̂A2,0 value.

We obtain π̂A2−1,0 by using the balance equation (56):

πA2−1,0 =
µ2 + λ1 + λ2

µ1
π̂A2,0.
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As we already have π̂i,1, π̂A2,0, and π̂A2−1,0 values, unlike Step 2, we can obtain the remaining
π̂i,0 values directly by using the related balance equations successively in the descending order of i.

If A2 > B1 +1, then we can obtain π̂i,0, for i = A2− 2, .., B1 by using (55) successively as follows:

πi−1,0 =
(
1 +

λ1 + λ2

µ1

)
π̂i,0 −

(λ1 + λ2

µ1

)
π̂i+1,0 for i = B1 + 1, .., A2 − 1,

or we can use (67), as it still holds when j = 0,

πi,0 =
A2−(i+1)∑

k=0

(λ1 + λ2

µ1

)k
π̂A2−1,0 −

A2−(i+1)∑

k=1

(λ1 + λ2

µ1

)k
π̂A2,0 for i = B1, .., A2 − 2.

If B1 = 1, then we complete the algorithm by getting π0,0 from (49),

π0,0 =
λ1

µ1
π̂1,0 +

λ2

µ1
π̂0,1.

If B1 > 1, then we get πB1−1,0 from (53) and get πi,0 starting from i = B1− 2 to i = 0 from (50),

πB1−1,0 =
µ1 + λ1

µ1
π̂B1,0 − λ1 + λ2

µ1
π̂B1+1,0 − λ2

µ1
π̂B1,1

πi,0 =
µ1 + λ1

µ1
π̂i+1,0 − λ1

µ1
π̂i+2,0 − λ2

µ1
π̂i+1,1 i = 0, .., B1 − 2.
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