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Abstract

This paper models and analyzes serial production lines with specialists at each station and a single, cross-trained
floating worker who can work at any station. We formulate Markov decision process models of K-station production
lines in which (1) workers do not collaborate on the same job, and (2) two workers can work at the same task/work-
station on different jobs at the same time. Our model includes holding costs, set-up costs, and set-up times at each sta-
tion. We rigorously compute finite state regions of an optimal policy that are valid with an infinite state space, as well as
an optimal average cost and the worker utilizations. We also perform a numerical study for lines with two and three
station. Computations and bounds insightfully expose the performance opportunity gained through capacity balancing
and variability buffering.
� 2004 Published by Elsevier B.V.
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1. Introduction

The development of mass production, most vis-
ibly expounded by Henry Ford, gave us the serial
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production line as an architecture upon which
most production systems are built. The Just In
Time (JIT) and lean production revolutions have
since augmented and redirected our thinking
about production lines. Among other things,
the JIT philosophy places emphasis on reduced
work in process (WIP) and finished goods inven-
tory levels, shorter and cheaper set-ups, shorter
cycle times, higher quality, and broadened task
assignments and responsibilities for workers. The
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Japanese word shojinka, a composition of sho (re-
duce) + jin (worker) + ka (to change), describes a
practice within the Toyota Production System that
sought to endow teams with a greater range of
skills to achieve agility that would result in equal
or greater productivity without additional work-
ers. The investment in cross-training and effective
labor coordination mechanisms can yield divi-
dends that include not only greater operational
efficiency, improved job satisfaction, and higher
quality, but also increased organizational flexibil-
ity to deal with unforeseen change. Upton (1995)
closely examined the fine paper manufacturing
industry in North America and concluded that
rather than technological sophistication being the
key driver, ‘‘Operational flexibility is determined
primarily by a plant�s operators and the extent to
which managers cultivate, measure, and communi-
cate with them’’.

Some literature has developed a conceptual ap-
proach to cross-training. For example, Hopp and
Van Oyen (2004) proposes both strategic and tac-
tical level frameworks for the design of effective
cross-training architectures. Our focus is on math-
ematical modeling and insights for the efficient use
of cross-trained labor to achieve production
agility. Achieving this agility involves two key ele-
ments: (1) the issue of skill assignment to workers,
and (2) a policy for coordinating workers.

In this work, we consider a serial line in which
each workstation is attended by a specialist (i.e. a
worker who is not cross-trained). To provide agil-
ity with a modest amount of cross-training, our
model has only one of the workers cross-trained.
This worker can perform every task in the line. It
is often the case that a floating worker represents
a more experienced worker with a higher level of
motivation and a higher wage level. The practice
of having a limited number of generalists (or a lim-
ited number of cross-trained workers) supporting
a larger number of specialists is common in many
lines, including paced assembly lines. At Ford Mo-
tor Co., such highly cross-trained floating workers
are often called ‘‘utility’’ workers. Two common
uses of a utility worker are to replace either (i)
an absent worker, or (ii) a specialized worker when
he or she takes a meal or break. In both cases, the
floater actually behaves as a specialist while she or
he is working at a station. Here, our focus is on the
use of floaters to dynamically respond to conges-
tion, floating between two or more stations. Due
to the traditional use of floaters to keep lines run-
ning during breaks and meals, we have observed
that many managers think of using the floater
structure for dynamic line balancing as well. We
saw this, for example in a flexible, high product
variety lighting manufacturing line. At a Chicago
area manufacturer of plastic containers, experi-
enced supervisors fill the floating worker roles. In
contrast to minimally skilled operators who per-
form one function, a floating worker serves in a
supervisory role and is responsible for trouble-
shooting groups of workstations when the line
goes down. In summary, we conjecture that the
use of utility workers in industry stems from the
fact that a modest amount of flexible capacity is
often sufficient to reap significant benefits, a con-
jecture that is supported by our numerical results.
Our results give evidence of a potentially dramatic
effect of even a small amount of flexibility (in our
case, a single utility worker in a line of three or
four workers).

A second element of agility, once the skill
assignment is fixed, is to design a policy or operat-
ing procedure by which cross-trained and special-
ized workers will interact so as to maximize
system performance and effectiveness. An effective
policy to coordinate cross-trained workers must
carefully match the detailed characteristics of the
operation. In this paper, we identify the funda-
mental limits by analyzing optimal policies in the
context of asynchronous flowlines, i.e., those in
which WIP is buffered and job transfers from
any station to its downstream station are not syn-
chronized with other stations. Variability necessi-
tates capacity buffering to absorb the variability
of task/workstation processing times. This buffer-
ing has traditionally been manifested through
WIP buffers at the input of each workstation.
We will see that cross-trained workers can be
organized in a worksharing system to achieve a
capacity buffer against variability as a tradeoff
for reduced WIP buffering.

Our analysis treats K-station serial production
lines modeled as open queueing networks, with a
numerical analysis of 2- and 3-station lines. Such
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‘‘open’’ models are typically associated with make
to order (MTO) systems and are sometimes re-
ferred to as ‘‘demand constrained’’ as opposed to
‘‘capacity constrained’’ systems. Each station has
a dedicated worker, and the system contains one
fully cross-trained Flexible Worker or Floater de-
noted by FW. In addition to the methodological
focus of this paper, we construct our models and
pursue their analysis to address a number of man-
agerial issues. Issue 1: does a limited amount of
floater-type cross-training under optimal control
yield a significant performance impact (‘‘opportu-
nity’’) in terms of WIP, cycle time, and cost? Issue
2: how well can a floater stabilize a system, and
how does it compare to the more expensive ap-
proach of putting two dedicated specialists at each
station? Issue 3: can we gain insight into how set-
up times and set-up costs impact both optimal cost
and optimal policy? Issue 4: does the floater end up
doing an unfair fraction of the work, a character-
istic that might discourage or at least complicate
the implementation of a floater-type system?
2. Literature survey

We start our literature survey by introducing a
number of characteristic modeling assumptions

made about the operating environment of the sys-
tem that are particularly helpful in organizing the
literature on analytical modeling of asynchronous
flow lines with cross-training.

(1) Degree of collaboration: By degree of collabo-
ration we define the number of workers that
can simultaneously work on the same job
and task.

(2) Number of workers per station: We identify the
number of workers allowed per station. We
assume that stations are defined by a unique
task that is performed at them, so this assump-
tion relates to the relative cost of labor versus
the costliness of equipping each station to
allow two or more workers.

(3) Number of skills per worker: We roughly
describe the number of skills per worker as
either full cross-training, partial cross-train-
ing, or specialization.
(4) Amount of WIP: The amount of WIP is
key, ranging from models which set a limit
on the amount of WIP (see the CONWIP
release policy of Hopp and Spearman,
2000), to models with unlimited WIP per
station.

(5) Walking/set-up times: The length of the walk
times to move to another station may be zero,
which is typical, or may be positive and possi-
bly stochastic.

We now refer to the numbered characteristics
above to survey the most relevant literature,
emphasizing work using stochastic models with
at least one worker having two or more skills.
We begin by looking at the first assumption, con-
sidering a degree of collaboration of at least 2
workers per job. While most models assume no
collaboration between workers on any given job,
the work of Van Oyen et al. (2001) focuses on sys-
tems in which (1) workers may collaborate with a
linear speedup of their work rate, (2) tooling is suf-
ficiently inexpensive that any number of workers
can work at the same task/workstation at the same
time, (3) each worker is fully cross-trained to per-
form every task on the line, (4) both open systems
with possibly finite buffers as well as CONWIP
systems are modeled, (5) walk times are zero,
and the number of stations is equal to the number
of tasks (resulting in a station/worker ratio of at
most 1.0). This paper establishes the sample-path
optimality of the expedite policy in which all work-
ers work on the same job and process it from the
start at station 1 to completion at station K. Expe-
dite maximizes throughput in CONWIP systems
and minimizes cycle times in open systems. Other
papers with collaboration of multiple servers on
the same job, (1), include Andradottir et al.
(2001) and Mandelbaum and Reiman (1998).
Mandelbaum and Reiman (1998) treat open mod-
els and focus on analyzing the performance impact
of pooled servers on Jackson networks of queues
in terms of WIP and cycle time. Andradottir
et al. (2001) examine lines with limited buffers in
which workers are dynamically reassigned to re-
spond to congestion (with manufacturing blocking
being the key concern) so as to maximize system
throughput.
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We resume our survey with assumption (1) lim-
ited to no collaboration, that is, only one worker
per job at any time. With assumptions (2) through
(5) as given above, Van Oyen et al. (2001) also con-
siders a policy called Pick and Run (PR), in which
workers operate in parallel with one job per worker.
As in the expedite policy, workers work on the
same job and process it from the start at station
1 to completion at station K. This practice is also
commonly referred to as craft production. For
closed, CONWIP models, this craft mode provides
an optimal system throughput provided there is at
least one job per worker at all times. For open
models, an example is given with deterministic
processing times and a non-Poisson renewal arri-
val process in which craft production is at least
0.58% suboptimal with regard to cycle time.
Although the effectiveness of craft policies in open
systems has not been systematically studied, the
second author�s experience suggests that it will be
very difficult to find better policies. In a setting
with an equal number of workers and stations,
Ahn et al. (1999) analyze a two-station line with
two fully cross-trained servers under the assump-
tions given above, but with assumption (4) focused
primarily on a system without arrivals and the
issue of how to best clear the jobs originally in
the system. They derive properties of an optimal
policy to minimize the expected holding cost.
Some numerical results suggest that when Poisson
arrivals are included, a non-idling policy that gives
priority service to either queue 1 or 2 (based on a
closed-form condition) can effectively respond to
the relative magnitudes of the holding costs ap-
plied to queue 1 versus queue 2. Given the limita-
tion of (2), only one worker per station and worker
blocking (no passing), Bischak (1996) used simula-
tion to compare the throughput of U-shaped flex-
ible worker manufacturing modules with that of
serial lines with one stationary worker per ma-
chine, with and without the use of buffers. In par-
ticular, that work quantifies the utilization of
workers under both a Toyota Sewn Products Man-
agement System (TSS) model and a cyclic service
policy very similar to craft production. Both
Bischak (1996) and Zavadlav et al. (1996) give evi-
dence that only small buffers, or even no buffers,
are sufficient to keep workers highly utilized. Also
using simulation, Downey and Leonard (1992)
studied a line with fewer workers than stations,
allowing starved workers to move to the unoccu-
pied station with the greatest workload. This work
assumed (1) no collaboration, (2) one worker per
station, (3) full cross-training for all workers, (4)
finite buffer sizes (which are optimized), and (5)
positive walk times.

There is a considerable body of literature that
focuses on systems in which the skill/worker
assignments are made on the basis of fixed, adja-
cent zones. For example, worker 1 may be skilled
for stations 1 and 2, while worker 2 is skilled for
stations 2 and 3. With this arrangement, station
2 is the station at which dynamic worksharing
must take place. We begin with work characterized
by (1) no collaboration, (2) two workers can work
at the same task/workstation at stations shared by
two zones and otherwise there is only one worker
per station, (3) each worker is partially cross-
trained to perform every task within her or his lim-
ited zone, (4) WIP in excess of one job per worker
is intentionally used as a worker/task allocation
trigger, and (5) zero walk times. The number of
stations typically exceeds the number of workers,
and early papers include McClain et al. (2000,
1992), Ostolaza et al. (1990), Schultz et al.
(1998), and Zavadlav et al. (1996). They study a
zoned pattern of cross-training across a number
of adjacent tasks/stations such that the end sta-
tions of zones interior to the line are shared by
two zones, which is similar to the Toyota Sewn
Products Management System (TSS). The worker
allocation rule dynamically uses information on
the number of jobs waiting at the overlapping sta-
tions to determine which worker is ‘‘ahead’’ of
schedule, so that the ‘‘ahead’’ worker will perform
the overlapping task in an effort to help out the
worker who is ‘‘behind’’ schedule. McClain et al.
(2000, 1992) and Ostolaza et al. (1990) employ
the notion of using a half-full buffer as the measure
of system balance. That is, workers choose jobs to
try to keep inter-station buffers half full. Gel et al.
(2000) used a combination of MDP�s and simula-
tion in developing and testing a near-optimal heu-
ristic called the 50–50 work content heuristic and
generalized the Half Full Buffer rule first intro-
duced in Ostolaza et al. (1990). These heuristics



L.I. Sennott et al. / European Journal of Operational Research 170 (2006) 541–566 545
have been subsequently analyzed and additional
ones developed in Askin and Chen (2002). Hopp
et al. (2004) gained managerial insights for CON-
WIP queueing models of lines with two skill pat-
tern strategies: cherry picking, which seeks to
balance a line with a minimal number of skills,
and two-skill chaining, which trains each worker
for a unique base station and also for the immedi-
ate downstream station. They found that two-skill
chaining is superior to cherry picking in the pres-
ence of process variability, and it is robustly effec-
tive across a number of queue-length based
policies. Further, there is significant value in com-
pleting the chain, even though the line is balanced
without cross-training the worker(s) that are based
at any bottleneck station(s). In the spirit of zoned
worksharing, Gel et al. (2002) used an MDP
framework to analyze the hierarchical zoned skill
pattern, in which the skills of some workers are
subsets of the skills of other workers (a feature
that is shared by the floater-type model of this
paper). Here, there are two or three tasks in the
lines considered, and senior workers will possess
all the skills of junior workers. Using sample-path
coupling they establish a ‘‘fixed before shared’’
principle, which has the broadly skilled workers
give strict priority to the task-types for which only
they are trained. In this way, the less-skilled work-
ers are protected from starving for lack of tasks for
which they are trained. Iravani et al. (1997a,b)
continue in this vein, but they allow (5) positive
set-up costs and set-up times, and they assume dis-
tinct, non-overlapping zones set in a tandem or a
U-shaped line. They carefully studied the effect
of set-up costs and walking times, in addition to
station-dependent holding costs, by decomposing
the line into a number of tandem queues, each at-
tended by a single moving server that used the
appropriate amount of job batching so as to limit
the set-up penalties. It is shown in Iravani et al.
(2002) that when set-up times are insignificant (in
compared with job processing times), a near-opti-
mal policy can be obtained only using the first mo-
ments of job processing and arrival times.

For the next topic in the literature, we dispense
with the notion of allowing multiple workers to
work at the same station; rather we assume: (1)
no collaboration, (2) at most one worker can work
at the same task/workstation at the same time, (3)
each worker is fully cross-trained to perform every
task of the line, (4) WIP is limited to one job per
worker, and (5) walk times are zero. Bartholdi
et al. (1999), Bartholdi and Eisenstein (1996), and
Bartholdi et al. (2001) are important expositions
of the bucket brigade policy for coordinating work-
ers, particularly when workers possess distinctly
different production speeds. Although distinct
from the Toyota Sewn Products Management Sys-
tem (TSS), bucket brigades can be applied in simi-
lar environments and in warehouse order picking.
The efficient operation of a bucket brigade system
depends in part on its effective use of task preemp-
tion, because workers in that system frequently
take over jobs initiated by another worker. For this
to be efficient, it is key that the number of stations
exceeds the number of workers. For example, Toy-
ota intentionally trained workers to be able to han-
doff a piece being sewn without stopping the sewing
machine or losing quality. McClain et al. (2000)
carefully considers this class of models (with and
without job preemption) and examines a variety
of policies including the bucket brigade and a very
effective variation on that theme which allows
workers to drop jobs midstream, thereby using
WIP to buffer variability.

Farrar (1993) considers a two-station line simi-
lar to ours; however, the FW has a distinct service
rate, and (5) there is no walking or set-up time.
The system is assumed to contain an initial num-
ber of jobs (extensive use of WIP), no new jobs
are allowed, and it is desired to find the policy that
minimizes the expected holding cost to clear the
system. Some properties of an optimal policy are
proved, but it is not numerically determined.

Andradottir et al. (2003) wrote a paper concur-
rently with this one, and it addresses the system
capacity through stability analysis of queueing net-
works with flexible servers and probabilistic rout-
ings. They provide an upper bound for system
capacity and show how generalized round-robin
policies may be constructed to yield a capacity
arbitrary close to the maximal capacity. A note-
worthy feature of their work is the fact that they
permit generality in four of the five characteristics
modeling assumptions—the exception being that
their model treats only open queueing systems.
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This paper considers Markov models of K-sta-
tion lines under the assumptions of: (1) no worker
collaboration on the same job, (2) two workers can
work at the same task/workstation on different
jobs at the same time, (3) one floating, flexible
worker is fully cross-trained to perform every task
of the line, while there is also one specialist dedi-
cated to each station on the line, (4) WIP in excess
of one job per worker is used to buffer variability,
and (5) both zero and positive set-up times are al-
lowed. In addition to set-up times, we include
holding costs and set-up costs at each station. In
terms of the skill assignment pattern, this model
can be viewed as an extension of the hierarchical
skill assignment pattern studied for different
models in Gel et al. (2002). In addition to gaining
intuition and insight into the important, yet over-
looked floater approach to cross-training, this
paper seeks to be especially careful in its use of
numerical MDP computations.
3. First model: FW-1

Model FW-1 describes a serial production line
with K + 1 workers and K stations or stages labe-
led 1,2, . . . ,K, each having an infinite buffer to
hold jobs. The stations may be arranged in a line,
a U-shape, or another convenient facility layout.
At each station there are two single-person work-
stations with one of the workstations permanently
attended by a specialized worker and the other
available to the FW as needed. The time to com-
plete a job on a workstation at station k is expo-
nentially distributed with rate lk, regardless of
whether the specialist or the FW is working there.
FW-1 models an open (push) production system
with jobs arriving according to a Poisson process
with rate k.

If the FW moves to station k, she or he may be-
gin to serve a second job at station k provided that
a second job is present at that station. The FW is
not allowed to collaborate on the same job with
any specialized worker, and if there is only one
job at a station, we assume that the specialist,
not FW, works on it. The time to service a second
job at station k is also exponentially distributed
with rate lk. We may think of this assumption as
modeling either identical workers or tasks with
machine-dependent (as opposed to worker-
dependent) service rates.

In the models in this paper, we consider situa-
tions where the FW must always reside at one of
the stations, the one that is either already set up
or being set up. In the first model, FW-1, there is
no set-up time or cost for the FW to move from
one station to any station; rather, this additional
complexity is introduced in model FW-2 through
the addition of a set-up time (that includes walk-
ing) and a switchover cost. We begin with model
FW-1 since it has a more transparent model struc-
ture and its cost will serve as a benchmark (a
lower bound) for the cost of more complex model,
FW-2.

3.1. The CTMDP formulation of FW-1

We may construct model FW-1 as a continuous
time Markov decision process (CTMDP) denoted
as W. For the CTMDP, we have:

• State of the system: The K-dimensional vector i
denotes the buffer occupancies at each station
(buffer occupancies always include jobs under-
going processing). The system is in state i if
the buffer occupancies are given by i (with is
denoting the number at station s).

• Decision epochs: Decision epochs are epochs
when a new job has just entered the system
(always entering buffer 1), or a job completion
has just occurred at station s and that job has
been subtracted from the content of buffer s

and added to the content of the next buffer
s + 1, if any.

• Action space: Action space includes a 2 {1,
2, . . . ,K}, where choosing a means that the
FW will (instantaneously) move to station a

(or remain at a, if she or he is presently there).

Our model allows job preemption, meaning that
if the FW is currently processing a job and chooses
to move to another station, then that job is pre-
empted and will be started over (or be resumed
with the same exponential distribution on remain-
ing process time) later as determined by the policy.
Throughout, the variable s denotes a generic sta-
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tion and, unless otherwise indicated, summation
takes place over all the stations. There is a holding
cost rate Hs > 0 charged for each unit of time that
a job is at station s. If the current state is i and ac-
tion a is chosen, then the cost rate is given by
gði; aÞ ¼

P
sHsis :¼ gðiÞ. There are no instantane-

ous costs. The time that elapses before a transition
to another state is exponentially distributed with
rate

mði; aÞ ¼ kþ
X

lsI ðis P 1Þ þ laI ðia P 2Þ; ð1Þ

where I(E) is the indicator function for event E.
The first term on the right hand side (1) is the ar-
rival rate. The second term is the total service rate
due to the specialized workers, and the last term is
the service rate due to the FW.

For computational purposes, we now transform
W into a (discrete-time) Markov Decision Process
(MDP), D, using uniformization. This technique
was introduced in Schweitzer (1971), and a com-
plete and detailed reference for our treatment is
Sennott (1999, pp. 241–248).

The state space for D is the same as that for W.
Now choose and fix s, the uniformized system
transition period (in units of time per transition),
satisfying

s ¼ kþ
X

ls þmaxflsg
� ��1

: ð2Þ

Assume that the system is in state i at the begin-
ning of a slot and that decision a is made. At the
beginning of the next slot, the system will transi-
tion to i + e1 with probability sk, will transition
to i � es + es+1 with probability sls[I(is P 1) +
I(a = s, is P 2)], and from (1) will remain in i with
probability 1 � sm(i,a). We define eK+1 to be the
zero vector to handle the case of job completion
at the last station. The cost incurred at the begin-
ning of a time slot is C(i,a) = g(i).

Because of the difficulty of this class of models,
we must rely on numerical calculations. The key
problem here is that D has infinite buffers, and
we must find a way to implement our computa-
tions rigorously with only a finite state space. We
employ the Approximating Sequence (AS) method
introduced in Sennott (1999) to replace D with a
sequence (DN) of finite state space MDPs in which
computation takes place.
The state space of DN consists of vectors i such
that is 6 N (a maximum buffer size of N jobs). The
AS method is not a naive truncation scheme—we
redistribute ‘‘excess probability’’ that causes the
system to go out of bounds, rather than throwing
it away. The system can only escape DN from a
boundary state for which some buffer is full. If
i1 = N, an overflow would occur in buffer 1 if a
new job arrives, which happens with probability
sk. This excess probability is assigned to the state
i, effectively denying entry to the new job and hold-
ing station 1 at buffer level N until it completes a
job. Similarly, if is = N, for some s, 2 6 s 6 K, then
with probability sls�1[I(is�1 P 1) + I(a = s � 1,
is�1 P 2)] the next state is j, where js�1 = is�1 � 1,
and all other coordinates of j equal those of i. The
effect of this assignment is to remove the com-
pleted job at s � 1 from the previous buffer and
discard it. The one stage costs in DN are the same
as those in D.

To summarize, we have reduced the CTMDP W
modeling FW-1 to the associated discrete-time infi-
nite state space MDP D, which we then approxi-
mated by the finite state space sequence (DN) for
computation.
3.2. Optimality, stability, and bounds for FW-1

The objective is to determine a dynamic policy
that achieves the minimum long run expected aver-
age cost per unit time (denoted average cost, for
short). There are a number of equivalent ways to
define stability for the scope of this paper. In par-
ticular, we take stability to mean that the system
has a finite time-average (system) queue length.
When the model includes a cost formulation, this
definition is revised to require a finite time-average
system cost. Assume that W is controlled under
policy h. Let F(t) be the total cost incurred during
the interval [0, t). For initial state i, the average
cost under h and the optimal average cost, respec-
tively, are defined as

J ð1Þ
h ðiÞ ¼ lim sup

t!1
EðiÞ
h

F ðtÞ
t

� �
; ð3Þ

J ð1ÞðiÞ ¼ inf J ð1Þ
h ðiÞ: ð4Þ
h
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A stationary policy (as opposed to a randomized
policy or a time-varying policy) makes the same
decision in state i every time state i recurs. It can
be shown that our model is ergodic under our sta-
bility conditions (see Theorem 2), so the average
cost will be independent of the initial state. To
summarize, we seek a constant J(1) and a station-
ary policy f such that

J ð1Þ � J ð1Þ
f ðiÞ ¼ J ð1ÞðiÞ for all i: ð5Þ

In an open system that is stable, the throughput
(output) rate under any stationary policy equals
the input rate k. In the special case Hs � 1, then
J(1) equals the minimum average number of jobs
on the line, and an optimal policy guarantees
minimum average WIP. Little�s Law shows
that, in this case, an optimal policy also minimizes
the average time a job spends in the line, i.e.
cycle time (CT), where the details can be found
in Gross and Harris (1998) or Hopp and Spear-
man (2000).

To gain insight and to demonstrate the exist-
ence of an optimal stationary policy, our first step
is to define and to understand the stability region.
Let rs = k/ls, which measures the offered load at
station s, and let qK ¼

PK
k¼1rk ¼

PK
k¼1k=lk which

can be interpreted as the offered load for the entire
system. Implicit in our stability definition is that a
system is stable if, and only if, every queue is sta-
ble. An intuitive conjecture for the stability condi-
tion is simply qK < K + 1 and rs < 2 for all s. This
makes sense by requiring the offered load on the
entire system to remain within the capacity of
K + 1 workers, and the offered load on each sta-
tion remains within the capacity of two workers.
However, this is not quite correct. Consider a 4-
stage line with r1 = 1.6, r2 = 1.8, r3 = 0.1, and
r4 = 0.1. Here rs < 2 for all s and qK < 4 + 1; nev-
ertheless, the system is not stable because FW can-
not compensate for the excess workload at stations
1 and 2 given that the specialists at stations 3 and 4
are underutilized. To correct this, define set S as
the set of indices of the queues with rs P 1, and
let jSj indicate the number of queues in that set.
In addition to a stability condition, it is important
to identify a policy that stabilizes the system. We
focus on the Longest Queue (LQ) policy which
in many cases is easy to implement and requires
no complicated setting of parameters. At any deci-
sion epoch, define the LQ policy to assign the floa-
ter to the longest queue (excluding any job in
service, because the specialists are always given
preemptive priority when only one job is at a sta-
tion). If two or more queues tie for the longest,
FW is assigned to the furthest downstream of
these.

Assumption A

q < jSj þ 1; ð6Þ

where

q:¼
X
s2S

rs ¼
X
s2S

ðk=lsÞ and

S:¼ fsjrs P 1 and s 2 f1; 2; . . . ;Kgg:

Theorem 1. Model FW-1 can be stabilized by the

Longest Queue (LQ) policy if Assumption A holds.

Moreover, FW-1 cannot be stabilized by any policy

if q > jSj þ 1.

The Proof of Theorem 1 and all our results are
given in Appendix A. LQ is very effective at stabi-
lizing the system (although it is not specifically tai-
lored to holding cost minimization), because it
uses state feedback to dynamically allocate the
worker without any need to explicitly know the
system parameters (as in the case of the sophisti-
cated generalized round-robin policy of Andradot-
tir et al., 2003). If any queue is neglected, the rising
queue length triggers the FW to allocate more ef-
fort there.

The following theorem, our main result, shows
that an optimal stationary policy for the continuous
time, infinite state model W exists, and an optimal
control policy and cost may be accurately deter-
mined by computations using value iteration on
DN, the discrete-time, finite state space model.

Theorem 2. Assume that Assumption A holds.

Then, the average cost in DN is a constant JN and

an optimal stationary policy eN may be computed

using value iteration. Moreover, JN ! J(1) and the

limiting policy of the eN, denoted by e, is optimal for

W.
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3.3. Value iteration equations

The (relative) value iteration equations for cal-
culation of an optimal policy in D are given below,
and we now show how to modify them for DN. We
follow the notation of Sennott (1999, 6.6.4) or see
Puterman (1994, 8.5.5).

The value iteration algorithm involves se-
quences un(i) and wn(i). We begin by setting
u0 � 0 as an initial guess. Choose the zero vector
0 as our base point or reference state and define

wnðiÞ ¼ gðiÞ þ skunðiþ e1Þ
þ s

X
lsIðis P 1Þunði� es þ esþ1Þ

þmin
a
fslaIðia P 2Þunði� ea þ eaþ1Þ

þ ð1� smði; aÞÞunðiÞg: ð7Þ

Update by setting un+1(i) = wn(i) � wn(0).
Modifying D to create DN is easily accomplished

as follows. If i1 = N, then we replace e1 in (7) with
the zero vector, so that the new job is turned away.
The service completion cases are handled similarly,
so that a job is eliminated whenever its transfer
causes a queue to overflow.

The programs to numerically compute the
MDP are set up to compute using (7), modified
for DN. It is the case that wn(0)! JN and the sta-
tionary policies (dependent on n) realizing the min-
imum in (7) converge to eN, an optimal policy for
DN. If desired, one may then recompute for larger
values of N and use Theorem 2 to determine J(1)

and an optimal policy for W. It is usually the case
that an optimal policy is already determined for
relatively small values of N.

We now prove a scaling result, so that our
experimental investigation of the problem is
simplified.

Theorem 3. Let b and c be positive constants.

Consider the modified system model (*) with param-

eters k* = bk, l�s ¼ bls, and H�
s ¼ cHs for

s = 1,2, . . . ,K. An optimal policy for the original
system computed using VI is also optimal for (*).
The average cost for (*) is equal to cJ(1).

Intuitively, the parameter b scales the time unit,
which does not affect an optimal policy. The
parameter c scales the monetary unit, which results
in multiplying the average cost by c. Theorem 3 al-
lows us to assume, in all our calculations, that
k = 1. Because of Assumption A, we then require
that ls 6 1. On a production line, it is usually
the case that the holding cost increases or stays
the same as a job moves down the line and value
is added to the product. Hence, we will assume
that Hs is an increasing (not necessarily strictly) se-
quence of positive numbers with HK = 1.

3.4. Simple models of FW-1 for benchmarking and

insights

One way to gain insight into the importance of
effective system control is to develop simple,
closed-form models that approximate the behavior
of the system and also quantify the behavior of
other, related systems. In addition to simple for-
mulas, these models provide us some technical
benefit in assuring that the optimal average cost
is finite and can be approximated using our meth-
ods. On the other hand, we will see evidence that
these simple models are very rough approxima-
tions of what a properly controlled flexible worker
can achieve. We present two models: The division

model is based on a ‘‘division’’ of the effort of
the FW, while the PR rule model is based on a
‘‘splitting’’ of the arrival process and the use of
the Pick and Run policy for the FW.

3.4.1. The division model

To begin, consider a single queue with two serv-
ers, one serving at rate l and the other at rate al,
where 0 6 a 6 1. When a job arrives to an empty
system, it is handled by the faster server. Servers
never idle when jobs are available. When there
are two jobs in the system and the faster server fin-
ishes first, he or she will preempt the slow server.
Denote this queue by M/M/(1 + a), which we
characterize as follows:

Theorem 4. Consider an M/M/(1 þ a) queue with
utilization factor q ¼ k[l(1 þ a)]�1 < 1. This queue

is stable with average number L of jobs in the

system, where

L ¼ ð1þ aÞq
ð1þ aqÞð1� qÞ : ð8Þ
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A division model divides FW into multiple
slower workers operating independently at each
station. This division is specified by a K-dimen-
sional vector �a with positive entries summing to
1 (the total effort of the FW is 1). Allocating as
fraction of effort of FW permanently to station s,
station s becomes an M/M/(1 + as) queue. It fol-
lows by the reversibility of any birth–death process
that the steady-state distribution has product
form. It follows from (8) that the average cost un-
der this division is given by

J ð1Þ
�a ¼

X
Hsrs 1þ asrs

1þ as

� �
1� rs

1þ as

� �� ��1

:

ð9Þ

Having characterized the general form of a
division, we now emphasize a particular alloca-
tion of FW, �a, which serves as our benchmark
division model and will be needed for model
FW-2.

Theorem 5. If a stable division exists, then Assump-

tion A holds. Further, if Assumption A holds, then
defining as = rs � 1 þ es, and letting es:¼ ½jSj þ
1� q�=jSj for s 2 S, and as = 0 for s 62 S, the

division model using vector a is stable.

Since we cannot divide the effort of the FW at
the same instant in time, unfortunately a division
model does not correspond to a policy that can
be implemented in practice with a single floater.
However, if we allow a time-dependent and state-
dependent policy, we can approximate the division
arbitrarily closely. The server must preemptively
‘‘chatter’’, visiting each queue in a manner approxi-
mating the ‘‘shared processor’’ structure of the
division. In addition, a division can be given an
interesting economic interpretation. Assume that
the FW earns an hourly wage of W. Instead of
the original model, imagine a system consisting
of the original K dedicated workers plus jSj addi-
tional slow workers. At station s, place a slow
worker who will serve at exponential rate asls
and earn Was per hour. Under the economic inter-
pretation, the result will be a division with average
cost given by (9), and the personnel wage cost will
be the same as with the single FW.
3.4.2. The pick and run (PR) model

Next, we present the PR rule benchmark, which
decomposes the system into two parts. One is a
series of M/M/1 queues, each attended by one spe-
cialist. The other is the FW attending the set of
secondary machines as an isolated queueing sys-
tem (call it the FW queue). The FW queue will
handle a fixed proportion p of the jobs (imple-
mented by means of a randomized splitting of
the arrival process, so that the arrival stream to
the FW queue is a Poisson process with rate pk).
The jobs sent to the FW will queue at the first ma-
chine. The FW will take one of these jobs and
process it at each of the machines before returning
to the first machine and taking on another job, as
in the Pick and Run policy of Van Oyen et al.
(2001). It is readily seen that the FW queue is
an M/G/1 queue. The specialized workers will
handle (1 � p) fraction of the jobs, and they form
a tandem series of independent M/M/1 queues.
The two systems are independent. Let us call
this a Pick and Run (PR) rule system approxi-
mation.

Let l be the smallest (i.e., bottleneck) service
rate, and let r = k/l. Thus, rP rj for
j = 1,2, . . . ,K.
Assumption B

q�1
K > 1� r�1; ð10Þ

where

qK ¼
XK
k¼1

rk ¼
XK
k¼1

ðk=lkÞ and r ¼ k=l:

Theorem 6. There exists a stable PR rule for

model FW-1 if, and only if, Assumption B holds.

Moreover, when p satisfies 1� r�1 < p < q�1
K , the

average cost of the entire system under PR is given

by

J ð1Þ
p ¼

XK
s¼1

Hsð1� pÞrs
1� ð1� pÞrs

� �
þ p

XK
s¼1

Hsrs

þ
H 1p2 q2K þ

PK
s¼1r

2
s

� �
2ð1� pqKÞ

. ð11Þ
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In the above, setting p such that 1 � r�1 < p en-
sures that the specialists can stabilize their line,
while p < q�1

K ensures that FW can stabilize the
PR line. The next result indicates that the division
model stabilizes a broader range of systems than
does the PR rule. When the specialist line has a
bottleneck that limits flow, the PR model does
not allow full utilization of the specialists at the
non-bottleneck stations.

Theorem 7. Assumption B (the PR rule�s stability

condition) implies Assumption A (the stability con-

dition for the division model), but the converse fails.
If all the station service rates are equal, then these

conditions are equivalent.

Throughout our numerical results, we compute
(by numerical search) the value of p that minimizes
the expression in (11), and we refer to the resulting
value of (11) as the PR upper benchmark.

3.4.3. M/M/2 lower bound

To obtain a lower bound, we relax the con-
straints on worker placement. Assume that, in-
stead of a single FW, there is a second worker
permanently assigned to each station (for a total
of 2K workers). This is a tandem M/M/2 system,
and clearly, model FW-1 can never perform better
than this. The average cost under this scheme is the
lower benchmark (LBM). Using (8) with a = 1
yields

LBM ¼ 2
XK
s¼1

Hsqs

1� q2
s

; where qs ¼ k=2ls: ð12Þ
3.5. Numerical results for FW-1

The value iteration equations (7) were imple-
mented for 2 and 3 stations under Assumption
B, so FWmust assist at every station. Table 1 gives
results for K = 2, while Table 2 treats K = 3. For
both tables, the fourth column gives the average
cost under the lower benchmark (LBM) from
(12). The fifth column, J(1), gives the average cost
under an optimal policy (OP). The sixth column
gives two upper benchmarks (UBM�s). First we
show in parentheses the average cost under the
best PR policy and below it that of the division
model (DIV) as specified in Theorem 5. Although
LBM and the two UBM�s can be viewed as rough
approximations of J(1), they are more useful in
interpreting and measuring the opportunity of
optimal cross-training compared with alternate
approaches, thereby addressing Issues 1 and 2 of
Section 1. To address Issue 1 (does a single floater
under optimal control yield a significant opportu-
nity for cost savings?), PR considers a suboptimal,
yet implementable, approach that uses binomial
splitting to direct some of the arrivals to FW,
who then follows a craft (PR) policy. Hence,
(PR � J(1)) is a measure of the value of optimal dy-
namic scheduling of FW. Compared to PR, DIV
almost always provides a better bound, and
(DIV � J(1)) represents the replacement of the
FW with multiple dedicated (and appropriately
slower) workers. An advantage of PR relative to
DIV is that PR dynamically controls the fast, flex-
ible server in a suboptimal, but fairly effective way.
On the other hand, PR suffers because it has to
simplistically split the arrival process between the
specialists and FW. The fact that DIV is a better
benchmark than PR shows that the benefit gained
in the PR system by a flexible, fast server does not
outweigh the loss suffered by having to split the ar-
rival process in the PR model. LBM models a tra-
ditional approach with two workers at each station
(which performs better at the cost of an additional
worker). The difference (J(1) � LBM) quantifies
the additional cost of having a single floater (Issue
2 of Section 1).

The remaining columns give calculations relat-
ing to an optimal policy. The seventh column gives
the average number of jobs at each station and on
the line (the sum of the other two numbers), under
OP. If H1 = 1, then the latter number equals J(1).
The eighth column gives the utilization factor
(proportion of time spent serving) of each special-
ized worker, and the ninth column gives the utili-
zation factor of the FW at each station, as well
as the total time spent serving by the FW (the
sum of the other two numbers).

To calculate the entries in columns seven
through nine, there is no need to find the steady-
state probabilities under OP. Rather the loop that
calculates (7) can be re-used, with two differences.
First, the minimization is replaced with the action



Table 1
Results for model FW-1 with K = 2, H2 = 1, and k = 1

Scenario H1 l1
l2

LBM J(1) UBM Avg. # jobs Util. Util. FW

(PR) 1 1 1
2 2 2

DIV Line Total

1 1.0 0.75 6.01 0.90 0.44
0.75 4.80 9.10 (22.12) 3.09 0.89 0.45

15.73 9.10 0.89

2 1.0 0.90 2.47 0.78 0.33
0.90 3.21 4.04 (8.00) 1.57 0.74 0.37

6.18 4.04 0.70

3 1.0 0.70 4.76 0.89 0.54
0.90 4.52 7.18 (21.23) 2.42 0.82 0.30

11.14 7.18 0.84

4 1.0 0.90 4.01 0.84 0.27
0.70 4.52 6.64 (21.33) 2.63 0.89 0.56

10.96 6.64 0.83

5 0.5 0.75 6.85 0.91 0.42
0.75 3.60 5.90 (14.96) 2.47 0.87 0.47

11.30 9.32 0.89

6 0.5 0.70 5.55 0.91 0.42
0.90 3.07 4.64 (12.11) 1.87 0.78 0.33

7.84 7.42 0.85

7 0.5 0.90 4.47 0.85 0.26
0.70 3.72 4.52 (16.13) 2.29 0.85 0.57

8.03 6.76 0.84

8 0.5 0.80 5.03 0.88 0.37
0.80 2.56 2.95 (7.07) 1.69 0.79 0.46

5.57 6.72 0.83
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under OP. This converts the value iteration algo-
rithm to a standard successive substitution per-
formance evaluation algorithm. Second, the
objective function is changed to reflect the desired
quantity. For example, to calculate the average
number of jobs at the first station, we replace
g(i) by i1. The other quantities are calculated in a
similar way.

Our experiments suggest that in general an opti-
mal policy is characterized by a switching curve.
Figs. 1 and 2 give these for scenarios 1, 6, and 7.
For a fixed number of jobs at station 1, the switch-
ing curve is the minimum number of jobs that
must be present at station 2 for the optimal policy
(OP) to place the FW there; otherwise the FW
must work at station 1. The large dot is the point
corresponding to the average number of jobs at
each station. As jobs enter and are processed, the
queue lengths will cross and re-cross the switching
curve, necessitating movement of the FW.

Consider scenario 1. Since H1 = 1, we are min-
imizing average WIP (or CT). Under OP, on aver-
age there will be 9.1 jobs on the line, as opposed to
4.8 jobs under the four worker system and 22.12
jobs under PR. Note that although a policy similar
to PR was shown to be effective in systems with
full cross-training for all workers (Van Oyen
et al., 2001), here we observe that the PR policy
does not perform well when there are specialists
on the line.

Recall condition (9). Since q�1
K þ r�1 ¼ 1:125,

the FW will be pushed to stabilize the line. Indeed,
each worker is busy roughly 90% of the time.
Under the LBM (using four permanent workers),



Table 2
Results for model FW-1 with K = 3, H3 = 1, and k = 1

Scenario H1 l1 LBM J(1) UBM Avg. # jobs Util. Util. FW

H2 l2 (PR) 1 1 1
l3 DIV 2 2 2

3 3 3
Line Total

1 1.00 0.85 4.62 0.87 0.30
1.00 0.85 5.40 10.40 (27.89) 3.21 0.87 0.30

0.85 23.18 2.58 0.86 0.31
10.4 0.91

2 1.00 0.95 2.76 0.79 0.26
1.00 0.95 4.37 6.38 (14.05) 1.93 0.78 0.28

0.95 11.88 1.69 0.76 0.29
6.38 0.83

3 1.00 0.80 3.96 0.86 0.39
1.00 0.95 4.96 8.40 (23.74) 2.34 0.81 0.24

0.95 16.26 2.08 0.80 0.25
8.40 0.88

4 1.00 0.95 3.51 0.82 0.23
1.00 0.80 4.96 8.17 (23.74) 2.64 0.85 0.39

0.95 16.26 2.02 0.70 0.26
8.17 0.88

5 1.00 0.95 3.43 0.82 0.23
1.00 0.95 4.96 8.04 (23.74) 2.36 0.81 0.24

0.80 16.26 2.25 0.84 0.41
8.04 0.88

6 0.25 0.90 4.92 0.87 0.24
0.50 0.90 2.81 3.76 (10.00) 2.09 0.81 0.30

0.90 9.13 1.48 0.76 0.35
8.49 0.89

7 0.20 0.80 6.43 0.91 0.34
0.60 0.95 2.74 3.77 (9.07) 1.78 0.78 0.27

0.95 9.35 1.42 0.75 0.30
9.63 0.91

8 0.20 0.95 5.25 0.87 0.18
0.60 0.80 2.98 3.88 (11.79) 2.37 0.84 0.41

0.95 9.76 1.41 0.74 0.31
9.03 0.90

9 0.20 0.95 5.13 0.87 0.19
0.60 0.95 3.22 3.93 (14.51) 2.03 0.78 0.27

0.80 10.16 1.69 0.80 0.44
8.84 0.90
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the utilization of each worker is only 67%, which
indicates the unused labor potential. We observe
here that the use of a single floater is an effec-
tive alternative to the use of multiple (moderately
utilized) specialists.
The average queue length vector shown in Fig.
1 is approximately six jobs in station 1 and 3 in sta-
tion 2. Despite this difference, Table 1 shows that
the FW is busy almost equally at 1 and 2. This
gives insight into Issue 4 raised in Section 1—does
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Fig. 1. Switching curve for scenario 1 of Table 1.
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the more skilled worker, FW, take on an unfair
share of the burden? Although bottleneck stations
and variation in holding cost cause some imbal-
ance, Table 1 suggests that the system under an
OP will tend to be ‘‘fair’’ (utilizations within 8%)
in most cases. Scenarios 3 and 4 minimize WIP
(or CT) under unequal service rates and show suc-
cess in fairly utilizing labor. We note that under
the four worker system (LBM), the utilization of
each worker is 71% at the bottleneck station and
56% at the faster station. Using the FW, labor uti-
lization is relatively fair in spite of substantially in-
creased utilization (to an average of 85% since it
has 1/4 less capacity than LBM).

In scenario 2 the service rates are larger, which
results in a lower utilization of the workers and the
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Fig. 2. Switching curves for (i) left: scenario 6 o
result is that FW has reduced ability to allocate the
work fairly. Regarding scenarios 1, 2, 5, and 8, the
reason worker 1 is more highly utilized is that
whenever the holding costs are equal (or increas-
ing) and the system is balanced, FW favors work-
ing in queue 2, thus worker 1 gets less assistance.
To clearly see this characteristic of an OP, Fig. 1
shows how dramatically the FW is favored at sta-
tion 2. This is a combination of factors, including
the fact that service of a job at station 2 moves the
job to a zero holding cost location, the exit, while
service at station 1 does not immediately eliminate
holding cost. Nevertheless, an optimal policy is
clearly not a strict priority rule favoring station
2, because FW must switch to station 1 to leave
enough jobs at station 2 to keep the specialist at
station 2 from starvation.

Scenarios 5 through 7 examine a situation in
which the holding cost at station 1 is half that at
2. As expected, more jobs will be allowed to build
up at 1. From Fig. 2(i) we see that the switching
curve (compared to Fig. 1) modestly increases
the set of states in which the server attends station
2, a result due to a lower holding cost of 0.5 at sta-
tion 1. Fig. 2(ii) shows that, compared to Fig. 2(i),
reversal of the bottleneck position lowers the
threshold curve.

Table 2 gives results for a range of three station
scenarios. Scenarios 1 through 5 are average WIP
(or CT) minimizations. Scenarios 3 through 5 ex-
plore the effects of bottleneck location, placing it
at stations 1, 2, and 3, respectively. As the bottle-
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neck moves down the line, the average WIP de-
creases, although it impacts performance by less
than 5% in these cases.

In scenario 6 the value of a job doubles as it
moves from 1 to 2, and then doubles again from
2 to 3. This can happen, for example, when each
station performs a very high precision machining
operation. The service rates are equal. As seen be-
fore, more jobs are allowed to accumulate at sta-
tion 1. The utilization of the FW is 89%, whereas
that of the specialized workers varies from 76%
at station 3 to 87% at station 1. This reflects an
increased burden placed upon the FW to (1) min-
imize the holding costs and (2) keep the specialists
from starvation (the case of unit holding costs).
Even a single flexible worker can exert some con-
trol on the WIP levels; while PUSH systems with-
out cross-training cannot do this.
4. Second model with set-ups: FW-2

In this section we develop model FW-2. To pre-
vent the model from becoming overly complex, let
us combine the walking time from one station to
another in with the set-up time, so that the domi-
nant consideration is station set-up time, inde-
pendent of the prior station. This assumption
will be approximately true in a U-shaped line,
the geometry of which minimizes walking times.
The set-up time at station s is exponentially dis-
tributed with parameter rs.
4.1. The MDP formulation for FW-2 model

For the MDP formulation of the FW-2 model
we have:

• State of the system: The state space is given by
(i,k,z), where i is the vector of buffer occupan-
cies, k is the current station in which FW cur-
rently resides, and z 2 {1,2}, where z = 1
means that the FW is setting up at k, and
z = 2 means that the FW has already been set
up at station k.

• Decision epochs: Decision epochs are service
completions, job arrivals and set-up completions.
• Action space: When the system is in state (i,k,z)
and either an arrival or a service completion has
just occurred, then an action a 2 {1,2, . . . ,K}
may be chosen. If action a = k is chosen, then
the FW proceeds as before, either setting up
or, if set up and there are two or more jobs in
the buffer, then serving. However, if an action
a 5 k is chosen, then a set-up at the new sta-
tion a is initiated, and an instantaneous set-up
cost Da is imposed. Set-ups may be preempted,
but the entire set-up cost is incurred as a sunk
cost.

The set-up cost Da might involve preparations
the FW must go through before serving, such as
putting on special gloves or disposable clean-room
clothing, the amortized costs of flexible tooling
used to enable a fast set-up, etc. Roughly speaking,
one can use the set-up cost as a surrogate for set-
up time. The holding cost rate depends only on
the buffer occupancies and is given by gðiÞ ¼PK

s¼1Hsis.
The time between state transitions is exponen-

tially distributed with transition rate

mði; k; z; aÞ ¼
kþ

P
lsIðis P 1Þ þ ra; a 6¼ k;

kþ
P

lsIðis P 1Þ þ rkIðz ¼ 1Þ
þlkIðik P 2; z ¼ 2Þ; a ¼ k:

8><
>:

ð13Þ

The transition probabilities follow much as in
model FW-1.

To compute the average cost for model FW-2,
denoted J(2), and an optimal stationary policy
the discrete-time structures D and DN are formed
much as they were for model FW-1. The costs
are given by C(i,k,z,a) = g(i) + Dam(i,k,z,a)I(a 5

k), and s satisfies

s ¼ kþ
XK
s¼1

ls þmaxfls; rsg
 !�1

: ð14Þ
4.2. Stability condition for FW-2

For the case of FW-1, we found it useful to ana-
lyze the PR rule. With significant set-up costs or
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times; however, having FW follow the PR rule can
result in excessive switching. For this reason, we
consider the following policy, which we refer to
as batching policy (BP): The BP policy has a cyclic
structure, and begins with the set-up of station 1.
When the set-up is completed, FW will start serv-
ing jobs until B jobs are completed, whereupon she
or he starts setting up station 2. He or she then
completes serving these B jobs in the second sta-
tion and starts setting up station 3. Proceeding in
this manner, the worker finishes all jobs in station
K and sets up station 1. Note that with B = 1, BP
reduces to the PR rule.

The batching policy is a special case of the Tri-
ple Threshold (TT) policy introduced in Iravani
et al. (1997a) for a two-stage tandem queue
attended by a moving server. According to the
TT policy, upon set-up completion in stage 1, the
service begins only if the number of customers in
that stage is at least Mw; otherwise, the worker
waits there until the number of customers reaches
that limit. When the server does start serving cus-
tomers in state 1, she or he continues serving until
either Mn (Mn P Mw) services have been com-
pleted without interruption, or the first stage
becomes empty and there are at least Me custom-
ers in stage 2 (Mw 6 Me 6Mn), whichever occurs
first. After servicing at stage 1, the server sets up
stage 2, and serves all customers in that stage.
Note that the number of customers in that stage
is betweenMe andMn. Iravani et al. (1997a) shows
that the TT policy is a very cost effective policy
with the total cost of being very close to the global
optimal policy that minimizes the total average
holding and set-up costs. Note that our batching
policy is a special case of the TT policy where
Mw = 1, and Me =Mn = B.

Assumption C. With B as the batch size, l as the
bottleneck rate, tB ¼ k

PK
k¼1ðl�1

k þ r�1
k =BÞ, and

r = k/l, assume that

t�1
B > 1� r�1:

Theorem 8. A batching policy with a given batch

size, B, for model FW-2 is stable if, and only if,

Assumption C holds.
Although Assumption C is more restrictive than
B, when either the batch size, B, is very large (i.e.,
B ! 1) or as set-up times go to zero, then
Assumption C becomes Assumption B. Under
Assumption B, it is the case that the analog of
Theorem 2 (on using value iteration to compute
an optimal policy and its finite average cost) holds
for model FW-2, but we omit the details for brev-
ity. The sufficiency of Assumption B is described in
the following corollary to Theorem 8.

Corollary 1. There exists a batching policy with a

sufficiently large batch size to stabilize model FW-2
if Assumption B holds.

The performance analysis of the batch policy
gets extremely complex in general. When set-up
times are sufficiently small, however, then PR
may use a batch of size 1 and a simple perform-
ance expression can be obtained. Then, when
Assumption C holds for a batch of size B = 1,
D� :¼

PK
s¼1Ds, and p is chosen to satisfy

1� r�1 < p < t�1
B , the average cost under PR is

given by

J ð2Þ
p ¼ ð1� pÞ

XK
k¼1

Hkrk
1� ð1� pÞrk

� �

þ pk D� þ
XK
k¼1

Hkðr�1
k þ l�1

k Þ
 !

þ
H 1p2 t2 þ

PK
k¼1

ðkr�1
k Þ2 þ

PK
k¼1

r2k

� �
2ð1� ptBÞ

: ð15Þ
4.3. Value iteration equations for FW-2

We now construct the equations for value itera-
tion. The base point is arbitrary, and we choose it
as (0, 1,2), i.e. the system is empty and the FW is
set up at the first station. For the MDP, let
z* = I(a 5 k) + zI(a = k) as a device to set z* to
z when a = k, and z* to 1 in transitions where a
set-up is in progress and an arrival or specialist
service completion occurs. To simplify, we omit
the stage subscript n and obtain an expression
that looks complex, but follows the general idea
of (7).
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wði; k; zÞ
¼ gðiÞ þmin

a
fDamði; k; z;aÞIða 6¼ kÞ

þ skuðiþ e1;a; z�Þ
þ s
X
s

lsIðis P 1Þuði� es þ esþ1;a; z�Þ

þ sraIða 6¼ k; or ða ¼ k; z ¼ 1ÞÞuði;a;2Þ
þ slaIðia P 2; a ¼ k; z ¼ 2Þuði� ea þ eaþ1;a;2Þ
þ ð1� smði; k; z;aÞÞuði; k; zÞg: ð16Þ

The proof of the next result is omitted since it fol-
lows from minor modifications to the Proof of
Theorem 3. Note that the instantaneous (lump
sum) costs receive both a monetary and time scal-
ing, because of the conversion of the continuous
time system to a discrete-time, uniformized one.
Table 3
Results for model FW-2 with K = 2, H2 = 1, and k = 1

Scenario H1 l1 r1 J(1) J(2)

l2 r2
D

1 1.00 0.75 5.0
0.75 5.0 9.10 10.06

0.0

2 1.00 0.75 5.0
0.75 5.0 9.10 10.98

5.0

3 1.00 0.75 5.0
0.75 5.0 9.10 11.61

10.0

4 1.00 0.70 5.0
0.90 5.0 7.18 9.15

10.0

5 1.00 0.90 5.0
0.70 5.0 6.64 9.06

10.0

6 0.50 0.75 5.0
0.75 5.0 5.90 8.37

10.0

7 0.25 0.80 5.0
0.80 5.0 2.95 3.40

0.0

8 0.25 0.80 5.0
0.80 5.0 2.95 4.61

0.0
Theorem 9. Let b and c be positive constants.

Consider the modified system model, (*), with

parameters k* = bk, l�s ¼ bls, r
�
s ¼ brs, H�

s ¼ cHs,

and D�
k ¼ cb�1Dk for s = 1,2, . . . ,K. An optimal

policy for the original system computed using VI is
also optimal for (*). The average cost for (*) is equal
to cJ(2).
4.4. Numerical results for FW-2

The VI equations (16) were implemented for
K = 2 and 3 stations. Table 3 gives the key scenar-
ios for K = 2, while Table 4 treats K = 3. For both
tables, in all scenarios the set-up cost, D, is equal
for all stations. Our lower benchmark (column
five) is the average cost J(1) calculated for the same
Avg. # jobs Util. Util. FW Prop. time
setting up1 1 1

2 2 2
Line Total

6.17 0.90 0.43
3.89 0.90 0.43 0.050
10.06 0.86

6.12 0.90 0.43
4.17 0.91 0.42 0.027
10.28 0.85

6.03 0.90 0.43
4.40 0.92 0.42 0.023
10.42 0.85

4.71 0.89 0.54
3.49 0.87 0.24 0.019
8.21 0.78

4.00 0.84 0.27
3.74 0.91 0.52 0.026
7.74 0.79

6.90 0.91 0.42
3.72 0.91 0.42 0.024
10.62 0.84

5.42 0.89 0.36
2.04 0.83 0.42 0.088
7.46 0.79

5.04 0.89 0.36
2.55 0.85 0.40 0.032
7.59 0.76



Table 4
Results for model FW-2 with K = 3, H3 = 1, and k = 1

Scenario H1 l1 r1 J(1) J(2) Avg. # jobs Util. Util. FW Prop. time
setting up

H2 l2 r2 1 1 1
l3 r3 2 2 2

D 3 3 3
Line Total

1 1.00 0.85 5.0 4.82 0.88 0.29
1.00 0.85 5.0 3.89 0.88 0.29

0.85 5.0 10.40 11.90 3.17 0.88 0.29 0.075
0.0 11.9 0.88

2 1.00 0.85 5.0 4.70 0.88 0.30
1.00 0.85 5.0 4.02 0.89 0.29

0.85 5.0 10.40 13.36 3.40 0.88 0.29 0.046
5.0 12.12 0.87

3 1.00 0.85 5.0 4.65 0.88 0.30
1.00 0.85 5.0 4.21 0.89 0.28

0.85 5.0 10.40 14.36 3.59 0.89 0.28 0.036
10.0 12.46 0.86

4 1.00 0.80 5.0 4.14 0.87 0.38
1.00 0.95 5.0 2.77 0.83 0.22

0.95 5.0 8.40 9.45 2.55 0.82 0.23 0.087
10.0 9.45 0.84

5 1.00 0.95 5.0 3.68 0.83 0.22
1.00 0.80 5.0 3.08 0.87 0.38

0.95 5.0 8.17 9.23 2.47 0.82 0.23 0.089
0.0 9.23 0.39

6 1.00 0.95 5.0 3.60 0.83 0.22
1.00 0.95 5.0 2.80 0.83 0.22

0.80 5.0 8.04 9.13 2.73 0.86 0.39 0.093
0.0 9.13 0.83

7 0.25 0.90 5.0 4.79 0.87 0.24
0.50 0.90 5.0 3.19 0.87 0.24

0.90 5.0 3.76 6.61 2.38 0.81 0.30 0.036
8.0 10.35 0.78
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service rates and holding costs, but omitting set-up
costs and times (model FW-1). This gives us a
measure of how much additional cost is incurred
in the presence of set-ups (Issue 3); equivalently,
a manager would view this as the maximum value
of set-up time and set-up cost reduction. We can
see that J(2) � J(1) > 0, and the difference will de-
crease as the set-up costs are reduced or the set-
up rates are increased. Addressing Issue 4 of Sec-
tion 1, the last three columns indicate utilization
information for the specialists and FW. The last
column gives the proportion of time the FW
spends setting up. Although the effect is not dra-
matic in these cases, with set-ups FW tends to have
a lesser utilization than in the corresponding cases
of model FW-1. We believe the reason for this is
the increased fraction of time FW spends setting
up and because FW is more reluctant to switch
with model FW-2.

In our numerical study, we consider set-up
times to be smaller than the service times for two
reasons. (i) In most serial lines with a floater, the
set-up times for the floater corresponds to the
worker walking times between stations, or prepa-
rations the floater must go through before serving,
such as putting on special gloves or disposable
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clean-room clothing. These operations are often
shorter than the job processing times. (ii) One
set-up time reduction approach converts ‘‘inter-
nal’’ set-ups (defined as those requiring a line stop-
page) to ‘‘external’’ set-ups, which invest in
resources (e.g., set-up kits) to prepare for the
changeover off-line to allow for a quick change-
over. Set-up times are thus reduced at the expense
of kit preparation (which is appropriately modeled
as a set-up cost from the perspective of line
operation).

Scenarios 1–3 of Table 3 examine the effect of
increasing D, for fixed service and set-up rates.
Compared with a lower bound on the average cost,
J(1) = 9.10, we note that the increase in average
cost is quite modest, even for a set-up cost of 10.
This indicates that the OP compensates well for
the extra demands of setting-up. From scenario 1
of Table 1, the utilizations of the specialized work-
ers are comparable in models FW-1 and FW-2,
and the utilization of the FW is only marginally
decreased, from 89% to around 86%. It is intuitive
that the flexible worker is less utilized than the oth-
ers because the specialists have priority when there
is only one job at a station, and because the FW
must accept periods of starvation in a queue to
avoid unnecessary set-ups. On the other hand, it
is surprising that the difference is so modest in size,
a feature that is helpful for implementation to be
fair to the workers.
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Fig. 3. Left: Switching curve, station 2 to 1, when FW is at station 2 (
FW is at station 1 (Table 3, scenario 1).
Fig. 3 shows the boundaries of the switching
curves under an OP for scenario 1, which has an
offered load of 1.18 at each station. In Fig. 3(ii),
we have k = 1, i.e. the FW is located at station 1.
The number of jobs present at station 2 for the
FW to switch there is given by squares for z = 2
(the FW is already set up at station 1), and by a
shaded circle when z = 1 (the FW is still under
set up at station 1). When these two symbols coin-
cide, only the square is shown. Note that the hys-
teresis (the vertical distance between the two
curves) is due to being under set-up. This gap re-
flects the ‘‘investment’’ made in the time spent set-
ting up a queue. In Fig. 3(i), we have k = 2, i.e. the
FW is at station 2, and a threshold in the length of
queue 1, i1, is presented for each value of i2. Note
that this graph is read differently than the previous
one, with the threshold in the horizontal direction.
With regard to Issue 3, our testing (including sce-
narios 1, 2, and 3), revealed that increasing the
set-up costs increases the gap between thresholds
because the set-up times have not changed; how-
ever, the increased lump sum cost sets the thresh-
olds higher so as to inhibit switching.

Scenarios 4 and 5 involve the interaction be-
tween the bottleneck station and the set-up times
and costs. We can see that, as in Table 1, it is
slightly more favorable to have the bottleneck at
station 2. Scenario 6 is the same as scenario 3 ex-
cept that the holding cost at the second station is
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Table 3, scenario 1), right: switching curve, station 1 to 2, when
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twice that at the first station. The resulting policy
is able to achieve a significant cost reduction by
holding more WIP in station 1, but the utilizations
are hardly affected. Scenarios 7 and 8 further re-
duce the holding cost at the first station and
slightly speed up the servers (dramatically reducing
holding costs). Scenario 7 increases the set-up
costs relative to 8, clearly causing utilization to
drop for FW.

Table 4 gives results for a range of three station
scenarios to give greater confidence that the in-
sights gained are not limited to two-station lines.
Scenarios 1 through 3 explore the effect of increas-
ing set-up costs. Scenarios 4 through 6 explore ef-
fects of bottleneck location, placing it at stations 1,
2, and 3, respectively. Again, we see that it is
slightly more favorable to have the bottleneck at
the last station. As the bottleneck moves down
the line, the average WIP decreases, although the
performance impact is less than 5%.

In scenario 7 the value of a job doubles as it
moves from 1 to 2, then doubles again from 2 to
3. In contrast to scenario 6 of Table 2, the average
cost increases dramatically (an outcome of set-up
times and costs) and the FW is forced to spend less
time working (77% instead of 89%) so as to pre-
vent excessive switching. To observe the relatively
dramatic impact of set-up costs versus set-up times
when the system is imbalanced, we contrast the
preceding observation with the following. Com-
pare scenarios 4–6 of Table 4 with scenarios 3–5
of Table 2, and note that the addition of set-up
times without lump sum costs has a surprisingly
modest impact on the system.
5. Conclusion and further research

We have provided a literature survey of queue-
ing-based modeling of flexible worker systems. We
then formulated and analyzed models of lines at-
tended by specialists and augmented by a fully
cross-trained flexible worker. Problems combining
both cross-trained workers and specialists are
especially difficult to optimize, because a cross-
trained worker must make effective use of his
or her own effort and also keep the specialists
from starvation. The burden of maximizing per-
formance falls on the worker with the greatest
flexibility. Furthermore, we have extended the
issue by introducing set-up costs and times. Thus,
we have emphasized numerical analysis and the
development of insightful bounds that indicate
the value of cross-training (LBM) and the value
of optimal dynamic scheduling (PR and DIV
UBM�s).

In our tests, two-station systems with two spe-
cialists at each of two stations (four workers) did
not perform that much better than the flexible sys-
tem with only three workers (an observation that
clearly depends on our choice of models that gen-
erate 75–90% server utilizations). Our results indi-
cate that the value of the flexible worker rests not
only on its ability to provide line capacity balan-
cing (to stabilize the line and optimize capacity
allocation), but also in its ability to buffer variabil-
ity in the workload process.

We demanded an optimal solution accurate for
an infinite state space system, and we have demon-
strated the feasibility of computing optimal poli-
cies over a portion of the state space for small
systems with two or three stations. Specifically,
we have harnessed recent contributions in the
computation of dynamic programs to compute
policies for finite state space models that agree
with the true values in an infinite state space for-
mulation. Furthermore, optimal average holding
and set-up cost policies also yield a fairly even dis-
tribution of worker utilization. Thus, they promise
to be workable in implementation.

We have observed in practice that systems with
floating workers are best suited to fairly short lines
or U-shaped work cells, because long lines lead to
growing inter-station walk times that will render
the use of a single, fully cross-trained worker
impractical. On the other hand, some operations
such as networked computer-based processing re-
place worker movement with the movement of
tasks to the workers, possibly electronically, there-
by opening up the potential for longer lines. The
primary impediment to implementation may be
the complexity of implementing an optimal policy.
We leave it as a topic of further research to identify
easily implementable heuristic policies that are
also effective and do not require complex optimiza-
tion procedures.
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Appendix A

Proof of Theorem 1. The proof has two parts: in
Part 1, we prove that if Assumption A holds, then
LQ can stabilize the system, and in Part 2, we
prove that if q > jSj þ 1, then the system is
unstable.

Part 1: Proof for ‘‘if Assumption A holds, then LQ

can stabilize the system’’

We prove Part 1 by proving the contrapositive:
If FW-1 is unstable under LQ, then Assumption A
does not hold.

Let bFWs be defined to be the long run fraction
of FW�s time in queue s either idling or busy
working as follows: Define IsFWðtÞ to be a stoch-
astic process which is an indicator function that
takes the value 1 whenever FW either serves a job
or simply idles at station s. Then

bFW
s :¼ lim

T!1

1

T

Z T

0

IsFWðtÞdt: ðA:1Þ

In an analogous way, define cFWs to be the long run
fraction of FW�s time in queue s busy working
(and not idling), so cFWs 6 bFW

s .
We begin with some preliminary analysis to

verify that the system is sufficiently well-behaved
for our approach. Under LQ, the stationary
Markov chain describing the system�s behavior is
easily recognized to be irreducible. Note that the
the controlled Markov chain is established based
on the rule that specialists never idle when a job is
present. This guarantees that the Markov chain is
aperiodic. From Definition 3.11 and Section 3.5.3
of Kulkarni (1995), the Markov chain is ergodic
(weakly ergodic in the case of instability) and the
steady-state distribution on the Markov chain
exists. Since bFWs can be expressed in terms of the
probability of being in a set of states in the
Markov chain, therefore it exists (as a constant,
almost surely) and lies in the range [0,1]. Knowing
that bFWs exists, we now resume our proof and
show that if FW-1 is unstable under the LQ policy,
then Assumption A does not hold. The proof
proceeds using two cases.

Part 1, Case 1: We hypothesize that all queues
in S are unstable and we show that Assumption A
does not hold. To add rigor in understanding the
implications of server utilization (specialist and
FW), we use Little�s Law (see for example Theo-
rem 7.4 of Kulkarni, 1995) applied individually to
the specialist server only and to the floating worker
only at s. For the specialist case, we focus on the
subsystem model that captures only the server
(without any queue), so the average waiting time is
precisely the average time spent in service, l�1

s .
The long run time average number of jobs in our
subsystem model, LSPsub, becomes the long run
average fraction of time the (specialist) server is
busy at s, which we will call cSPs . It clear that when
arrival rate increases, and thus the flow rate
through the specialist approaches ls from below,
Little�s Law proves that cSPs exists, is finite, and
approaches from below the value of 1 (meaning a
100% busy specialist). On the other hand, repeat-
ing this exercise and focusing on a process of jobs
completed by FW reveals that the FW will
generate a throughput rate at s of HFW

s ¼ cFWs ls
jobs per unit time. Hence, there will be a com-
bined departure rate from s of HSP

s þHFW
s ¼

ð1þ cFWs Þls. It is easily seen from the dynamics
of the entire queueing system that the job output
rate at any workstation cannot exceed the job
arrival rate to the entire system. Thus, we have

1þ cFWs
� �

ls 6 k: ðA:2Þ

Under LQ, FW never idles in the system when two
ormore jobs are present in at least one queue.When
all queues in S are unstable, they grow unbound-
edly over an infinite length of time, so under the
LQ policy the long run expected fraction of time
FW is busy working in queues in S is 1, and

cFWs ¼ bFW
s : ðA:3Þ

Combining (A.2) and (A.3), multiplying both sides
by l�1

s and using the definition of rs, we get

1þ bFW
s

� �
ls 6 k; ðA:4Þ

bFW
s 6 ðrs � 1Þ: ðA:5Þ
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Combining this with the fact that by definitionP
s2Sb

FW
s ¼ 1 and the fact that queues in

f1; 2; . . . ;Kg �S are stabilized by specialists
alone and therefore do not receive help from FW
in the long run when queues in S are unstable,
we get

1 ¼
X
s2S

bFW
s ; ðA:6Þ

6

X
s2S

ðrs � 1Þ ¼ q� jSj: ðA:7Þ

So, q P jSj þ 1, which is the negation of Assump-
tion A.

Part 1, Case 2: We now consider the possibility
that under the LQ policy some of the queues in
S are unstable (there exists a non-empty set of
unstable queues, U � S), while other queues in
S are stable (there exists a non-empty set of
stable queues, Y ¼ S� U ). We show that this
case cannot exist under the LQ policy, so Case 1
establishes the result. It follows from (rs � 1)P 0
for s 2 Y and the assumption that queues in Y

are stable, that under any policy (including LQ)
FW spends a positive long run average fraction
of her or his time in every queue in Y to stabilize
it (cFWs > 0; s 2 Y ). It is possible that FW spends
time in queues in f1; 2; . . . ;Kg �S, but that is
not necessary because all queues in this set can
be stabilized by the specialist without any help
from FW. In contrast, any queue in U is unstable
and will have a larger queue length than any
queue in Y or in f1; 2; . . . ;Kg �S over an
unbounded length of time, and thus LQ always
assigns FW only to queues in U or in
f1; 2; . . . ;Kg �S over an unbounded length of
time. This implies that LQ never allocates FW to
any queue in Y (that is, cFWs ¼ 0; s 2 Y ), which is
a contradiction!

Part 2: Proof for ‘‘if q > jSj þ 1, then the system is

unstable’’

We show the contrapositive, i.e., if the system is
stable, then q 6 jSj þ 1. We refer to the approach
using Little�s Law taken in Case 1 above. When
the system is stable, all workstations are stable and
so there is no long-term buildup in any queue.
Hence, the combined departure rate from any
station s 2 S, (i.e., HSP
s þHFW

s ) must equal the
long run system arrival rate:

HSP
s þHFW

s ¼ k: ðA:8Þ

Because the average queue length of the subsystem
model of the specialist server only can be at most 1,
the departure rate from the specialist can be at
most ls, i.e., H

SP
s 6 ls. Thus, we get

HFW
s ¼ k�HSP

s P k� ls: ðA:9Þ

Similarly, the departure rate from the FW is lim-
ited to HFW

s ¼ cFWs ls 6 bFW
s ls, so using (A.9) we

get:

bFW
s ls P HFW

s P k� ls;

bFW
s P ðk� lsÞ=ls ¼ rs � 1:

ðA:10Þ

Observe that it is a basic constraint that FW allo-
cate exactly 100% of her or his time (working or
idle) to the entire system of queues. Under our def-
inition of bFW

s and using (A.10) we have:

XK
1

bFW
s ¼ 1;

X
s2S

bFW
s 6 1;

X
s2S

ðrs � 1Þ 6 1;

X
s2S

rs 6 1þ
X
s2S

1;

q 6 jSj þ 1. �

Proof of Theorem 2. We follow the approach of
Sennott (1999, pp. 243–248) except that we deal
with the average cost as defined in (3) and (4)
rather than as defined in Sennott (1999). The latter
definition is as follows. Given a policy h and initial
state i, let Fn be the total cost incurred during
the first n transition periods, and let Tn be the
total amount of time for these transitions. Then
define

Gð1Þ
h ðiÞ ¼ lim sup

n!1

EðiÞ
h ½F n�

EðiÞ
h ½T n�

;

and let Gð1Þ
h ðiÞ be the infimum over all policies.
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The argument has several steps. We first employ
Sennott (1989, Prop. 5) to prove that (5) holds for
some stationary policy. The stationary policy used
to verify the hypotheses of this result is the LQ
policy. Such a rule induces an irreducible positive
recurrent Markov chain on the whole state space
and produces a stable system with finite mean
queue lengths. Thus, it has finite average cost,
the conditions are satisfied. It is then the case that
there exists a stationary policy f satisfying Sennott
(1999, Eq. (10.15)) with Z replaced by J(1). This
implies that Gð1Þ

f ðiÞ 6 J ð1Þ. Moreover, by Sennott
(1989, Prop. 4) it is the case that Gð1Þ

f ðiÞ ¼ J ð1Þ
f ðiÞ.

This implies that (5) holds so that f is average cost
optimal for W.

It then follows from Sennott (1999, Lemmas
10.3.2 and 7.2.1) that JD

f ðiÞ 6 J ð1Þ, where JD
f is the

usual average cost per unit time in D under f.
We now turn our attention to D and verify

that the (AC) assumptions from Sennott (1999,
p. 169) hold. These assumptions guarantee that
there exists an optimal stationary policy with con-
stant average cost in DN, that the limit of these
average costs converges to the average cost in D,
and that any limit point of optimal stationary
policies computed by value iteration is optimal
in D.

(AC 1) states that there is a solution to the value
iteration equation in DN. To show this, it is suffi-
cient by Sennott (1999, p. 117) to show that any
optimal stationary policy has aperiodic positive
recurrent classes. Since the set-up of D (and hence
of DN) always includes self-loops, this is clear. To
verify the other assumptions, we employ Sennott
(1999, Prop. 8.2.1, Steps 2–4).

For the policy in Step 2 we may take the LQ
rule. We must verify conformity for this rule. This
means that if the queues in the LQ rule are limited
to N, as in DN, then the steady-state probabilities
and average cost converge to those for the LQ
rule. This follows from the ideas in Sennott
(1999, Prop. C.5.3). As our ‘‘base point’’ we take
the empty system, with the FW at station 1. We
need to compare the expected time and expected
holding cost to go from an ‘‘overflow’’ state back
to the base point with the respective quantities in
the restricted system. The former must exceed the
latter. This is intuitively clear, since if jobs are
ejected from the system, then things only get
better.

To verify Step 3 we argue that the minimum ex-
pected cost of operating in DN for n steps does not
exceed the respective quantity in D. Again this is
intuitively clear since throwing jobs away can only
decrease the cost. To verify Step 4, take as a base
point 0. We operate in DN for n steps, and argue
that the minimum expected cost from any initial
state is at least as great as the cost from 0. This
is intuitively clear.

This verifies that the AC assumptions hold and
hence an optimal stationary policy e for D may be
computed as a limit point from optimal stationary
policies in DN. Moreover, the average cost JD in D
and e satisfy Sennott (1999, Eq. (10.20)). But this
implies that Gð1Þ

e ðiÞ 6 JD.
Putting together what has been obtained so far,

we see that Gð1Þ
e ðiÞ 6 JD

6 JD
f ðiÞ 6 J ð1Þ

6 J ð1Þ
e ðiÞ.

We now argue informally that the policy e must
induce a positive recurrent Markov chain on
the whole state space, since the holding costs
are unbounded. This implies by Ross (1970,
Theorem 7.5), that the outer terms of the string
of inequalities are equal. This proves that e is
average cost optimal for W with constant average
cost JD. Hence the computational procedure is
valid. h

Proof of Theorem 3. Substituting the modified
values into s yields s* = s/b. This implies that the
products sk and sls remain constant. We may then
prove by induction on n that u�n ¼ cun, and the
result follows. h

Proof of Theorem 4. Using standard balance
equation techniques, it may be shown that the
steady-state probabilities are p0 = (1 � q)/
(1 + aq), and pi = (1 + a)qi p0, for i P 1. Then
(8) easily follows. h

Proof of Theorem 5. We begin by assuming a
stable division, and we show that Assumption
A must hold. Using Theorem 4, the definition
of as implies that in a stable system rs < 1 + as
for 8s 2 S. If jSj ¼ K (all stations get
helped by FW), then summing over all stations
yields
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XK
s¼1

rs <
XK
s¼1

ð1þ asÞ;

q < K þ
XK
s¼1

as;

q < K þ 1 ¼ jSj þ 1

since
XK
s¼1

as ¼ 1 and jSj ¼ K

 !
:

Otherwise, if jSj < K, then we have at least one
station j 62 S, which implies that station j is stable
with aj = 0 and it does not enter into the condition.
Then, summing over all stations s 2 S we get
q < jSj þ 1. Hence, the condition is necessary.

To conclude, we now assume Assumption A,
and we show that the division model is stable. We
observe that the cost (and hence the queue lengths)
of our division model are finite. This is seen from
Eq. (9) as follows: If s 62 S, then rs < 1, and the
terms of the sum reduce to (Hsrs)/(1 � rs), which is
well-defined (and bounded). When s 2 S, then
as > 0, and the denominator of the reciprocal term
in the sum reduce to

1þ asrs
1þ as

� �
1þ as � rs
1þ as

� �

¼ 1þ asrs
1þ as

� �
es

1þ as

� �
:

By construction, es > 0, so the product is positive
(i.e., non-zero) and J ð1Þ

�a is finite. h

Proof of Theorem 6. We first show that if
Assumption B holds, then there exists a stable
PR rule. Under Assumption B, it easy to check
that p can be chosen so that 0 < p < 1, and
1� r�1 < p < q�1

K . We show that if Assumption
B holds, Eq. (11) is finite, and hence the system
is stable. For the first term of (11), observe that
1 � r�1 < p implies that 1 � (1 � p)r > 0. We noted
prior to Assumption B that r P rs for all s. This,
together with (1 � p) > 0 guarantees that
1�(1 � p)rs > 0 for all s. Thus, the denominator
of the first term on the right hand side of (11)
is positive, which implies that the term is finite.
It is obvious that the remaining terms are also
finite.
We prove necessity by contradiction. Suppose
that there exists a stable PR rule, but Assumption
B does not hold, i.e., we have q�1

K þ r�1
6 1.

However, for stability of the FW queue, we must
have p < q�1

K . This is because the FW queue is in
fact a G/G/1 queue with arrival rate pk and
average service time

PK
k¼11=lk. On the other hand,

we have q�1
K 6 1� r�1. This then implies that

p < 1 � r�1, which means that the tandem system
(i.e., the queues of specialists) is unstable—a
contradiction! Hence, the condition is also
necessary.

The average cost is then given by (11). The first
term is the average cost associated with the tandem
system, and it follows from standard M/M/1
theory. The second term is the average holding
cost incurred during service in the FW queue. It
equals

ðaverage number of jobs completed per unit timeÞ
� ðaverage cost of a jobÞ

¼ ðkpÞ
X

Hsl
�1
s

� �
:

The third term is the average holding cost for jobs
waiting in the queue at the first station, and fol-
lows from standard M/G/1 results. h

Proof of Theorem 7. We begin by showing the
Assumption B implies Assumption A. First,
observe that qK ¼

PK
k¼1rk > q, so we have

q�1
K < q�1. Using this, together with Assumption

B, we get

1 < q�1 þ r�1: ðA:11Þ
Next, we use the definition of the bottleneck utili-
zation, r, to place an upper bound on r�1 using the
definition of q.

q ¼
X
s2S

rs 6
X
s2S

r ¼ jSjr;

so r�1
6 jSjq�1. Using this in (A.11) we get

1 < q�1 þ jSjq�1 < q�1ð1þ jSjÞ; ðA:12Þ
and so q < 1þ jSj, which is (6).

To see that Assumption B does not imply
Assumption A, let K = 2, k = 1, l1 = 0.8, and
l2 = 0.6. It is easy to check that (6) holds but (10)
fails. If l2 is increased to 0.65, then (10) will hold.
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If the rates are equal, then qK ¼ q ¼ Kr ¼ jSjr.
It is easy to check that (10) and (6) are
equivalent. h

Proof of Theorem 8. One can show that the condi-
tion 1� r�1 < t�1

B holds if, and only if max{(1 �
p)r,ptB} < 1. We first show that if max{(1 � p)r,
ptB} < 1 holds, the system is stable. According to
Iravani et al. (1997a) the stability condition for
the TT policy in a two-stage tandem queue with
arrival rate pk is

pk½l�1
1 þ l�1

2 þ ðr�1
1 þ r�1

2 Þ=Mn� < 1:

As it is clear, the stability of the TT policy does not
depend on Mw and Me. For our batching policy,
this translates into

pk½l�1
1 þ l�1

2 þ ðr�1
1 þ r�1

2 Þ=B� < 1

and it can be easily extended to

pk
XK
s¼1

ðl�1
s þ r�1

s =BÞ < 1

or pt < 1 for a K-stage tandem queue (i.e., serial
line). On the other hand, it is also clear that the
stability condition for the line with specialists
and arrival rate (1 � p)k is (1 � p)r < 1.

The entire system is stable when both the line
with specialists and the FW line are stable.
Assumption C implies max{(1 � p)r,ptB} < 1,
which guarantees the stability of both lines, and
thus the stability of the entire system.

It can easily be shown using contradiction that
if the system is stable, then max{(1 � p)r, ptB} < 1
will hold. We omit it for brevity. h

Proof of Corollary 1. First, we define

d ¼ q�1
K � ð1� r�1Þ:

By Assumption B, d > 0. Next, observe that

lim
B!1

tB ¼ lim
B!1

k
XK
k¼1

ðl�1
k þ r�1

k =BÞ

¼ k
XK
k¼1

ðl�1
k Þ ¼ qK :

Because t�1
B < q�1

K and in the limit limB!1t�1
B ¼

q�1
K , there exists a sufficiently large natural num-

ber, B*, such that t�1
B� > q�1

K � d=2. It suffices then
to show that Assumption C holds if we choose
batch size B*:

t�1
B� � ð1� r�1Þ > ð�d=2þ q�1

K Þ � ð1� r�1Þ
¼ �d=2þ d ¼ d=2;

and the result follows. h
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