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Abstract We consider a finite-population queueing system

with heterogeneous classes of customers and a single server.

For the case of nonpreemptive service, we fully characterize

the structure of the server’s optimal service policy that mini-

mizes the total average customer waiting costs. We show that

the optimal service policy may never serve some classes of

customers. For those classes that are served, we show that the

optimal service policy is a simple static priority policy. We

also derive sufficient conditions that determine the optimal

priority sequence.

Keywords Machine-interference problems . Finite

population queueing systems . Markov decision process

1 Introduction

Finite-population queueing systems are systems in which the

number of customers who use the system is limited; the cus-

tomer arrival rates therefore depend on the number of cus-

tomers in the system. The machine-repairman problem is one

of the most well-known finite-population queueing systems

(see Stecke and Aronson (1985) and Stecke (1992) for the

reviews of literature on the machine-repairman problem). In

a general machine-repairman problem,� there are N (1 ≤ N < ∞) different groups of machines,

where group i includes Ni identical machines of type i
(i = 1, 2, . . . , N );� all machines of type i have failure and repair rates λi and

μi , respectively;
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� the downtime of a type-i machine incurs the cost of ci per

unit time;� there is/are one or more repairmen who can repair all ma-

chines, or a subset of the machines.

When the problem involves only one type of machine (i.e.,

identical machines, N = 1), system performance measures

such as the average number of broken machines, or the aver-

age machine downtime or cost, are not affected by the way

repairmen choose which machine to repair next. However,

when there is more than one machine type (N > 1), these

performance measures are indeed affected by the service dis-

cipline (i.e., repair policy).

In this paper we study a machine repairman problem with

N different machine types and one repairman where repair

operations are nonpreemptive. Under a nonpreemptive repair,

when repair operations starts, it cannot be interrupted until the

repair is completed. We show that the optimal repair policy

that minimizes the total expected machine downtime cost

may never repair some machine types. For those machines

types that are repaired, we show that the optimal repair policy

is a simple static priority policy, and we introduce conditions

that determine the optimal priority sequence among those

machines. Furthermore, we derive sufficient conditions that

determine a subset of machines that are never repaired under

the optimal policy.

2 Literature review

The machine-repairman problem is one of the earliest

applications of operations research and queueing theory.

Even though a large body of literature is available on

machine-repairman problems, only a few study these prob-

lems with heterogeneous machines. One of the earliest works
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on performance analysis of systems with heterogeneous ma-

chines is Hodgson and Hebble (1967). For a static machine-

priority policy, they find the steady state probabilities and the

performance measures for a nonpreemptive repair system

with heterogeneous machines and a single repairman. A

machine-repairman problem with a single repairman, gen-

eral repair time distributions, and a constant failure rate was

studied by Chandra and Sargent (1983). They develop a nu-

merical procedure to obtain the performance measures of

the system with heterogeneous machines and a fixed nonpre-

emptive priority discipline. In another paper, Chandra (1986)

considers the same problem with Erlang, exponential, and hy-

perexponential repair time distributions in order to study the

effect of repair time variability, as well as the first-come-first-

served repair discipline on the performance measures of the

system.

The optimization analysis of machine-repairman prob-

lems with identical machines and a single repairman is stud-

ied in Hsieh (1996) and Elsayed (1981). Hsieh studies the op-

timal preemptive repair policy of such a machine-repairman

problem with two modes of failures. Based on a numerical

study, Hsieh conjectures that the optimal policy is always a

static policy. Considering a similar setting but with nonpre-

emptive repair, Elsayed (1981) compares the system under

priority and no-priority repair policies. Under the priority

policy, two modes of failures are prioritized, while under the

no-priority policy, both modes of failures are equally likely

to be chosen for the next repair. Using a numerical study, he

compares these policies with respect to their costs, repairman

efficiency, and machine availability.

In a preemptive repair setting, Lehtonen (1984) studies a

single repairman problem in which ci = 1, Ni = 1 for all i ,

and machines have the same failure rate but different repair

rates. Lehtonen shows that choosing the machine with the

largest repair rate maximizes the average number of work-

ing machines. Derman et al. (1980) study a similar problem

with an identical service rate but different failure rates (i.e.,

ci = 1, Ni = 1, μi = μ ∀i). They show that the least-λ pol-

icy, which assigns the server to the machine with the lowest

failure rate, minimizes the average number of broken ma-

chines. Courcoubetis and Varaiya (1984), on the other hand,

show that the largest-λ policy, that assigns the server to the

machine with largest failure rate, maximizes the repairman’s

utilization.

Frostig (1993) considers n machines (i.e., Ni = 1∀i) with

more than one repairman and shows that if Smallest Failure

Rate (SFR) is agreeable with shortest-expected-processing-

time, i.e., if λ1 ≤ λ2 ≤ · · · ≤ λn and μ1 ≥ μ2 ≥ · · · ≥ μn ,

then SFR policy maximizes the expected discounted ma-

chine up-time for both cases where machines have constant

or increasing failure rates. Righter (1996) considers a simi-

lar problem, but with identical repair times (i.e., μi = μ ∀i),

and shows that the SFR policy stochastically maximizes

the up-time probability of the first k machines in the

SFR order.

Koole and Vrijenhoek (1996) extend the above studies to

cases with different failure and repair rates. They show that

if λ1 ≤ λ2 · · · ≤ λN and c1μ1 ≥ c2μ2 ≥ · · · ≥ cN μN , then the

policy that assigns the repairman to the machine with the

smallest index minimizes the average cost of the system.

Iravani and Kolfal (2005) consider the same problem in a

more general setting, where the machines have different pop-

ulation sizes (Ni ≥ 1∀i). For this general system, they prove

that repairman idling is not optimal and they derive condi-

tions under which the optimal policy is a static machine-

priority rule. They also show how their conditions translate

into the optimality of the cμ rule.

Iravani and Krishnamurthy (2004) consider a machine-

repairman problem with M heterogeneous machines, pre-
emptive repairs, and K partially cross-trained repairmen (i.e.,

each repairman can repair only a subset of M machines, and

that subset may or may not overlap with other repairmen’s

subsets of machines). Using numerical examples, they il-

lustrate that the optimal repairman assignment policy has a

complex structure. However, prioritizing machines based on

a static priority rule results in a cost close to the optimal cost.

To the best of our knowledge, there is no literature beyond

these studies that discusses the optimal repairman assignment

policies in systems with heterogeneous machines and non-
preemptive repair. This is, therefore, the focus of this paper.

In Section 3 we introduce our assumptions and formulate

our problem as a Markov Decision process (MDP). Section

3 also discusses the properties of our MDP model. In Section

4 we fully characterize the structure of the optimal repair pol-

icy and show that it follows a simple static machine-priority

policy. In Section 5 we derive conditions that determine the

optimal priority sequence among two machine types as well

as the optimality of idling policy. Section 6 focuses on sys-

tems in which idling is not allowed, and Section 7 concludes

our paper and suggests directions for future research.

3 Markov decision process formulation

Consider a general machine-repairman problem with a single

repairman who is trained to repair all N different machine

types. Also, assume that the machines have constant failure

rates and their repair operations follow an exponential distri-

bution. Note that assuming a constant failure rate is consis-

tent with the behavior of a machine during its useful life in

the Bathtub curve. Furthermore, exponentially distributed re-

pair times represent situations where shorter repair times are

more probable than longer repair times. This often happens

when most of the machine failures are minor failures that

can be fixed in a short time, while major failures requiring an

overhaul repair (with longer repair times) are less frequent.
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In this section, we formulate our machine-repairman prob-

lem as a Markov Decision Process (MDP) model and study

the properties of the MDP model. The MDP model is defined

as follows:� State Space: State space S consists of N + 1 dimen-

sional row vectors (n, r ), in which n = (n1, n2, . . . , nN ),

where ni ∈ {0, 1, 2, . . . , Ni } represents the number of bro-

ken machines of type i ∈ {1, 2, . . . , N }, and r represents

whether the repairman is idle (r = 0) or is repairing a ma-

chine of type r (r ∈ {1, 2, . . . , N }).� Decision Epochs: Decision epochs are machine failure and

repair completion epochs.� Action Set: Since preemption is not allowed, the allowable

actions in state (n, r ) are: (1) when r = 0, the repairman

can either idle or repair a broken machine of type i , and

(2) when r �= 0, the only allowable action is to continue

the current repair operation until the repair operation is

completed.

Let J(n) be the set that includes the indices of machine

types that have at least one broken machine in state n, and let

J 0
(n) = {0} ∪ J(n). Thus, J 0

(n) is the set of potential actions in

state n, and for any given state (n, r ), we have r ∈ J 0
(n). For

example, when N = 4, if n = (0, 1, 2, 0), then J(n) = {2, 3}
and J 0

(n) = {0, 2, 3}.
The optimality equation of the MDP model with the ob-

jective of minimizing the total average down-time cost per

unit time, can be expressed as follows. When r �= 0, we have

g

ϒ
+ V (n, r ) = 1

ϒ

[
N∑

j = 1

c j n j +
N∑

j = 1

(N j − n j )λ j V (n

+ e j , r ) +
N∑

j = 1

n jλ j V (n, r ) + f (n, r )

]
, (1)

where

f (n, r ) = μr min
s∈J 0

(n−er )

{V (n − er , s)} +
N∑

j = 1, j �= r

μ j V (n, r ),

and V (n, r ) is the value function that corresponds to the min-

imum total expected cost if system starts at state (n, r ). On

the other hand, when r = 0

g

ϒ
+ V (n, 0) = 1

ϒ

[
N∑

j = 1

c j n j +
N∑

j = 1

(N j − n j )λ j

min
s∈J 0

(n+e j )

{V (n + e j , s)} +
N∑

j = 1

(n jλ j + μ j )V (n, 0)

]
, (2)

where ϒ = ∑N
j = 1(N jλ j + μ j ) is the uniformization rate,

and e j is an N -dimensional vector with zero elements ex-

cept for its j th element, which is one.

Since the state and action spaces in our MDP model

are finite, it is easy to show that there exists a stationary

average-cost optimal policy for our general machine-

repairman problem with a constant gain and the value

iteration algorithm converges. Before we present our main

result regarding the optimality of static priority rules, we

need to present some properties of the optimality equations.

For n = (n1, n2, . . . , nN ) in which nq ≥ 1, define operator

Dq on function V (n, r ) as follows:

Dq V (n, r ) = V (n, r ) − V (n − eq , r ).

Note that Dq V (n, q) only holds for nq ≥ 2 because

V (n − eq , q) does not exist when nq = 1.

Proposition 1. For all p, q, r, u ∈ J 0
(n), i, j ∈

{1, 2, . . . , N }, the value functions presented in (1)
and (2) have the following properties:

P1 : D j V (n + e j , p) is non-decreasing in ni ;
P2 : V (n, q) − V (n, p) is non-decreasing in ni

when V (n, q) ≥ V (n, p);
P3 :

cq

ϒ
≤ Dq V (n, r ) ≤ cq

λq
when nq ≥ 1 and ∀r ∈ J(n);

P4 :
cq

ϒ
≤ Dq V (n, 0) ≤ cq

λq
when nq ≥ 1 and idling is

optimal in state n;
P5 : V (n + er , r ) − V (n, u) ≥ cr

ϒ
, where r ∈ J(n+er ) and

u ∈ J 0
(n) are optimal in states n + er and n, respectively.

Proof: The proof of Proposition 1 is long and is therefore

omitted. The complete proof can be found in Iravani et al.

(2006), the full version of this paper. �

4 Structural results

In this section, we characterize the structure of the optimal

policy in Theorems 1 and 2. Theorem 1 describes the behavior

of the optimal policy with respect to idling decisions, while

Theorem 2 explains how the optimal policy behaves with

respect to repair decisions. The proofs of both theorems can

be found in the Appendix.

Theorem 1. (Idling Decisions)

(i) When there exists at least one broken machine of each
type (i.e., ni ≥ 1, ∀i ∈ {1, 2, . . . , N }), idling is never op-

timal.
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(ii) Consider state n0 in which there exists at least one ma-
chine type with no broken machine. If idling is optimal
in state n0, then idling is also optimal in any state n′

0,
where J(n′

0) ⊆ J(n0).

Theorem 1 part (ii) implies that, if the optimal action in

state n0 is to idle, then the repairman will never repair any

machine type in J(n0), regardless of the number of broken

machines of each type. This in turn implies that the optimal

policy divides all machine types into two disjoint groups:

(1) the idle group I (I ⊂ N ), and (2) the repair group R
(R ⊆ N ), where I ∩ R = ∅, I ∪ R = N , and N is the set

of all machine types, i.e., N = {1, 2, 3, . . . , N }. The idle

group I consists of machine types that are never repaired

under the optimal policy (regardless of the number of bro-

ken machines in the system). On the other hand, the repair

group R consists of machine types that are repaired under

the optimal policy. When all machines in the repair group are

repaired, the optimal policy is idling until a machine in the

repair group breaks.

Theorem 2. (Repair Decisions)
If it is optimal to repair machines of type p in state n, it

is also optimal to repair machines of type p in any state n′,
where p ∈ J(n′), and J(n′) ⊆ J(n).

Theorem 2 implies that the optimal dynamic policy is in

fact a simple static machine-priority policy. To illustrate this,

suppose repairing a machine of type p is optimal in state n
in which there exists at least one broken machine of each

type. Then according to Theorem 2, it is always optimal to

repair a machine of type p, regardless of the number of broken

machines of other types. This implies that machine type p has

the highest priority. Now consider state n p̄ where there exists

at least one broken machine of each type, except for type p
which has no broken machine (i.e., n p = 0, and n j ≥ 1 for

all j �= p). Without losing generality, assume that repairing

machine type q is optimal in state n p̄. According to Theorem

2, then repairing machine type q is always optimal as long

as there is no broken machine of type p. This implies that

machine type q has the second highest priority. Following the

same line of argumentation, it becomes clear that the optimal

repair policy is indeed a simple static priority policy.

5 Parametric results

In the previous section we showed that the structure of the

optimal policy follows a simple static priority policy when

idling is not optimal. However, finding the optimal static pri-

ority rule, in general, is difficult and depends on the parame-

ters of the system. In this section, we present sufficient con-

ditions by which one can find the optimal priority sequence

among different machine types. Specifically, in Theorem 3

we introduce two conditions that determine whether repair-

ing a machine of type p has a higher priority than repairing

a machine of type q.

Theorem 3. Consider machine types p and q (p �= q) where
μp ≥ μq . If either A1 or A2 holds between machine type p
and machine type q, then machine type p has higher priority
than machine type q.

A1 : cpμp ≥ λp

λq
cqμq and λp ≥ λq

A2 : cpμp ≥
{

1 − λq − λp

ϒ

}
cqμq and λp < λq

Proof: The proof is presented in the Appendix. �

Note that conditions A1 and A2 do not depend on the

number of machines in the system. Furthermore, it is not

necessary that the same condition, A1 or A2, should hold

between type p and all the other machine types. For example,

if there are three machine types (N = 3) in which A1 holds

between type 1 and 2, and A2 holds between machine type 1

and 3, then machine type 1 has higher priority over the other

two machines.

The intuition behind A1 and A2 can be described by com-

paring the dynamics of the arrival rate in finite and infinite-

population queueing systems. It is known that in multi-class,

infinite-population queueing systems, the static priority dis-

cipline which gives a higher priority to customers with a

larger ciμi minimizes the total average waiting cost in the

system. Specifically, type-p customers have higher priority

than type-q customers, if cpμp ≥ cqμq . The intuition behind

the cμ rule is easy to grasp. By giving higher priority to

customers with larger service rates (i.e., shorter average ser-

vice times) and larger waiting costs, the system’s cost can

be reduced faster, which results in a lower total average cost.

However, this may not be true in finite-population queueing

systems.

As opposed to an infinite-population queueing system in

which the customer arrival rates are independent of the num-

ber of customers in the system, the arrival rates in a finite-

population queueing systems increase as the number of cus-

tomers in the system decreases. Therefore, to decrease the

number of arrivals (machine failures) per unit time, the op-

timal policy tends to give higher priority to customers with

smaller arrival rates. This has been shown by the optimality

of the least-λ rule in systems with identical ciμi = cμ for

all machine types (see Derman et al. (1980) and Iravani and

Kolfal (2005)). Thus, if cpμp ≥ cqμq (which favors giving

higher priority to machine type p), but λp ≥ λq (which fa-

vors giving higher priority to machine of type q), the value

of cpμp should be much larger than cqμq for machine type p
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to have a higher priority than machine type q. This is exactly

what Condition A1 implies. As A1 shows, cpμp should be

at least
λp

λq
times larger than cqμq to guarantee that machine

type p has a higher priority than machine type q in the op-

timal policy. (Note that
λp

λq
is a number greater than or equal

to one.)

On the other hand, when λp < λq (which favors giving

higher priority to machine of type p), machine type p can

have a higher priority than machine type q , even when cpμp

is smaller than cqμq . However, cpμp cannot be [1 − λq−λp

ϒ
]

times smaller than cqμq , where [1 − λq−λp

ϒ
] is a number

smaller than one.

In proposition 2 we describe that conditions A1 and A2
are also sufficient conditions that can be used to determine

the priority between two machine types in systems where

preemption is allowed.

Proposition 2. A1 and A2 can be also used to prioritize
machine types in systems with preemptive repair.

Proof: The proof is presented in the Appendix. �

Note that conditions A1 and A2 identify whether repair-

ing a machine of type p has a higher priority than repairing

a machine of type q . However, it does not guarantee that

repairing a machine of type p is better than idling. In other

words, it does not guarantee that machine type q does not

belong to idle group I.

In general, one must use the MDP model to determine the

idle and repair groups I and R. In Theorem 4, however, we

present sufficient conditions that guarantee a machine type

to be in idle group I. Before we present theorem 4, we need

to introduce the following notation. We define �q as the set

of machine types with the higher priority than machine type

q , and �̄q as the set of machine types with lower than or

same priority as machine type q (including type q), where

�q ∪ �̄q =N .

Theorem 4. If all machine types can be prioritized by A1 or
A2, then if A3 holds, where

A3 :
cqμq

λq
≤

∑
j∈�q

N jλ j c jμ j∑
j∈�q

N jλ
2
j + ϒ2

then machine type q and all machines of lower priority than
q belong to the idle group (i.e., �̄q ⊆ I).

Proof: The proof is presented in the Appendix. �

Condition A3 has a complex expression which includes

the uniformization rate ϒ = ∑
j (N jλ j + μ j ) and ϒ2. Thus,

it does not seem to have a simple intuitive interpretation. It in-

troduces a threshold for cqμq/λq that guarantees if cqμq/λq

is small enough to fall below that threshold, then machine

type q will never be repaired under the optimal policy.

As an example, consider a simple case with two

machine types, where N1 = N2 = 2, λ1 = 10, μ1 = 15,

c1 = 1, and λ2 = 0.1, μ2 = 0.15, c2 = 0.1. Since c1μ1

λ1
= 1.5 ≥

0.15 = c2μ2

λ2
, Condition A1 holds, and machine type 1 has

higher priority than machine type 2. On the other hand, since
c2μ2

λ2
= 0.15 ≤ 0.21 = N1λ1c1μ1

N1λ
2
1 + ϒ2 , then A3 holds, and thus ma-

chine type 2 is in idle group I. In this system, machines of

type 2 will never be repaired under the optimal policy.

Note that Condition A3 is a sufficient condition that, if

it holds, guarantees that machines of type q are in the idle

group. Therefore, if A3 does not hold, it does not necessarily

mean that machines of type q are not in the idle group.

6 Systems with non-idling policies

In this section we focus on systems in which idling is not

permitted, i.e., systems in which the repairman never idles

as long as there is at least one broken machine in the system.

This is often the case in practice, since repairmen do not

intentionally idle when there is a broken machine in the sys-

tem. In our MDP formulation, this is equivalent to excluding

action “idling” from the set of possible actions, which results

in the omission of the optimality equation (2). However, it is

easy to show that Theorem 2 and Theorem 3 still hold. Thus,

we have the following corollary:

Corollary 1. If idling is not allowed, then all machines are
in the repair group (i.e., R = N ), and a static priority rule
is optimal.

In systems in which idling is not allowed, the following

corollaries show how our conditions A1 and A2 result in

simple machine-priority rules in some special cases.

Corollary 2. If machines can be renumbered such that
μ1 ≥ μ2 ≥ · · · ≥ μN , and λ1 ≥ λ2 ≥ · · · ≥ λN , and we
have c1μ1

λ1
≥ c2μ2

λ2
≥ · · · ≥ cN μN

λN
, then machines of type j

have higher priority than machines of type j + 1, for
j = 1, 2, . . . , N − 1.

Corollary 3. If machines can be renumbered such that
μ1 ≥ μ2 ≥ · · · ≥ μN , and λ1 ≤ λ2 ≤ · · · ≤ λN , and we
have c1μ1 ≥ c2μ2 ≥ · · · ≥ cN μN , then machines of type
j have higher priority than machines of type j + 1, for
j = 1, 2, . . . , N − 1.

Corollary 4. If all machine types have the same fail-
ure rate (i.e., λ j = λ for j = 1, 2, . . . , N), and machines
can be renumbered such that μ1 ≥ μ2 ≥ · · · ≥ μN and
c1μ1 ≥ c2μ2 ≥ · · · ≥ cN μN , then machines of type j have
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higher priority than machines of type j + 1, for j =
1, 2, . . . , N − 1.

Corollary 5. If all machine types have the same down time
cost and repair rates (i.e., c j = c and μ j = μ for j =
1, 2, . . . , N), then the least-λ rule is optimal. That is, ma-
chines must be prioritized such that the machine type with the
lowest failure rate has the highest priority, and the machine
type with the highest failure rate has the lowest priority.

7 Conclusion

In this paper, we have studied the optimal service policy

in finite population queueing systems in the context of the

optimal repair policy in a machine-repairman problem with

one repairman and heterogeneous machines. For the case of

nonpreemptive repair, and with the objective of minimizing

the total average downtime cost, we formulated the problem

as an MDP model and fully characterized the structure of

the optimal repair and idling policies. We showed that the

optimal repair policy is a simple static priority policy, and

we derived conditions under which one can determine the

optimal priority sequence among machines of different types.

We also showed that our conditions are valid in systems in

which idling is not allowed as well as in systems in which

preemption is allowed.

Future research should focus on systems with general re-

pair times and time to failure. Other research directions in-

clude the study of the optimality of static-priority policies

in machine-repairman problems with multiple repairmen, or

with repairmen who are trained to repair only a subset of

machines.

Appendix

Proof of Theorem 1:

PART (i): We use the sample path method and contradiction

to prove that idling is not optimal when there is at least one

broken machine in each machine type. Suppose policy � is

the optimal policy that idles at time t1, when there are at least

one broken machine of each type. Specifically, suppose that

policy � idles at time t1 until time t2 and repairs a machine

of type r which takes τr units of time to finish the repair.

Therefore, the repair of machine type r is finished at time t3
(t3 = t2 + τr ).

Now consider policy � that behaves exactly the same as

policy � from time 0 to time t1. However, policy � repairs

the same machine of type r first at time t1 and finishes its

repair at time t1 + τr . Then policy � idles until time t3, and

behaves exactly the same as policy � after time t3. Note that

the condition of having at least one broken machine of each

type at time t1 makes it possible for policy � to repair a

machine of type r .

Define E[T C(�)] and E[T C(�)] as the expected total

down-time cost under Policies � and �, respectively. Then,

we get

E[T C(�)] = E[T C(�)]t1
0 + E[T C(�)]t3

t1 + E[T C(�)]∞t3

E[T C(�)] = E[T C(�)]t1
0 + E[T C(�)]t3

t1 + E[T C(�)]∞t3

Since these two policies are the same before time t1 and af-

ter time t3, then E[T C(�)]t1
0 = E[T C(�)]t1

0 , E[T C(�)]∞t3 =
E[T C(�)]∞t3 . Therefore, we have

E[T C(�)] − E[T C(�)] = E[T C(�)]t3
t1 − E[T C(�)]t3

t1

=
[

N∑
j = 1

c j n j (t3 − t1) − cr (t2 − t1)

]

−
[

N∑
j = 1

c j n j (t3 − t1)

]
= −cr (t2 − t1) ≤ 0

which implies that policy � cannot be optimal, a contradic-

tion! Thus, it is not optimal to idle at time t1 where there is

at least one broken machine of each machine type.

PART (ii): We use contradiction to prove part (ii). Let us

assume that it is optimal to be idle in state n0. However, the

optimal action is to repair machine type q, q ∈ J(n′
0), in state

n′
0. Consider another state n′′

0, where n′′
0i = min{n0i , n′

0i } for

i = 1, 2, . . . , N .

There are three possible cases for the optimal action in

state n′′
0.

Case T1-1 : Idling is optimal:

Case T1-2 : Repairing a machine of type q is optimal

in state n′′
0;

Case T1-3 : Repairing a machine of type r
(r �= q, r ∈ J(n′′

0)) is optimal in state n′′
0.

� Case T1-1: If idling is optimal in state n′′
0, we get

V (n′′
0, q) − V (n′′

0, 0) ≥ 0.

On the other hand, according to P2, V (n′′
0, q) − V (n′′

0, 0)

is non-decreasing in n′′
0i . Thus, since n′

0i ≥ n′′
0i we get

V (n′
0, q) − V (n′

0, 0) ≥ 0, which implies repairing a ma-

chine of type q cannot be optimal in state n′
0. This is a

contradiction to our assumption!
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state n′′
0, we get

V (n′′
0, 0) − V (n′′

0, q) ≥ 0.

On the other hand, according to P2, V (n′′
0, 0) − V (n′′

0, q) is

non-decreasing in n0i . Thus, we get V (n0, 0) − V (n0, q) ≥
0, which implies that idling cannot be not optimal in state

n0. This is a contradiction to our assumption!� Case T1-3: If repairing a machine type r is optimal in state

n′′
0, we get

V (n′′
0, 0) − V (n′′

0, r ) ≥ 0 and V (n′′
0, q) − V (n′′

0, r ) ≥ 0.

On the other hand, according to P2, V (n′′
0, 0) − V (n′′

0, r )

and V (n′′
0, q) − V (n′′

0, r ) are non-decreasing in n0i .

Thus, we get V (n0, 0) − V (n0, r ) ≥ 0 and V (n′
0, q) −

V (n′
0, r ) ≥ 0. These imply that idling is not optimal in

n0 and repairing a machine of type q is not optimal in n′
0.

This is a contradiction to our assumption!

Therefore, the optimal actions in states n0 and n′
0 should

be the same. This concludes the proof of Theorem 1.

Proof of Theorem 2:

We use contradiction to prove Theorem 2. Let us assume

that it is optimal to repair a machine of type p in state n.

However, the optimal action is to repair machine of type q
(q �= p) and q ∈ J(n′), in state n′. Consider another state n′′,
where n′′

i = min{ni , n′
i } for i = 1, 2, . . . , N .

There are three possible cases for the optimal action in state

n′′.

Case T2-1 : Repairing a machine of type p is optimal

in state n′′;
Case T2-2 : Repairing a machine of type q (q �= p) is

optimal in state n′′;
Case T2-3 : Repairing a machine of type r (r �= p, q)

or idling is optimal in state n′′.

� Case T2-1: If repairing a machine of type p is optimal in

state n′′, we get

V (n′′, q) − V (n′′, p) ≥ 0.

On the other hand, according to P2, V (n′′, q) − V (n′′, p)

is non-decreasing in n′′
i . Thus, since n′

i ≥ n′′
i we get

V (n′, q) − V (n′, p) ≥ 0, which implies that repairing a

machine of type q cannot be optimal in state n′. This is

a contradiction to our assumption!

� Case T2-2: If repairing a machine of type q is optimal in

state n′′, we get

V (n′′, p) − V (n′′, q) ≥ 0.

On the other hand, according to P2, V (n′′, p) − V (n′′, q)

is non-decreasing in n′′
i . Thus, we get V (n, p) − V (n, q) ≥

0, which implies that repairing a machine of type p cannot

be not optimal in state n. This is a contradiction to our

assumption!� Case T2-3: If repairing a machine of type r (r �= p, q) or

idling (i.e., r = 0) is optimal in state n′′, we get

V (n′′, p) − V (n′′, r ) ≥ 0 and V (n′′, q) − V (n′′, r ) ≥ 0.

On the other hand, according to P2, V (n′′, p) −
V (n′′, r ) and V (n′′, q) − V (n′′

0, r ) are non-decreasing in

n′′
i . Thus, we get V (n, p) − V (n, r ) ≥ 0 and V (n′, q) −

V (n′, r ) ≥ 0. These imply that repairing a machine of type

p and repairing a machine of type q are not optimal in states

n0 and n′
0, respectively. A contradiction to our assumption!

This concludes the proof of Theorem 2.

Before we present the proof of Theorem 3, we need to

introduce the following Lemma. The proof of this lemma

can be found in Iravani et al. (2006), the full version of this

paper.

Lemma 1. If A1 holds between machine type p and q, then

ϒ[μp DpV (n, r ) − μq Dq V (n, r )] ≥ cpμp − λp

λq
cqμq ≥ 0.

If A2 holds between machine type p and q, then

ϒ[μp DpV (n, r ) − μq Dq V (n, r )] ≥ cpμp −(
1 − λq − λp

ϒ

)
cqμq ≥ 0.

Thus, if either A1 or A2 holds, μp DpV (n, r ) −
μq Dq V (n, r ) ≥ 0.

Proof of Theorem 3:

To prove that machine type p has a higher priority than ma-

chine type q (q �= p), we need to show V (n, q) ≥ V (n, p)

for p, q ∈ J(n). We will use induction and the value iteration

algorithm to prove this. It is clear that V0(n, q) ≥ V0(n, p) at

k = 0. We assume Vk−1(n, q) ≥ Vk−1(n, p) holds at iteration

k − 1 and we will prove that it also holds at iteration k.

To show Vk(n, q) ≥ Vk(n, p), we need to discuss the

optimal actions in states n − ep and n − eq . The list
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of all possible combinations of the optimal actions can

be divided into two cases, where r �= p, and r �= 0.

Optimal action Optimal action

Case n p in n − ep in n − eq

Case T3-1 n p ≥ 2 p p
r r
0 0

n p = 1 r r

Case T3-2 n p = 1 r p
0 p

Case T3-1: In this case, without loss of generality, we assume

that action r , r ∈ J 0
(n−eq ) ∩ J 0

(n−ep), is optimal in both states

n − eq and n − ep, i.e.,

min
s∈J 0

(n−eq )

{Vk−1(n − eq , s)} = Vk−1(n − eq , r ) and

min
s∈J 0

(n−ep )

{Vk−1(n − ep, s)} = Vk−1(n − ep, r ).

Therefore, after some algebra we get:

Vk(n, q) − Vk(n, p)

= 1

ϒ

N∑
j=1

(N j − n j )λ j
[
Vk−1(n + e j , q) − Vk−1(n + e j , p)

]
+ 1

ϒ

N∑
j=1

n jλ j [Vk−1(n, q) − Vk−1(n, p)]

+ 1

ϒ

N∑
j=1, j �=p, j �=q

μ j [Vk−1(n, q) − Vk−1(n, p)]

+ μq

ϒ

[
Vk−1(n − eq , r ) − Vk−1(n, p)

]
+ μp

ϒ

[
Vk−1(n, q) − Vk−1(n − ep, r )

]
. (3)

From iteration k − 1, we have Vk−1(n + ei , q) −
Vk−1(n + ei , p) ≥ 0, and Vk−1(n, q) − Vk−1(n, p) ≥ 0.

Then we can rewrite (3) as:

Vk(n, q) − Vk(n, p) ≥ 1

ϒ

(
μp

[
Vk−1(n, q) − Vk−1(n − ep, r )

]
−μq

[
Vk−1(n, p) − Vk−1(n − eq , r )

])
(4)

Since we have Vk − 1(n, q) ≥ Vk − 1(n, p), we replace

Vk − 1(n, q) − Vk − 1(n − ep, r ) with Vk − 1(n, p) − Vk − 1(n −

ep, r ) in inequality (4), and we get

Vk(n, q) − Vk(n, p) ≥ 1

ϒ

(
μp

[
Vk−1(n, p) −Vk−1(n − ep, r )

]
− μq

[
Vk−1(n, p) − Vk−1(n − eq , r )

])
= 1

ϒ

(
μp[Vk−1(n, p) − Vk−1(n, r )]

− μq [Vk−1(n, p) − Vk−1(n, r )]
)

+ 1

ϒ

(
μp

[
Vk−1(n, r ) − Vk−1(n − ep, r )

]
− μq

[
Vk−1(n, r ) − Vk−1(n − eq , r )

])
= 1

ϒ
(μp − μq )[Vk−1(n, p) − Vk−1(n, r )]

+ 1

ϒ
[μp DpVk−1(n, r ) − μq Dq Vk−1(n, r )](5)

Because action r is optimal in both states n − eq and n − ep,

then action r is also optimal in state n, which implies

Vk−1(n, p) − Vk−1(n, r ) ≥ 0. Then we can rewrite (5) as:

Vk(n, q) − Vk(n, p) ≥ 1

ϒ
[μp DpVk−1(n, r )

− μq Dq Vk−1(n, r )]. (6)

Since Lemma 1 holds at iteration k − 1, the right hand

side of inequality (6) is non-negative since A1 or A2 holds at

iteration k − 1. Therefore, Vk(n, q) − Vk(n, p) ≥ 0, which

means that machine type p has a higher priority than q at

iteration k. This concludes the proof for Case T3-1.

Case T3-2: First we use contradiction to show that if Vk(n +
ep, q) − Vk(n + ep, p) ≥ 0, then Vk(n, q) − Vk(n, p) ≥ 0.

Suppose Vk(n + ep, q) − Vk(n + ep, p) ≥ 0, but Vk(n, q) −
Vk(n, p) ≤ 0. According to P2, if Vk(n, p) − Vk(n, q) ≥ 0,

then

Vk(n + ep, p) − Vk(n + ep, q) ≥ Vk(n, p) − Vk(n, q) ≥ 0,

which contradicts Vk(n + ep, q) − Vk(n + ep, p) ≥ 0. Thus,

when Vk(n + ep, q) − Vk(n + ep, p) ≥ 0, we will get

Vk(n, q) − Vk(n, p) ≥ 0.

We can prove that Vk(n, q) − Vk(n, p) ≥ 0 by show-

ing that Vk(n + ep, q) − Vk(n + ep, p) ≥ 0. The proof of

Vk(n + ep, q) − Vk(n + ep, p) ≥ 0 is similar to that for Case

T3-1 with states n − ep and n − eq replaced with n and
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n + ep − eq . The major difference is that

min
s∈J 0

(n)

{Vk−1(n, s)} = Vk−1(n, p), and

min
s∈J 0

(n+ep−eq )

{
Vk−1(n + ep − eq , s)

} = Vk−1(n + ep − eq , p)

This is because, according to Theorem 2, the optimal action

in states n and n + ep − eq are to repair a machine of type

p since in Case T3-2, the optimal action in state n − eq is to

repair a machine of type p.

For Case T3-2 we will get the following inequality similar

to (6):

Vk(n + ep, q) − Vk(n + ep, p)

≥ 1

ϒ

[
μp DpVk−1(n + ep, p) − μq Dq Vk−1(n + ep, p)

]
.

(7)

Since Lemma 1 holds at iteration k − 1, the right-

hand-side of the above inequality is non-negative be-

cause A1 or A2 holds at iteration k − 1. There-

fore, Vk(n + ep, q) − Vk(n + ep, p) ≥ 0, that is, Vk(n, q) −
Vk(n, p) ≥ 0 which means that machine type p has higher

priority than machine type q at iteration k. This concludes

the proof for Case T3-2 and Theorem 3.

Proof of Proposition 2:

When preemption is allowed, it is shown in Iravani and Kolfal

(2004), that if
cpμp

λp
≥ cqμq

λq
and either Conditions C1 or C2

holds, then machines of type p have higher priority than

machines of type q, where

C1 : cpμp ≥ cqμq

C2 : cpμp < cqμq , λp < λq , and

cpμp ≥
{

1 − λq − λp

ϒ

}
cqμq

We will show that if A1 holds, then C1 holds, and if A2 holds,

then one of Conditions C1 or C2 holds.

If A1 holds, we have
cpμp

λp
≥ cqμq

λq
. On the other hand, since

λp ≥ λq , then
λp

λq
≥ 1. Hence, Condition A1 also implies that

cpμp ≥ cqμq . Consequently, if A1 holds, then C1 holds.

If A2 holds, then we have two cases, Case I: A2 holds and

cpμp ≥ cqμq , and Case II: A2 holds and cpμp < cqμq .

Case I: If A2 holds, then we have λp < λq , which implies

that

{
1 − λq − λp

ϒ

}
≥ λp

λq

Therefore, from A2 we can conclude

cpμp ≥
{

1 − λq − λp

ϒ

}
cqμq ≥ λp

λq
cqμq

=⇒ cpμp

λp
≥ cqμq

λq

Hence, if A2 holds and cpμp ≥ cqμq , then we will also have
cpμp

λp
≥ cqμq

λq
, which implies that Condition C1 holds.

Case II: If A2 holds and cpμp < cqμq , then C2 holds, since

as was shown in Case I, if A2 holds, we have
cpμp

λp
≥ cqμq

λq
.

Therefore, Conditions A1 and A2 can also be used in systems

with preemption to prioritize machines of different types.

Proof of Theorem 4:

It is easy to show that, if q belongs to idle group (i.e., q ∈ I),

then all machine types with lower priority than q will also be

in the idle group (i.e., �̄q ⊆ I). On the other hand, to show

that q ∈ I, we only need to show that in state n∗
q, where

n∗
j = 0 for all j ∈ �q and nq ≥ 1, idling is optimal, i.e.,

V (n∗
q, q) − V (n∗

q, 0) ≥ 0. (8)

Define state nq where n j = n∗
j = 0, ∀ j ∈ �q , and n j =

N j , ∀ j ∈ �̄q . To prove (8), we only need to prove that

V (nq, q) − V (nq, 0) ≥ 0. (9)

The reason is that according to Theorem 1, if (9) is true which

implies that idling is optimal in state nq, then idling will also

be optimal in state n∗
q.

We use induction and the value iteration algorithm to

prove V (nq, q) − V (nq, 0) ≥ 0 if A3 holds. It is clear

that V0(nq, q) − V0(nq, 0) ≥ 0 at iteration 0. We assume

Vk−1(nq, q) − Vk−1(nq, 0) ≥ 0 holds at iteration k − 1, and

we will prove that it also holds at iteration k when A3 holds.

Springer



104 Queueing Syst (2007) 55:95–105

From equation (2), we get

Vk(nq, q) − Vk(nq, 0) = 1

ϒ

∑
j∈�q

N jλ j

[
Vk−1

(
nq + e j , q

)
− min

s∈J 0

(n+e j )

{
Vk−1

(
nq + e j , s

)}]

+ 1

ϒ

⎡⎣ N∑
j∈�̄q

N jλ j +
N∑

j=1, j �=q

μ j

⎤⎦
× [Vk−1(nq, q) − Vk−1(nq, 0)]

+ μq

ϒ

[
min

s∈J 0
(n−eq )

{
Vk−1

(
nq − eq , s

)}
− Vk−1(nq, 0)

]
In state nq + e j , we have Vk−1(nq + e j , j) ≥

min
s∈J 0

(n+e j )

{Vk−1(nq + e j , s)}.
Since at iteration k − 1 we have Vk−1(nq, q) −

Vk−1(nq, 0) ≥ 0, then idling is optimal in state nq. Thus,

according to Theorem 1 part (ii), idling is also optimal in

state nq − eq ; that is, min
s∈J 0

(n−eq )

{Vk−1(nq − eq , s)} = Vk−1(nq −
eq , 0). Therefore,

Vk(nq, q) − Vk(nq, 0) ≥ 1

ϒ

∑
j∈�q

N jλ j
[
Vk−1

(
nq + e j , q

)
− Vk−1

(
nq + e j , j

)]
+ 1

ϒ

[
N∑

j∈�̄q

N jλ j +
N∑

j=1, j �=q

μ j

]
× [Vk−1(nq, q) − Vk−1(nq, 0)]

+μq

ϒ

[
Vk−1

(
nq − eq , 0

)
−Vk−1(nq, 0)

]
. (10)

From iteration k − 1, we have Vk−1(nq, q) − Vk−1(nq, 0) ≥
0. Hence, the second term on the right-hand-side of (10) is

non-negative, and (10) can be reduced to:

Vk(nq, q) − Vk(nq, 0)

≥
∑
j∈�q

N jλ j

ϒ

[
Vk−1

(
nq + e j , q

) − Vk−1

(
nq + e j , j

)]
+ μq

ϒ

[
Vk−1

(
nq − eq , 0

) − Vk−1(nq, 0)
]
. (11)

Now we find a lower bound for Vk−1(nq + e j , q) −
Vk−1(nq + e j , j). Since machine type j ( j ∈ �q ) has higher

priority than machine type q , according to inequality

(6) which was obtained in the proof of Theorem 3, we

have

Vk(n + e j , q) − Vk(n + e j , j) ≥ 1

ϒ

[
μ j D j Vk−1(n + e j , r )

− μq Dq Vk−1(n + e j , r )
]
. (12)

If λ j ≥ λq , then A1 holds between machine j and q . Accord-

ing to Lemma 1, we can rewrite (12) as:

Vk−1

(
nq + e j , q

) − Vk−1

(
nq + e j , j

)
≥ 1

ϒ2

[
c jμ j − λ j

λq
cqμq

]
. (13)

If λ j < λq , then A2 holds between machine j and q. Ac-

cording to Lemma 1 we can rewrite (12) as:

Vk−1

(
nq + e j , q

) − Vk−1

(
nq + e j , j

) ≥ 1

ϒ2

[
c jμ j

−
(

1 − λq − λ j

ϒ

)
cqμq

]
≥ 1

ϒ2
[c jμ j − cqμq ]. (14)

From P4, we get

Vk−1(nq, 0) − Vk−1

(
nq − eq , 0

) ≤ cq

λq
. (15)

We divide the set of machine types in �q into two subsets

�q H and �q L (�q = �Hq ∪ �Lq ), where �q H is the set of

machine types with higher (or equal) failure rate than ma-

chine type q, and �q L is the set of machine types with lower

failure rate than machine type q. By plugging inequality (13),

(14) and (15) into (11), we get

[Vk(nq, q) − Vk(nq, 0)]

≥
∑
j∈�q

N jλ j

ϒ

[
Vk−1

(
nq + e j , q

) − Vk−1

(
nq + e j , j

)]
+ μq

ϒ

[
Vk−1

(
nq − eq , 0

) − Vk−1(nq, 0)
]

≥
∑

j∈�q H

N jλ j

ϒ3

[
c jμ j − λ j

λq
cqμq

]
+

∑
j∈�q L

N jλ j

ϒ3
[c jμ j − cqμq ] − cqμq

ϒλq
.

That is, we have Vk(nq, q) − Vk(nq, 0) ≥ 0 if
∑

j∈�q H
N j λ j

ϒ3 [c jμ j − λ j

λq
cqμq ] + ∑

j∈�q L

N j λ j

ϒ3 [c jμ j − cqμq ] −
cqμq

ϒλq
≥ 0, or if

cqμq

λq
≤

∑
j∈�q

N jλ j c jμ j∑
j∈�q H

N jλ
2
j + ∑

j∈�q L
N jλ jλq + ϒ2

. (16)

Springer



Queueing Syst (2007) 55:95–105 105

Since for all machine types in �q L , we have λ j < λq , then,∑
j∈�q L

N jλ jλq ≥ ∑
j∈�q L

N jλ
2
j , and (16) can be rewritten

as

cqμq

λq
≤

∑
j∈�q

N jλ j c jμ j∑
j∈�q H

N jλ
2
j + ∑

j∈�q L
N jλ

2
j + ϒ2

≤
∑

j∈�q
N jλ j c jμ j∑

j∈�q
N jλ

2
j + ϒ2

. (17)

Thus, when A3 holds, machine type q will be in I. This

concludes the proof of Theorem 4.
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