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We consider a make-to-stock production/inventory system consisting of a single deteriorating machine which produces a single
item. We formulate the integrated decisions of maintenance and production using a Markov Decision Process. The optimal
dynamic policy is shown to have a rather complex structure which leads us to consider more irnplementable policies. We present a
double-threshold policy and derive exact and approximate methods for evaluating the performance of this policy and computing its
optimal parameters. A detailed numerical study demonstrates that the proposed policy and our approximate method for com­
puting its parameters perform extremely well. Finally, we show that policies which do not address maintenance and production
control decisions in an integrated manner can perform rather badly.

I. Introduction

Complex and high-tech machinery in advanced produc­
tion systems constitute a large majority of most industries
capital. These production systems are more reliable than
their predecessors; however, they are still subject to de­
terioration with usage and age. The deterioration causes
lower production rates (therefore higher production cost
per item) and lower product quality. Preventive mainte­
nance is one of the tools to increase the reliability of the
production system. Without an effective maintenance
program, the production system fails more often, and
depending on the magnitude of repair times, the system
might be down for significant amounts of time. This
means that the effective production rate decreases sig­
nificantly and the system might not be able to cope with
demand. One way of dealing with this scenario is to keep
enough inventory in order to satisfy demand during the
time that the production facility is down. But, as always,
the main question is "how much inventory is enough?"
Clearly, how much inventory one should keep should
depend on the deterioration rate of the machine as well as
the particular maintenance policy used. On the other
hand, the maintenance policy to be used should take into
account the fact that some inventory can be kept to
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protect against downtimes. Therefore, there is an intimate
relationship between the maintenance/repair and pro­
duction/inventory policies used in a facility.

This paper deals with the problem of joint mainte­
nance/repair and production/inventory policy in a mul­
tiple-state make-to-stock system where the machine
deteriorates with usage. Such systems are very common in
practice. For example, Berk and Moinzadeh (2000) give
examples of such systems in tooling, and semiconductor
industries.

We assume that the produced items are held in a fin­
ished goods inventory and consumed by exogenous de­
mand. Demand that cannot be met from the finished
goods inventory is lost and the system incurs lost sales
penalties. The machine has several operational states
(1,2, ... ,I - I) and one failed state I. The system is as­
sumed to be deteriorating as random shocks take the
system to worse states and the production rate is non­
increasing in system state. Performing repair or mainte­
nance operation in state i takes a random time and costs
In; per unit time and changes the state of the system to
operational state I (as good as new). The system incurs
holding costs for each unit held in the finished goods
inventory. The objective is to find the best joint produc­
tion/inventory and repair/maintenance policy in order to
minimize the total average cost per unit time.

Most of the existing literature on maintenance policies
does not consider the interactions between production/
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inventory and repair/maintenance decisions. Compre­
hensive reviews and analysis in this area can be found in
Picrskulla and Voelker (1976), Sherif and Smith (1981),
McCall (1985), Valdez-Flores and Feldman (1989) and
Dekker (1996). These interactions have also received little
attention in the production and inventory control litera­
ture which typically assumes perfectly reliable machines.
Recent literature which attempts to fill this gap can be
classified into two groups: (i) literature on the effects of
machine failures on production and inventory decisions;
and (ii) literature which focuses on developing new inte­
gra led production/maintenance policies.

The first group of papers do not attempt to develop
integrated production/maintenance policies but rather
locus on how failures or a fixed maintenance policy
would affect well-known production and inventory poli­
cies. Maintenance costs arc ignored as the maintenance
decisions are assumed to be fixed. For example, Gro­
enevelt et al. (1992a, 1992b) focus on the effects of
machine breakdowns and corrective maintenance on eco­
nomic lot sizing decisions. Gallego (1990, 1994) extends
the classical Economic Lot Scheduling Problem (ELSP)
by providing an algorithm for scheduling the facility after
disruptions. Shurafuli (1984) shows the effects of a ma­
chine failure on the performance measures of a single­
machine, single-product production system in which the
machine output replenishes the items according to an
(.I', S) policy. As in the classical (.I', S) policy, the machine
is shut off as soon as the inventory level reaches S and is
put back into operation when the inventory goes below s.
Repair starts immediately as soon as the machine fails.
Shurifuia (1988) considers a multiple-state machine which
produces a single item to satisfy a constant demand rate.
The machine changes its state according to a continuous
time Markov chain. The objective is to find the optimal
production rate with respect to the machine state and
inventory level in order to minimize the total average
inventory cost. Other examples of the papers which focus
on the effects of specific maintenance policies on inven­
tory policies include Meyer et al. (1979), Posner and Berg
(1989) and Berg et al, (1994).

The second group of papers include the repair/main­
tenance costs in their analysis and introduce policies
which integrate the optimal production/inventory and
repair/maintenance policies. Lee and Rosenblatt (1987)
added the maintenance by inspection feature to the eco­
nomic lot sizing problem, where the inspections help to
determine whether the equipment is in-control or out-of­
control. 'I' the equipment is out-of-control, a maintenance
operation is required to restore it to an in-control state.
The decision variables are the production lot size and the
number of inspections per cycle, and the objective is to
minimize the total average inventory and inspection/
maintenance costs. Srinivasan and Lee (1996) added a
preventive maintenance option to an (.I', S) policy similar
to Sharafuli (1984). In their model when the inventory
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level reaches 5, preventive maintenance is undertaken and
the machine becomes as good as new. If the system fails
before the preventive maintenance is scheduled, the repair
process starts. Demand is assumed to be Poisson and the
costs involved are preventive maintenance and repair
costs and also back order, holding and production setup
costs. They obtained the optimal parameters sand S in
order to minimize the total average cost. In their model,
the production policy depends on the maintenance costs;
however, the maintenance policy is fixed and does not
depend on inventory/production costs.

Das and Sarkar (1999) considered a similar model to
that of Srinivasan and Lee (1996); however, in their
model the decision to perform a preventive maintenance
depends on the inventory level, as well as the number of
items produced since the last repair/maintenance opera­
tion. In both models, the production/inventory policy
follows the (s, S) policy and the facility idles when the
inventory reaches S. Both Srinivasan and Lee (1996) and
Das and Sarkar (1999) consider a single (operating) state
production facility in which the production rate does not
change with usage and the repair/maintenance cost is
independent of the facility's age. Our model is different in
the sense that we study a multiple (operating) state pro­
duction system where the production and repair/mainte­
nance characteristics of the system change with usage.
Furthermore, in our model the production/inventory
policy is not fixed. In fact, we investigate how the struc­
ture of the integrated production/maintenance policy
changes as the system enters different operating states.

The paper closest to ours is by Van der Duyn Schouten
and Vanneste (1995) who considered a single production
facility with an increasing failure rate lifetime distribu­
tion. In their model the facility aging process does not
affect the production rate and the facility produces items
either at constant rate p ; if the downstream buffer is not
full, or at constant rate d (equal to the demand rate), if
the downstream buffer is full. The buffer has finite ca­
pacity K (exogenously given) and satisfies constant de­
mand rate d. Upon failure the facility goes under repair
and becomes as good as new. The option of preventive
maintenance exists which takes less time than repair and
also puts the facility back into as good as new condition.
The objective is to decide when to perform preventive
maintenance. This decision is made based on the age of
the facility and the downstream buffer level. The criteria
is to minimize the total inventory-related measures such
as average inventory level, average number of lost sales or
backorders. Van der Duyn Schouten and Vanneste in­
troduce a suboptimal policy which prescribes preventive
maintenance actions either in age (state) 11 or N. If the
buffer is full, preventive maintenance is undertaken at age
11. If the buffer is not full, but has at least k items, pre­
ventive maintenance is undertaken at age N. Maintenance
is never performed unless the system has at least k items.
They develop analytical models to obtain the best values
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Control of a deteriorating production system

for 1/, Nand k and show that their proposed policy per­
forms well.

In our paper, we also assume a production facility with
an increasing failure rate and our decisions are based on
the state of the machine and the inventory on hand.
However, we assume a stochastic demand and production
process. Also in our model the deterioration process
(which is a function of machine usage) does affect the
performance of the production facility which in turn in­
fluences the production/maintenance decisions. More
specifically, we consider a multiple-state production fa­
cility which produces a single item and deteriorates with
usage. The deterioration process affects the production
capacity and repair and maintenance operations. Jn other
words, in our model, as the facility deteriorates, its pro­
duction rate decreases and its maintenance operation
becomes more time consuming and costly. Produced
items are kept in the Finished Goods (FG) inventory
and consumed by exogenous stochastic demand. The
cost structure consists of the inventory holding and
lost sales cost and also repair/maintenance costs. We
look at the problem of finding the best joint produc­
tion and maintenance policies in order to minimize the
total average holding, lost sales and maintenance/repair
costs.

The remainder of this paper is organized as follows. We
start with a dynamic programming formulation of the
problem in Section 2 and we investigate the structure of
the optimal policy through some numerical examples. As
we show in Section 2, the optimal policy is extremely
complex and impractical. This leads us to consicler a
simpler double-threshold policy which we introduce in
Section 3. We develop an exact model for our double­
threshold policy; however this exact model requires
solving large systems of equations and docs not have
closed-form. The special case of systems with three states
can however be solved easily and its solution is provided
in Section 4. We also use the solution for systems with
three states in a simple heuristic we develop for systems
with any number of states in Section 5. Finally, Section 6
provides a comprehensive numerical study showing that:
(i) the proposed double-threshold policy performs very
close to the optimal policy; and (ii) the heuristic we
propose for the double-threshold policy based on aggre­
gating N states into three states performs very well. The
paper concludes in Section 7.

2. Problem formulation

We consider a single-machine make-to-stock manufac­
turing system producing a single product. Finished items
are stored in finished goods inventory at a cost of II per
item per unit time. Demand for these items arrives ac­
cording to a Poisson process with rate ).. The demand
that cannot be met from the finished goods inventory is

425

lost and a penalty (lost sales cost) of C per item IS 1Il­

curred.
The machine has several operational states (1,2, ... ,

1 - I) and failed state I. At any operational state i, the
machine processing time is a random variable with an
exponential distribution having mean processing time
l/lli' (It is possible to extend the analysis to more com­
plicated situations such as Erlang distributions. However,
our focus is on the types of joint maintenance/inventory
policies which work well and to gain insight into the in­
teractions between the two decisions. Non-exponential
distributions would add tremendous additional com­
plexity with fewer new insights.) It is reasonable to as­
sume that Pi is non-increasing in i. This can be due to the
machine producing a larger ratio of defective units as it
deteriorates so that the time between production of two
successive good units increases. Maintenance (repair) in
state i takes an exponentially distributed amount of time
with rate r, and costs m, per unit time. The objective is to
minimize the total average inventory and maintenance
costs by finding the optimal production and maintenance
policy. In other words, at any operational state, based on
the inventory available, the optimal policy determines
whether the machine should produce one more item, stay
idle or be maintained. Assuming that pre-emptions are
allowed, the problem of determining the optimal policy
can be formulated as a semi-Markov decision process:

• The decision epochs are: (i) production completion ep­
ochs; (ii) demand arrival epochs; (iii) repair completion
epochs; and (iv) the epochs when machine changes
state.

• The state of 1he system at any decision epoch is pre­
sented by a vector (11, i), where 11 E Z+ is the number of
items in finished goods inventory, and i is the state or
the machine (i = 1,2, ... ,I).

• The actions are: (i) producing an item; (ii) idling; or (iii)
maintenance (repair if failed).

Following Lippman (1975), and defining the indicator
function I, such that

when x = 0,
otherwise,

the optimality equation for the semi-Markov decision
process with the objective of minimizing the total average
holding, penalty and repair cost is:

9 1
A+V(n,i)=A1{nh+).[V(n-l,i)(I-In )

+ (V(n, i) + C)In]

+ min{rV(n,i), p;V(n + I,i)

+ <p;V(n, i + 1) + (r - <Pi - Iii) V(n, i), m,

+ r;V(n, I) + (r - ri)V(n,i))], (I)

where r = Maxi{ri, <Pi + II;}, II. = ). + rand V(n, i) is the
relative value of being in state (n, i).
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In Equation (I), the first term is the holding cost until
the next decision epoch. The terms with ), denote the
states after the arrival of demand. If demand arrives and
there is at least one unit of inventory in stock (then III = 0
since /I > 0), the demand is satisfied and inventory de­
creases by one. Otherwise, the demand is lost and a
penalty of C is incurred. The final expression in Equation
(I) denotes the choice between idling, producing or re­
pairing thc machine.

We note that the above formulation can be easily ex­
tended to the case where machines are replaced instead of
maintained. Typically, machine replacement involves a
Iixed cost (capital expenditure) and a variable cost which
is a function of how long the installation of the new
equipment lakes. Therefore, the only thing that would
change in the above formulation would be the addition of
a fixed cost term whenever a decision is made to replace
the machine with a new one.

In order to investigate the structure of the optimal
policy in (I), we solved numerous examples using value
iteration and found that the most common structure for
the optimal policy is similar to those shown in Fig. I (a
and b). Figure I(a and bjshows the optimal solution for
a 10-stale machine problem with I, = 8, Pi = 10, ¢i = I;
; = 1,2, ... , 10. II = I, C = 50, and m, = 20; ; = 1,2, ... ,
10. where Fig. I(a) is for ri=5; i= 1,2, ... ,10 and
Fig. I(b) is for r = [10 10 7 7 5 5 2 2 I I].

As Fig. I(a and b) shows, the optimal policy divides
the state of the system into three different sets PI, PR and
R. In each state in PI, the machine continues to produce
until the inventory reaches a certain level (which depends
on the state), whereafter the machine becomes idle.
However, in each state in PR, the machine goes under
maintenance when inventory reaches a state-dependent
threshold. Finally, in states in R, no production is ever
undertaken, and repair operations start immediately. In
Fig. I(a), P1= {1,2,3,4}, PR= {5,6,7,8,9},R= {IO}.
Note the complexity of thc policies in Fig. I(a and b).
Firstly, the production threshold is different for every
state. Second, as Fig. I(b) clearly demonstrates, the

(a)

Stutes
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switching curves do not even have to be monotonic. The
complexity of the optimal policies make their practical
implementation unlikely.

In order to get to a simpler and more applicable policy,
we introduce a double-threshold policy as shown in
Fig. 2. Our double-threshold policy also consists of three
sets of states with similar properties to those in Fig. I(a
and b). However, our proposed double-threshold policy
has only one production threshold M for states in PI
where the machine becomes idle when the inventory
reaches M. Similarly, there is a single-threshold N for
states in PR where maintenance is undertaken when in­
ventory reaches N. Thus, implementation of this policy
requires stating the values of M and N as well as the two
state thresholds thai differentiate states PI, PR and R.

States

REPAIR

IDLE

Inventory

Fig. 2. Double-threshold policy.

(b)

Slates

'", 1

"
r REPAIR,
,

PRODUCTION.
,
z IDLE

,

ro,
", I REPAIR
e
,

~•,

~, IDLE
,

m " Inventory rc " Inventory

Fig. I. Examples or the optimal policy when: (a) r, = 5, i = 1,2 ... ,10: (b) r = [10 7 7 5 522 I I].
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Control of a deteriorating production system 427

Then, we can formulate the model as a continuous-time
Markov chain (the balance equations are provided in
Iravani and Duenyas (1999» and letting

3.1. Exact analysis when N ~ M

To analyze the number of items in inventory, let n".; be
the steady-state probability that the machine is in state i
and there are 11 items in inventory,

lu the next section we present the exact analysis of the
double-threshold policy when N 2: M. The analysis for
the case where N < M is similar, and is presented in
Appendix B of Iravani and Duenyas (1999). (Note as
shown in Fig. I (a and b) that the production thresholds
for states in PI may be higher or lower than those in states
in PR.)

i=2,3, ... ,K,

i = I, K + I, K + 2, ... , L - I,

i = L,

i=2,3, ... ,K,
i = I, K + I, K + 2, ... , L - I,
i = L.{

1,2, ,M,
n = 1,2, ,N,

1,2, ,N -I,

3. An exact analysis of the systems under the
double-threshold policy

Note that this policy is more practical than the optimal
policy for the following reasons: (i) the existence of a
single production threshold for all of the states in PI and
PR makes the production policy simpler to implement;
and (ii) the fact that the production threshold remains the
same for a large group of states also makes it easier to
keep track of the "state" of the machine. For example, in
the case of cutting tools, the tools potentially have a very
large number of states. However, the implementation of
this policy req uires the worker only to recognize two
critical states, a much easier task than keeping track of all
tool states and measuring the cutting tool all the time.
(Ivy and Pollock (1999) focus on the problem of recog­
nition of states based on machine monitoring in cases
where machine monitoring may not be perfect. Although
this is beyond the focus of this paper, we would like to
note that when monitoring is imperfect, recognizing
whether the system has deteriorated beyond two given
states is much easier than recognizing the state of the
system at all times.) We therefore next focus on the
double-threshold policy and develop an exact and heu­
ristic analysis of system performance under this policy.

This section presents an exact performance evaluation
of a system which uses a double-threshold policy with
parameters M and N. We let then we have the following

PI={1,2, ... ,K}, PR={K+I,K+2, ... ,L-I},
R={L,L+I, ... ,l}. Lemma\.

(2)

(3)

Since the state of the system (machine) only changes when
the machine is producing parts, the system will never
enter states L + I, L + 2, ... , I. This is because of the fact
that as soon as the machine gets to state L, its repair
operation starts and when maintenance is completed, the
system is back in state I. Therefore, we only need to
consider a machine with states 1,2, ... , L (L :S I), where
in states 1,2, ... , K the machine produces items until the
inventory level reaches M, whereafter it stays idle.
However, the machine continues producing items in
states K + I, K + 2, ... ,L - I until there are N items in
inventory. At this point, the maintenance operation starts
and puts the system back in state I.

where

{
(!liZ - 1.)( I - z) + cPiZ,

A;(z) =
rLZ - /.(1 - z),

(4)

i = I, 2, ... , L - I,

i = L,

(5)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
e
r
p
e
t
u
a
l
 
A
c
c
e
s
s
 
-
 
N
o
r
t
h
w
e
s
t
e
r
n
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
5
:
4
8
 
2
7
 
A
u
g
u
s
t
 
2
0
0
9



428 Iravani and Duenyas

and

Ci(z) =

i = I,

i = 2,
i=3,4, ... ,K,
i=K + I,
i = K + 2, ... , L - I,
i = L,

(6)

{

(11;Z(1 -z) + cP;z)nM,;~ - ).(1 -z)noi,
ai(z) = (Il;z( I - z) + cP;z)nN,izN - Jc( I - z)noi,

-).( I - z)noL,

i=I,2, ... ,K,
i = K + I, K + 2, ... ,L - I,
i = L,

(7)

Proof, See Appendix A of lravani and Duenyas (1999)
for the outline of the proof. •

The denominator of (3) is a polynomial of order 2L - I
which has 2 L - I roots ~j, j = 1,2, ... ,2 L - 2, where
~21.-1 = I. Substituting the first 2 L - 2 roots into nu­
merator (3) yields the following system of 2 L - 2 equa­
tions with 2 L + N - M - I unknowns no;; 1 ~ i ~ L, n"l;
M ~ 11 ~ N and n~li; 2 ~ i ~ K, «»: K + 1 ~ i ~ L - I.

1.-2

[CI.(~JAI.-I(~j) + ~jcPL_ICI.-1 (~;)I II A;(~j)
i=1

1.-2 I.-I ;-1

+L:~~-jc;(~j) II cPiII A;(~j) = O. (8)
j=1 i=j k=1

Using (4) when z = I, we get

11;(1)= ~JI.I1I.(I)+ tCj(l)], i= 1,2, ... ,L-I,

and considering ~~;"I l1i ( I) = I, we will have;

I.-I I
rl 111.(1) 8cPi

t.-I i C ( I)
+L:L:-j - + 111.(1) = I. (9)

;=1 j=1 cPi

Equation (9) along with 111.(1) which can be obtained
using L'Hospital's rule in (3) adds one more equation to
the system of linear equations (8). However, in order to
compute the 2L + N - M - I unknowns, we need to ob­
tain more equations. This can be done by considering the
balance equations provided in Iravani and Duenyas

I.-I
r = L: rjnNj'

j=K+1

(1999) where the process of creating a system of
L(N - M + I) - (K - I)(N - M - I) linear equations
with the same number of unknowns, which can be solved
using numerical techniques is described in detail. How­
ever, if the number of states is large, then this can po­
tentially be time consuming and this is why we develop a
heuristic approach in Section 5.

The analysis of the case where N < M is similar to the
case with N ~ M and therefore is omitted. (It is given in
Appendix B of Iravani and Duenyas (1999).)

It should be noted that 111.( I) can be obtained by setting
z = I after using L'Hospital's rule in (3). However, the
result does not have a nice closed-form and this problem
does not only exist for 111.(1). As the structure of the
balance equations and the generating functions show, the
results for the average number of items in inventory and
the probability of having zero inventory are even more
complicated. Therefore, although we can obtain exact
results by solving the above equations for any system, we
next focus on systems with three states. The analysis of the
system with three states will be the basis for our heuristic
in Section 5 which we develop for systems with any
number of states. Furthermore, the case with three states
is of interest on its own because there are many situations
in which machines are classified into three states such as:
(i) as good as lIew; (ii) deteriorated; and (iii) failed.

4. A systems with three states

ln this section we consider a machine whieh has three
states: (i) as good as new; (ii) deteriorated; and (iii) failed.
We will use the exact results developed here in our heu­
ristic in the next section. When the machine is in state 3, it
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(a)

Slates

(b)

States

429

3 REPAIR

2
PRODUCTION REPAIR

--- I

III
PRODUCTION IDLE,

I, , I I I •

3 REPAIR

2 PRODUCTION REPAIR

---

I
PRODUCTION IDLE

M N Inventory N M Inventory

Fig. 3. A three-state system with preventative maintenance when: (a) N 2': M; and (b) N < M.

has to be repaired as the machine cannot produce any
units in this state at all. However, in state 2, when the
inventory level reaches a threshold N, the preventive
maintenance operation starts and puts the machine back
in state I. The machine becomes idle in state I when there
are M items in inventory. Figure 3(a and b) show this
policy for N 2': M and N < M, respectively. We give the
analysis for N 2: M; the analysis for N < At is similar and
is omitted for brevity.

Letting 11//; equal the steady-state probability that the
machine is in state i and that there are n items in inven­
tory, the balance equations for the system are:

1101 (PI + 4>1) = h ll + 1'3 1103,

11//I(),+JlI +4>1) =),11//+1.1 + JlI11//-1.1 +1'3 11//3,

n = 1,2, ... , M - I,

11M I(2) = ),11M+I.I + JlI11M-I,1 +r3 11M3,

11//1 (2) = 211//+1,1 + 1'3 11//3 ,

n=M+l, ... ,N-I,

11NI (2) = r2 11N2,

11d/12 + 4>2) = h l2 + 4>1 1101,

11,d), + 112 + 4>2) = ),11//+1,2 + 4>1 11//1 + Jl2 11//-1,2,

n = I,2, ... ,M -I,

11,d), + 112 + 4>2) = 211//+1,2 + Jl211//-1,2,

n=M,M+l, ... ,N-I,

11N2(2 + 1'2) = Jl211N-I,2,

71:03(1'3) = h 13 + 4>271:02,

11//3(2 +1'3) = ),71://+1,3 + 4>211//2,

TI
3
(z) _ CI(z)4>1 eP2z2+ C2(z)A, (z)4>2z + C)(z)A I(z)A2(z)

- A,(z)A2(z)A3(z) - r34>14>2z) ,

( 12)
where

C1(z) = [/IIZ( I - z) + 4>IZ]<IJ;: (z)

+ r271:N2~+' - )o( I - Z)7I:OI,

C2(z) = [/122(1 -z) + 4>2Z]7I:N2~

- "271:N2~+1 - 4>lz<IJ: (z) - Jo( I - Z)1102,

C3(z) = -4>271:N2~+1 - )o( I - Z)7I:03,

and Ai(z) and <IJ:: (z) are as in Lemma I for a three-state
problem.

Using five roots ~j,j = 1,2, ... , 5 (except ~5 = I) of
denominator (12) in the numerator (12) creates the fol­
lowing system of four linear equations with 5 + N - M
unknowns, 71:01, 7[02, 1103, 7I:N2 and 71://1 for M ::; n ::; N.

C1(~j)4>1 eM; + C2(~JlAI (~Jl4>2~j

+ C3(~j)AI (~j)A2(~Jl = 0, j = 1,2,3,4.

( 13)
On the other hand,

N 1'2 1'3
TI,(I) = <IJ.)I) +¢;7I:N,2 +¢;TI3(1),

1'3
TI2(1) = 11N,2 + 4>2 TI 3 (1).

Therefore considering 2::=1 TI;(I) = I, we will have

n= I,2, ... ,N-2,

7I:N-1.3(2 + 1'3) = 4>2 11N-I.2'

Therefore we will have:
( 14)

where Vi = r3/4>i and V = VI + V2· Using l.'Hospital's rule
in (12) we get

),[71:0 - <lJN (I)] - (I', w, + )o)7I:
N2TI 3(1) = oW • • (15)

rJW +), '
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430 Iravani and Duenyas

I-state problem, our heuristic defines a three-state prob­
lem with states i, 2and 3, where state i has the following
parameters

[ ]

- 1

- '" IcPl= ~-
,EPI q."

- I '"m, = -; L- m..
l( iEPI

- I '"III = K~Ili'
iEPI

- I '"r\ = - Z:: r.,
K iEPI

- I '"112 = L _ K _ I~ /Ii'
iEPR

[ ]

- 1

- '" I<P2 = ~-
IEPR <P,

- I '" _ I '"1'1 = I Z:: r., 1112 = Z:: m..
L - K - iEPR L - K - I iEPR

Finally for state 3, the heuristic considers

In other words, the heuristic considers an aggregated
state i to represent states in PI = {I, 2, ... , K}. This ag­
gregated state has aggregated production and repair rate
[II and "1 and the aggregated failure rate ~I' The aggre­
gated failure rate actually reflects the average rate of
entering state K + I from state I. Thus, in the three-state
problem, it takes on average

L~'
iEPI <Pi

for the machine to leave state i and enter state 2.
Similarly the parameters for state 2are

[13 = ilL, ~3 = <PL' h = rL, In, = /ilL·

The heuristic analyzes the three-state problem using the
results from Section 4 to obtain the optimal threshold M*
and fl*, which is then used as an approximation for the
optimal values M* and N* in the original I-state problem.

We summarize our heuristic for an I-state problem in
the following algorithm:

where

where 1!o = 1!o, + 1!,,, + 1!'I)' lI'i = (). - IlJ / q)i and W =
II'I + "'2.

Now. in order to find unknowns 1!OI, 1!02, 1!Q3, 1!N2 and
1!1I1 for M ::; 11 ::; N, similar to Section 3, the system of
linear equations consists of the selected balance equations
of the system along with Equations (14), (15) and (13)
must be solved.

Finally, the average number of items in the inventory,
E[N] = L;"I n;( I) can be obtained, where

),[1!o, - <I>:~,(I)] + cP,<I>:: (I) + r,(N - W,)1!N'
n'l ( I) = --'-"'------"'-'-"'------'.-"'-"'---"------'---.:...:.

4>1
+ vln;(I) - VIII'ln,(I),

n;( I) = ),[1!o, + 1!Ol - <1< (I)] + [Nq." - ), + r,lI'd1!m
4)2

+ v,n;(I) - v,Wn 3(1).

On the other hand, obtaining the first derivation of n3(z),
we get

n;(I) = Q - ),[q);" (I) + 2<1<(1)] + [1!N' - pn3(1)
r,W+),

(16)

P = (21', + ).)W + 1',11'111'2 + 2), - Villi - V21l2,

Q = ),[21!o + II' t1!o, + W1!o,],
,. II

[ =~ - <P211'2(N + 2 + 11'1)
~)I

+ 1',11'1 (N + 2) + 112[11'1 + N + 21.

Therefore the optimal limits M and N can be found by
searching for the M* and N* which minimize the total
average inventory and repair cost, E[TC(M, N)], where

E[TC(M, N)] = h E[N] + 01!o + 11121!", + lIl,n3(I). (17)

5. Heuristic approach for double-threshold policy

Step O. Set L = I, K = I and go to Step I.
Step I, Set PI={1,2, ... ,K} and PI?={K+I,K+

2, ... , L - I} and compute

In Section 3. we presented an exact analysis of systems
with any number of states where the double-threshold
policy is used. However, the analysis requires the solving
of a potentially high number or simultaneous equations
(depending on the number of states). For this reason, we
provide a heuristic approach for computing the perfor­
mance or a system under the double-threshold policy and
also 1'01' calculating the approximately optimal threshold
levels.

Our heuristic converts problems with more than three
states to a three-state problem and uses the results in
Section 4 to approximate thresholds M * and N * and op­
timal sets PI, PI? and I? for the optimal double-threshold
policy. For each of the given sets PI = {I, 2, ... , K},
PI? = {K + I, ... , L - I} and I? = {L, L + I, ... , I} in an

[ ]

- 1

- '" I<PI = ~-
IEPI 4>,

- I '"112 = L - K _ I Z:: Iii'
iEPR

- I '"1'1 = L _ K _ I~ r.,
iEPR

Step 2. Find the optimal thresholds M* and fl* for
the three-state problem defined in Step I using
both models introduced in Section 4 for
N < M and N 2': M. Set TC,-x(M*,N*) as the
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Control of a deteriorating production system

optimal total average cost per unit time for
the optimal thresholds IV/* and N* and go to
Step 3.

Step 3. Set K <- K + I. If K = L - I, set L <- L - I, and
K = I. If L = 2, go to Step 4, otherwise, go to
Step I.

Step 4. Find TCpX' (M;,N;) = MinLK{TCLX(M*,N*)}.
Then the suboptimal inventory thresholds for the
I-state problem are M; and N; with suboptimal
state sets

PI = {1,2, ... ,K'},

PR = {K' + I, K* + 2, ... ,L* - I},

R={L*,L*+I, ... ,1}.

The total number of iterations in our heuristic is
(I - 1)//2 where in each iteration a three-state problem is
analyzed to obtain the optimal values M' and N*. In a
Pentium II computer, finding the optima I thresholds for a
problem with 10 different machine states takes under
30 seconds.

6. Numerical study

In this section, we report the results of a numerical study
we conducted. The purpose of the study was to explore:
(i) whether the double-threshold policy is nearly as good
as the optimal control policy; (ii) if the heuristic
we described performs well in estimating the double­
threshold levels; and (iii) how well or badly the policies
which ignore interactions between maintenance and
production/inventory perform. Finally, we conduct a
numerical study to explore the significance of explicitly
taking into account machine deterioration information.

6.1. Evaluation of the double-threshold policy and heuristic

We studied a set of problems for a machine with) 0 states
and compared the optimal control policy (obtained by
solving (I» with the optimal double-threshold policy
where: (i) the exact model in Section 3 is used to obtain
the optimal parameters of the double-threshold policy;
and (ii) the heuristic in Section 5 is used to obtain the
approximately optimal parameters of the double-thresh­
old policy. Thus, our study tells us both how well the
double-threshold policy performs and also how well our
heuristic performs in estimating the policy's parameters.

We initially created 32 problems using demand rate
;. = 8, holding cost h = 1 and, lost sale cost C = {I 0, 50}
per unit, repair cost m, = m; V i where m == {20, 200} per
unit time. For production rates, we either used the array
tl, or tl". Similarly, for failure rates, we used 4>, and 4>"
and for repair rates we used r, and r" given by

431

tl, = {IO, 10, 10, 10, 10, 10, 10, 10, 10, to},

r; = {I0, 10,8,8,6,6,4,4,2,2},

4>, = {I, I, I, I, I, I, I, I, I, I},

4>" = {O.I, 0.1,0.25,0.25,0.5,0.5,0.75,0.75, I, I},

~ = {5,5,5,5,5,5,5,5,5,5},

r,,= {10,IO,7,7,5,5,2,2,1,1}.

Since we had two choices each for production, repair and
failure rates, and two choices for C and 111, an exhaustive
combination resulted in 32 cases displayed in Table I.

We also analyzed an additional 16 examples (displayed
in Table 2) with h = I and C = 10 and variable repair
costs as follows:

1111 = {20,30,40, 50,60, 70,80,90, 100, IIO},

m: = {20, 25,35, 50, 70, 90,125,160,200, 245}.

Note that whereas the first 32 examples we created have
constant repair costs, the next t6 cases have linear and
non-linear increasing repair costs as a function of ma­
chine state. The criteria for our evaluation in all examples
was the relative errors ED and E" which were defined as
follows:

E = !C,,(M*,N*) - TC(opt.) x 100
D TC(opt.)

TCD(M*,N*) - TC(opt.) 00
E = x I
" TC(opt.)

where TC(opt.) is the total average cost under optimal
control policy; TCD(M*,N') is the total average cost un­
der the double-threshold policy with parameters (M*, N*)
where M* and N' are obtained using the exact model, and
TCD (A1*,N') is the total average cost under the double­
threshold policy with parameters (M', N') where M' and
N* are obtained using the heuristic.

Tables 1 and 2 summarize our results. The average
relative error for the double-threshold policy is about
0.5%, and if heuristic approach is used to obtain the
optimal thresholds for the double-threshold policy, the
average relative error compared to the optimal dynamic
policy is about 0.83%. This implies that the difference
between using exact double-threshold levels and ap­
proximated ones obtained by our heuristic is about 0.3%.
We conclude that: (i) the double-threshold policy with its
simple structure is a very good policy which performs
close to the much more complex optimal dynamic policy;
and (ii) our heuristic is an efficient and accurate tool for
approximating the optimal thresholds of the double­
threshold policy. In fact, in almost a third of the problems
we looked at, our heuristic policy yielded the same costs
as the optimal dynamic policy.
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432 Iravani and Duenyas

Table I. A comparison of the double-threshold policy and the heuristic with the optimal policy

Double-threshold Heuristic

Number ( }·.II.q,.r) (ti.C. III) TC(ojJt.) (K'. C. M'. N') Cost ED (K'. L'. M'. N') Cost Ell

I (X,I'" q'I> 1',) (1,10,20) 9.111 (6, I0,8,8) 9.113 0.02 (7, I0,8,8) 9.137 0.28
2 (X,I'" '/'1> 1',) (1,10, 200) 12.306 (9.10,8,-) 12.346 0.32 (9,10,8,-) 12.346 0.32
3 (X, I'" '/',,1',) (1,50, 20) 15.296 (4,10,14,14) 15.300 0.03 (6,10,14,14) 15.356 0.39
4 (8, I'" 'P" I'd (1,50, 200) 18.692 (9,10,15,15) 18.768 0.41 (9,10,15,15) 18.768 0.41
5 (8, I'" </>" I'll) (1,10,20) 9.630 (3,6,8,8) 9.674 0.45 (3,6,8,8) 9.671 0.45
6 (8,11"q'"I'II) (I, I0, 200) 15.387 (5,6,8,-) 15.387 0 (5,6,8,-) 15.387 0
7 (X,II" ,/",1'11) (1.50, 20) 16.367 (3,6,15, I0) 16.396 0.\8 (3,6,15,12) 16.411 0.27
8 (X, 1'" q'"I'II) (1,50, 200) 22.320 (5,6,15,-) 22.392 0.32 (5,6,16,-) 22.404 0.38
9 (X,I'" </'11' I'd (1,10,20) 8.608 (4,10,8,8) 8.610 0.02 (4,10,8,8) 8.610 0.02
10 (8, I'" </'II,1'd (1,10,200) 9.411 (7,10,8,9) 9.434 0.24 (7,10,8,9) 9.434 0.24
II (X, I'" </>11, I'd (1,50, 20) 14.348 (3,10.14,13) 14.350 0.01 (3,10,14,13) 14.350 0.01
12 (X, 1'"'/'11'1',) (1,50, 200) 15.268 (6, I0.14.13) 15.286 0.12 (6,10,14,14) 15.307 0.12
13 (X, I"" q'I> 1',) (1,\0,20) II, 794 (2,5, I0.2) 11.852 0.49 (2,5,9,2) I 1.854 0.51
14 (X, I'll, </'1> 1',) (1,10, 200) 18.966 (4,5,10,-) 19.552 3.09 (4,5,9,-) 19.611 3.40
15 (X, 1'11, </'t,l") (1,50, 20) 20.791 (2,3,19,-) 20.843 0.25 (2,3,19,-) 20.843 0.25
16 (8,1'11' </'"1',) (1.50, 200) 30.353 (4,5,22,-) 31.207 2.81 (4,5,21,-) 31.221 2.86
17 (8,1'11' 'PII,I',) (1,10,20) 8.829 (1,3,8,8) 8.829 0 (1,3,8,8) 8.829 0
IX (8,1""</'11'1',) (1.10,200) 10.233 (2,5,8, I) 10.233 0 (2,5,8,1) 10.233 0
19 (X,I'II,</'II,l'd (1,50, 20) 14.698 (1.3,14,14) 14.698 0 (1,3,14,14) 14.698 0
20 (X, I'll' </>11' I'd (1,50, 200) 16.275 (2,3,14,-) 16.275 0 (2,3,14,-) 16.275 0
21 (X, I'll' </'" /u) (1,10.20) 10.776 (1,3,9,9) 10.781 0.05 (1,3,9,9) 10.781 0.05
22 (8, I'll, </'1> I'll) (1,10,200) 18.092 (3,4,9,-) 18.159 0.37 (3,4,9,-) 18.159 0.37
23 (8,1'11' </'" I'll) (1,50, 20) 18.444 (1,3,16,17) 18.447 0.02 (1,3,16, I7) 18.447 0.02
24 (8, 1'11, '/'" I'll) (1,50, 200) 26.959 (3,4,19,-) 27.778 3.04 (3,4,19,-) 27.778 3.04
25 (X,II" '/'11' I'll) (1,10,20) 8.611 (2,8,8,7) X.620 0.10 (3,7,8,7) 8.642 0.36
26 (X,I",</'II,I'II) (1,10,200) 9.464 (3,6,8,5) 9.466 0.02 (3,5,8,4) 9.486 0.23
27 (X,I'" </'11' I'll) (1,50, 20) 14.362 (2,8,14, I0) 14.403 0.28 (3,6,14,9) 14.411 0.34
28 (X,II" '/'11,1'11) (1,50, 200) 15.274 (3,8,14,6 ) 15.312 0.25 (3,6,14,12) 15.296 0.14
29 (8,1"1> </'11' I'll) (1,10.20) X.678 ( 1,3,8.8) 8.678 0 (1,3,8,8) 8.678 0
30 (X, JI,,, </>11' ru) (I, I0, 200) 9.721 (2,3,8,-) 9.721 0 (2,3,8,-) 9.721 0
31 (8, I'll, '/'11' I'll) (1,50. 20) 14.476 (1,3,13,12) 14.476 0 (1,3,13,12) 14.476 0
32 (X,I'll, '/'11' I'll) (1,50, 200) 15.626 (2,3,13,-) 15.626 0 (2,3.13,-) 15.626 0

Table 2. A comparison of the double-threshold and the heuristic with the optimal policy for variable repair costs

Double-threshold Heuristic

Nil/libel' ( }..I'.q,.I') 11/ TC(ojJt.) (K'.L'.M'.N') Cost ED (K'. C. M'. N' ) Cost Ell

I (X,I'" </,,,1',) 1111 10.644 (6,10,8,8) 10.646 0.02 (8,10,8,7) 10.722 0.73
2 (X,1'1'</',,1',) JH2 11.450 (2,10,8,6) 11.543 0.81 (4,6,8,5) 11,884 3.78
3 (X,I'" '/'" I'll) 1111 10.874 (3,6.8,4) 10.915 0.37 (3,6,8,8) 11.064 1.74
4 (8, I'" '/'" I'll) 1112 10.847 (1,6.8,6) 10.987 1.29 (2,4,8,8) 11.041 1.79
5 (8, I'" </'11' n) ml 8.815 (2,10,8,8) 8.816 0.02 (4,7,8,7) 8.880 0.74
Ii (8, I'" </'11' n) nJ2 8.801 (2, I0,8,7) 8.807 0.06 (2,4,8,7) 8.850 0.55
7 (8,1"1> </'" I'd 1111 13.330 (2,5,9,2) 13.373 0.32 (3,5, I0,2) 13.613 2.12
X (8, I'll, q", 1',) m2 12.989 (2,5,9,1 ) 13.037 0.37 (2,4,9,1) 13.040 0040
9 (8, I'll' </'11' I'd 1111 8.983 (1,3,8,8) 8.983 0 (1,3,8,8) 8.983 0
10 (I', I'll, '/'1" I'd 1112 8.916 ( 1,3,8,8) 8.916 0 (1,3,8,8) 8.916 0
II (8,1

'11'
,p" I'll) 11/, 11.756 (2.4,9, I) 11,888 1.12 (2,4,9, I) I 1.888 1.12

12 (8, I'll' <P" I'll) 1112 11.432 (1,3,9,6) 11.432 0 (1,3,9,6) 11.432 0
13 (8, I'" </>11' I'll) III I 8.730 (1,6,8,8) 8.732 0.02 (2.4,8,7) 8.760 0.35
14 (8, I'" <PII, I'll) "'2 8.697 (1,6,8,7) 8.701 0.04 (1,3,8,7) 8.725 0.32
15 (8,1'11'</'11,1'11) 1111 8.761 (1,3,8,7) 8.761 0 (1,3,8,7) 8.761 0
Iii (8,111I,'PII,I'II) 1112 8.725 (1,3,8,7) 8.725 0 (1,3,8,7) 8.725 0
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Control of a deteriorating production system

6.2. Independent inventory and repair policies

In almost all practical situations we are aware of, most
maintenance/repair and inventory level decisions are
made in an ad-hoc manner. In particular, when managers
typically make these decisions, they ignore the interac­
tions between them. We explored the magnitude of the
cost difference between considering these decisions in an
integrated manner and ignoring these interactions.

Consider a maintenance/repair department which de­
vises a maintenance/repair program considering only the
repair/maintenance-related costs. The production control
department then takes this maintenance program as given
and establishes their optimal production/inventory levels
based on this information.

As is also typical in most maintenance literature, the
maintenance departments usually find a threshold state
(LI') such that once the machine enters this state, it has to
be maintained. If one aims to minimize the total main­
tenance/repair-related costs per unit time, then the total
average repair cost per unit time for a repair policy which
starts repair as soon as the machine enters state LI' can be
obtained by solving a simple Markov chain with LI' states
and transition rate matrix Q with elements qij, where_{~i' j:i+~i= 1,2,,,.,LI'-I,

qij- '", ]-I,I-L,
0, otherwise.

After solving the above Markov chain. the steady-state
probabilities of the system being in state i, TCi, are
obtained and the total average repair cost per unit
time will be //lTC,.,. Computing //lTC" for different values of
LI' = 2,3, ... , I for an I-state machine problem by solving
I - I Markov chains. L; will be obtained. L; is the value
of LI' which has the least //lTC,.,.

Now considering this repair policy, the best base-stock
level M,: in order to minimize the total average inventory
cost per unit time can be obtained. We call this policy a
single-threshold policy since it is a special case of the
double-threshold policy for a machine with L; state where
K = L; - I (threshold N does not exist). The optimal
threshold M; can be obtained using our exact model or
heuristic. Note that in this case, the optimal inventory
levels are being set by taking into account the mainte­
nance policy to be used. However. the maintenance policy
is not taking into account the costs of carrying inventory
and lost sales.

As Table 3 displays. ignoring the full interactions
between maintenance and inventory decisions can be
rather costly. Table 3 shows the cost of the above-de­
scribed single-threshold policy as compared to the opti­
mal dynamic policy for the same examples in Table I.
The average error of this policy is 39.7% and errors can
go as high as 330%. We believe that these results clearly
make the case for using analytical models such as the ones
developed in this paper that help users make these deci­
sions in an integrated fashion.
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6.3. The effect of machine deterioration

The effects of machine deterioration on maintenance
decisions are sometimes even larger than the effects of
machine failure. Brek and Moinzadeh (2000) present
examples of the effects of machine deterioration in semi­
conductor fabrication. Their model utilizes the informa­
tion about the output yield (which deteriorates with
machine age) in order to establish a cost-effective main­
tenance policy.

Our model also allows the production rate to decrease
as the machine deteriorates. This is often the case in
practice due to the machine producing a larger number of
defective items as it ages (therefore. the "effective" pro­
duction rate of good parts decreases), or requiring larger
adjustment times. However. most of the models in the
literature, especially those considering maintenance and
production (Van der Duyn Schouten and Vannestc, 1995)
assume that the production rate of a machine is constant
as long as the machine is operational. Thus a user who is
using one of those models has to devise a single aggre­
gated production rate that best reflects the "average"
capability of the machine. We demonstrate the impor­
tance of collecting and using information on how the
production rate deteriorates as a function of machine
state with the following example.

Consider case 18 in Table I for a 10-state machine with
decreasing production rate 11= [10 108 8 6 64422].
The optimal double-threshold policy for this case has pa­
rameters (2, 5, 8, I) and a total average cost of 10.233.
However, if we could only use an aggregate production rate
for all operational states, we would have to select a rea­
sonable aggregate production rate. If we replace the pro­
duction rate II = [10 1088664422] with the average
production rate pg = [6666666666] in case 18 of
Table I, the optimal double-threshold policy obtained will
have parameters (7, 10,23,24). This change in parameters
of the double-threshold policy from (2,5,8, I) to
(7,10,23,24) is the result of neglecting the decrease in
production rate by using a model which ignores the ma­
chine deterioration process. To show how far this new so­
lution is from the optimal, we compute the total average
cost of applying double-threshold policy with parameters
(7, 10,23,24) in the original problem where the production
rates are jl = [10 1088664422]. It is found that the
total average cost of this policy is 19.798 which is a 93%
increase in the total cost. In fact, regardless ofwhieh value
of JIg is used, as long as a single value is used for all oper­
ational states, the result will be similar. For example, if we
use Il g = 10, then the cost is 47% higher, while for JIg = 8,
the cost is 50% higher. This additional cost can be viewed as
the cost that the firm will incur if it does not use data on how
its production rate deteriorates as a function of machine
state appropriately in a model that uses this information.

We have run the other examples in Table I and obtain
similar results. These results indicate that the information
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Table 3. Performance of the single-threshold policy

Iravani and Duenyas

Number

I
2
3
4
5
6
7
X
9
10
II
12
13
14
15
16
17
IR
19
20
21
22
23
24
25
26
27
2X
29
30
31
32

( A.I'.<P.I')

(X,III' <PI' 1'1)
(X,III> <PI' I'd
(X, III> <PI' 1'1)
(X, I'" <PI> 1'1)
(X,I'I,1'1,1'1I)
(X,I,\,1'1,1'1I)
(X,II], ql" I'll)
(X, II], qll, I'll)
(X,II], q'lI, 1'1)
(X,III' q'II,1"I)
(X,1'1> <PII, 1'1)
(X, 1'1, <PII, 1'1)
(X, I'll' </,,,1'1)
(X, I'll' q,,, 1'1)
(X, 1111' qll> l'iJ
(X, 1111' <PI' 1'1)
(X,IIII,<PII,I"I)
(8,/111> <PII,I"I)
(8,1'11,1'11,1'1)
(8,1 /11,1'11,1'1)
(8,1111,1'1,1"11)

(8, 1'11,1'" I'll)
(8, 1'11,1'1' I'll)
(8,1'11,</11>1'11)
(8,1'1,1'11,1'11)
(8, III' </'11' I'll)
(X,III> <PII' I'll)
(X,I'I,1'1I,1'1I)

(X,1'11' "'", I'll)
(X,1111> 1'11,1'11)
(8, I'll' 1'11' I'll)
(R,I'll' </'11' I'll)

o.«: III)

(1,10,20)
(1,10,200)
(1.50, 20)
(1,50, 2(0)
(1,10,20)
(I, IO. 200)
(1,50, 20)
(1,50, 200)
(1,10,20)
(1.10,200)
(1,50, 20)
(1,50. 2(0)
(1,10.20)
(1,10,200)
(1,50. 20)
(1,50, 200)
(1,10,20)
(1,10,200)
(1,50, 20)
(1.50, 200)
(LID, 20)
(1.10. 200)
(1.50, 20)
(1,50, 200)
(1,10,20)
(1,10,200)
(1,50, 20)
(1,50, 200)
(1.10,20)
(I, 10, 200)
(1,50, 20)
(1,50, 200)

Single-threshold policy

TC(opt.) (C".M'") Cost ED

9.111 (10,8) 9.293 2.00
12.306 (10,8) 12.346 0.32
15.296 (10,15) 15.601 1.99
18.692 (10,15) 18.768 0.41
9.630 (6,9) 9.893 0.28

15.387 (6,8) 15.387 0
16.367 (6,16) 16.707 0.21
22.320 (6,15) 22.392 0.48

8.608 (10,8) 8.692 0.97
9.411 (10,8) 9.444 0.35

14.348 (10,14) 14.551 1.41
15.268 (10,14) 15.342 0.48
11.794 (10,21) 23.388 98.30
18.966 (10,20) 27.257 43.71
20.791 (10,40) 91.310 339.18
30.353 (10,40) 95.221 213.71
8.829 ( 10,9) 14.097 59.67

10.233 (10,9) 14.946 46.06
14.698 (10,32) 37.449 154.79
16.275 ( 10,32) 38.364 135.72
10.776 (6,12) 13.529 25.55
18.092 (6,11) 19.797 9.42
18.444 (6,28) 29.584 60.40
26.959 (6,28) 36.193 34.25

8.611 (4,8) 8.694 0.96
9.464 (4,8) 9.571 0.56

14.362 (4,14) 14.537 1.22
15.274 (4,14) 15.384 0.72
8.678 (4,8) 9.340 7.62
9.721 (4,8) 10.182 4.74

14.476 (4,16) 16.662 15.10
15.626 (4,15) 17.536 12.22

on how machine deterioration affects production rates is
critical and firms should collect this information and
make usc of models that take this information into ac­
count in their calculations.

7. Conclusions

Wc have presented an integrated maintenance/repair and
production/inventory model. The optimal policy for this
problem is found to have a very complex structure.
However, we have described an easily implementable
double-threshold policy which performs very well and
have also derived exact and heuristic performance eval­
uation methods for systems using this policy. Our results
indicate that the common practice of making mainte­
nance and production decisions separately (or even
consecutively, where inventory decisions take mainte­
nance decisions into account but not vice vel'sa) can be
rather costly and that there arc significant benefits to

making these decisions in an integrated fashion. Finally,
we have shown that collecting good data on how ma­
chine deterioration affects production rates and making
usc of models that can process this information is also
critical in reducing total maintenance and inventory
costs.
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