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Abstract

Stochastic trees are semi-Markov processes represented using tree diagrams.  Such trees have been found
useful for prescriptive modeling of temporal medical treatment choice.  We consider utility functions over
stochastic trees which permit recursive evaluation in a graphically intuitive manner analogous to decision tree
rollback.  Such rollback is computationally intractable unless a low-dimensional preference summary exists.  We
present the most general classes of utility functions having specific tractable preference summaries.  We examine
three preference summaries - memoryless, Markovian, and semi-Markovian - which promise both computational
feasibility and convenience in assessment.  Their use is illustrated by application to a previous medical decision
analysis of whether to perform carotid endarterectomy.
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A stochastic tree is a graphical modeling approach which combines useful features from

semi-Markov process transition diagrams and decision trees. This paper concerns itself with the

recursive evaluation of utility functions over stochastic trees, that is, the calculation of an

expected utility measure using iterative methods akin to the method of successive approximations

(value iteration) in the stochastic dynamic programming literature (e.g. Bertsekas 1976, Ross

1983).  Predecessors in this area include the works of Mitten (1974), Sobel (1975) and

Sniedovich (1981) on preference-order dynamic programming; Howard and Matheson (1972),

and Chung and Sobel (1987) on dynamic programming with an exponential utility function; and

Kreps (1977a, 1977b, 1978) on dynamic programming using arbitrary utility functions.

One of the most striking properties of the utility functions we present is that they may be

evaluated over any particular stochastic tree using a rollback process akin to that used for

decision trees.  Such rollback is achievable in principle for an arbitrary utility function (a

nonobvious fact on which we elaborate below), but is in general computationally intractable

unless a low-dimensional preference summary exists.  The essential contribution of this paper is to

present the most general classes of utility functions having specific tractable preference

summaries.  We examine three preference summaries - memoryless, Markovian, and semi-

Markovian - which promise both computational tractability and convenience in assessment.  For

each of these summaries, we derive the corresponding class of utility functions having that

summary.

Our approach may be viewed as an addition to the decision analytic literature on utility

over time streams (Fishburn 1965, Keeney and Raiffa 1976, Bell 1977, Fishburn 1978, Barrager

1980, Harvey 1988).  Stochastic tree modeling was motivated by applications to medical

treatment decision making (Hazen 1992, 1993).  This paper may therefore also be regarded as a

contribution to the literature on health status indices (Torrance 1976, Bodily 1980, Pliskin,

Shepard and Weinstein 1980, Torrance, Boyle and Horwood 1982).  One distinguishing aspect of

our work is that in contrast to nearly all the literature mentioned above, we model time as a

continuous rather than a discrete quantity.  We feel that modeling in continuous rather than

discrete time has significant advantages in formulation and presentation (Hazen 1992).

Because stochastic trees have only recently been introduced and are as yet not widely

used, we open the paper in Section 1 with a brief introduction to the topic.  Our main results are

presented in Section 2.  We discuss assessment issues and present an application in Section 3.

1. Stochastic Trees

What is a stochastic tree?  In its simplest and most useful form, a stochastic tree is merely

a transition diagram for a continuous-time Markov chain, unfolded into a tree structure, and
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augmented by chance nodes.  We have used stochastic trees as modeling tools for the analysis of

medical treatment decisions (Hazen 1992; Hazen 1993; Chang, Pellissier & Hazen 1993, Pellissier

and Hazen 1994).

As an example, consider the stochastic tree of Figure 1, which is a model of nonsurgical

treatment of transient ischemic attacks, based on Matchar and Pauker (1986).  The usual

conventions for transition diagrams apply: The nodes represent states (Well, Big Stroke, Post Big

Stroke, and so on), and the arrows represent transitions between states.  There are two types of

arrows, corresponding to the two types of possible transitions.  Wavy arrows are labeled with

rates, and signify transitions which take time to accomplish.  For instance, from the initial state

Well, there is an exponentially distributed duration with rate µ0  + µexcess  until transition to Dead,

and an exponential (µstroke) duration until transition to Stroke.  The next state occupied is

determined by the shorter transition time, just as in any continuous-time Markov chain.  Straight

arrows are labeled with probabilities, and signify immediate transition to one of the states

indicated.  For example, from the state Stroke, there is an immediate transition to Big Stroke with

probability pbig and to Small Stroke with probability 1 − pbig.  Wavy arrows emanate from

stochastic nodes, and straight arrows from chance nodes.

Well

Dead

Dead

Dead

Stroke

Stroke

Big
stroke

Post big
stroke

Post small
stroke

Small
stroke

µstroke

pearlydie

1 - pearlydie

pbig

1 - pbig

µo  + µexcess

µstroke

pbig µstroke

Dead

Big
stroke

µo  + µexcess

µo  + µexcess

Figure 1. Stochastic tree model for nonsurgical treatment of transient ischemic attacks
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Nodes with dashed-line borders indicate transitions to previously depicted states.  We call

these phantom nodes.  For example, from the state Post Small Stroke, the next state visited is

either Dead or the previously depicted state Stroke.  Note that there are several states to which

repeated visits are possible.  When this occurs, we say the stochastic tree is cyclic.  Otherwise it is

acyclic.

Transformation of stochastic trees

There are several ways in which a stochastic tree can be transformed into a different but

equivalent representation.  One of the most useful is a consequence of the familiar superposition/

decomposition rules for Poisson processes (e.g. Cinlar 1975, Ch. 4), and may be depicted as

follows:

λyx y =
λ

x y
py

where

λ λ λ λ= =∑ yy y,          py

The diagram indicates that a sojourn in state x having several competing exponential (λ y)

transitions leading to respective states y is equivalent to an exponential (λ) sojourn in x followed
by a chance py  of transition to y.  A second elementary transformation involves the aggregation

of several distinct transitions to the same state:

x

y

y
µy

λy

=
λy + µyx y

A third useful transformation is the elimination of self-transitions:
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λyx y

λx
x

=
λyx y

Its validity arises from the fact that a sum of geometrically many independent exponential

durations is also exponential.

As an example, in the recurrent stroke model of Figure 1, the states Big Stroke and Small

Stroke serve only descriptive purposes and can be eliminated.  Once this is done, the resulting tree

can be transformed using these rules into the acyclic tree of Figure 2 .  The details are left to the
reader.  (In Figure 2, the abbreviation µs  has been used for µstroke  , pb  has been used for pbig  , and

so forth.)

Well

Stroke

µs

Dead

µo  + µe

Post big
stroke Dead

µo + µe + pb µs pe

Dead

Dead

Post small
stroke

pb µs (1-pe)

µo + µe + pb µs pe

Post big
stroke

pb (1-pe)

pb pe

1 - pb

Figure 2: Acyclic stochastic tree equivalent to Figure 1
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Quality-adjusted duration and stochastic tree rollback

One popular measure of treatment efficacy used in the medical decision making literature

is mean quality-adjusted duration.  This measure is calculated by weighting each interval of time

spent in a particular health state x by a quality factor v(x) proportional to the desirability of that

state.  So if Tx  is the total duration for which state x is occupied, then one seeks the mean value of

Q = v x Txx
( )∑ .

Typically the Well state is assigned quality factor 1, the Dead state 0, and other states of health

are given intermediate values.  Note that total lifetime and total time spent in a particular state are

instances of quality-adjusted duration with v(x) = 1 for the appropriate set of states x and v(x) = 0

for the complementary set, so a broad range of conventional measures is subsumed.  For models

using mean quality-adjusted duration, see for example Weinstein and Stason (1976), Beck and

Pauker (1981), Hillner, Hollenberg and Pauker (1986), Plante, Piccirillo and Sofferman (1987),

Roach et al. (1988), Mooney, Mushlin and Phelps (1990).

A further advantage of the stochastic tree model is that it allows the recursive computation

of mean quality-adjusted duration by "rolling back" the stochastic tree (Hazen 1992), much as one

would roll back a decision tree.  To see how this works, consider a subtree of a stochastic tree in
which an initial state x is occupied until one of several competing transitions with rate λ y occurs

to state y:

λyx y

Invoking the superposition rule, we can transform this subtree into

λ
x y

py

where py y= λ λ  and λ = λ yy∑ .  It is therefore apparent that beginning in x, a mean time 1/λ is

spent in state x, following which transition to y occurs with probability py .  Suppose the mean

quality-adjusted duration beginning at y is L(y).  Mean quality-adjusted duration beginning in x is

therefore
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L x v x p L y
v x L y

y

yy

yy
y

( ) ( ) ( )
( ) ( )

= ⋅ + =
+ ∑
∑∑1

λ

λ

λ
.

This formula can be used to recursively evaluate mean quality-adjusted lifetime in any

stochastic tree.  Rollback for the recurrent stroke example of Figure 2 is depicted in Figure 3.

(See Table 2 in Section 3 for the rate and probability values.  This example is discussed further

there.)  Mean quality-adjusted durations are indicated in italics below the corresponding states.

Nonsurgical treatment has a mean quality-adjusted lifetime of 9.325 years beginning in the Well

state.

Well

Stroke

µs

Dead

µo + µe

Post big
stroke Dead

µo + µe + pb µs pe

Dead

Dead

Post small
stroke

pb µs (1-pe)

µo + µe + pb µs pe

Post big
stroke

pb (1-pe)

pb pe

1 - pb

2.254 yr

2.254 yr

7.739 yr

3.511 yr

9.325 yr 0 yr

0 yr

0 yr

0 yr

Figure 3: Calculating mean quality-adjusted duration by stochastic tree rollback

Rollback for stochastic trees with cycles may also be performed using the method of

successive approximations (value iteration) from dynamic programming.  Hazen (1992) gives

several examples, and we present a computational example at the end of Section 2.

Risk-averse preferences in stochastic trees

One drawback of the mean quality-adjusted duration measure is that it is risk neutral with

regard to longevity in any particular health state.  For example, consider a hypothetical choice

between a vaccination which will reduce your mortality rate by c%, but unfortunately may result

in adverse reaction and immediate death with probability p.  What is the largest value of p you
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would accept?  Using stochastic tree notation, we seek the value of p which produces the

indifference

Dead

Well Dead
µ − cµ

p

1 - p

~ Well Dead

µ

Call this indifference probability pvaccine .  The surprising fact is that if p = c, then both of these

alternatives have mean lifetime 1/µ.  Therefore according to the mean quality-adjusted lifetime

criterion, one should take pvaccine  = c.  If, for example, you are a 40-year-old white male, your

annual mortality rate is approximately 2.5 per 1000 (U.S. National Center for Health Statistics

1986).  Would you take a 50% chance at immediate death to cut this mortality rate in half?  Your

answer would be yes if your sole criterion were mean quality-adjusted lifetime.  However, most

individuals would find this a ludicrous choice.

The obvious remedy is to replace quality-adjusted duration by a risk-averse utility

function.  However, it is unclear whether an arbitrary utility function possesses similar desirable

recursive properties in stochastic trees.  For example, suppose utility is given by

Utility = 
Quality adjusted

duration






α

.

for α > 0.  How might one roll back a stochastic tree using this utility function?  Here is a naive

rollback procedure applied to the simple stochastic tree

y

y
1 yr

2 yr

p

1 - p

U=1

U=p
CE=p1/α yr

U=(2+p1/α)α

in which sojourn times are certain.  Assume state y has quality factor v(y) = 1.  Obtain the final

utility U = ( )2 1+ p /α α
 by adding the 2 yr. sure duration in state y to the p1/α  yr. certainty

equivalent that follows, and then applying the utility function.  Unfortunately this procedure is
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incoherent:  If one moves the chance node to beginning of the tree and concatenates the two

resulting one-year durations, one obtains the correct expected utility:

y
p

1 - p
y

U = 3α

U = 2α
U = p 3α + (1 - p)2α

3 yr

2 yr

The lesson is that one cannot evaluate utility over stochastic trees in arbitrarily capricious ways.

Because recursive procedures offer computational advantages for stochastic trees which

are large and/or cyclic, recursively computable utility functions would certainly be desirable.  The

purpose of this paper is to investigate whether recursively computable utility functions more

general than quality-adjusted duration exist, and if so, how the recursion should be performed.

The surprising answer given in the next section is that in spite of the example just given, recursive

calculation may in fact be performed with any utility function.  Kreps (1977) gives the first

account of this of which we are aware (but in discrete time).  The catch is that in general the

recursion is too computationally demanding to be useful, unless there are convenient preference

summaries (called state descriptors by Meyer 1976).  Therefore in the next section we also

investigate recursive utility forms having natural and tractable preference summaries.

2. Recursive Utility Over Stochastic Trees

Mathematical overview

The stochastic tree is a continuous-time probability model.  To convey a clearer picture of

the mathematical contribution of this paper and relationships to previous work, we present in this

section the discrete-time versions of our general recursive utility theorems.  The nature of our

results are clearer when presented by analogy in discrete time, where the mathematical and

notational baggage is less burdensome.  It is also easier to summarize relationships to prior

contributions, since most of them were done in a discrete time context.  Readers wishing to

proceed immediately to our main results can skip this subsection.

Let X1, X2, X3 ... be a discrete-time stochastic process, and for each t ≥ 0, let

X≤t = (X1, ..., Xt)
X>t = (Xt+1, Xt+2, ...)
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be respectively the past at time t and the future at time t.  Let the utility function U(x1,x2, ...) be

defined over possible realizations of (X1, X2, ...).  One way to evaluate E[U(X1,X2, ...)]

recursively without any assumption on the form of U is as follows.  Let

( )[ ]Φ t t X t t tX E U X X X
t

( ) , |≤ ≤ > ≤=
>

be expected utility evaluated beyond stage t given history X≤t up to time t.  Then

( )[ ]
( )[ ]

( )[ ][ ]
( )[ ][ ]

[ ]

Φ

Φ

t t X t t t

X t t t t

X X t t t t t t

X X t t t t

X t t t

X E U X X X

E U X X X X

E E U X X X X X X

E E U X X X X

E X X

t

t

t t

t t

t

− ≤ − ≤ − > − ≤ −

≤ − > ≤ −

≤ − > ≤ − ≤ −

≤ > ≤ ≤ −

≤ ≤ −

=

=

=

=

=

> −

> −

>

>

1 1 1 1 1

1 1

1 1 1

1

1

1

1

( ) , |

, , |

, , | , |

, | |

( )|

This recursion

[ ]Φ Φt t X t t tX E X X
t− ≤ − ≤ ≤ −=1 1 1( ) ( )| (2.1)

has been studied by Kreps (1978).  It is computationally intractable without further simplifying
assumptions, because the quantities Φ t tx( )≤  must be evaluated for every possible history x≤t up to

time t.  This is true even if the Xt are probabilistically independent.

The nature of the required simplifying assumptions can be seen when the recursion is

expressed in terms of conditional utilities.  Suppose ( )U x x1
0

2
0 0, ,.. = , and use the notation

( ) ( )U x x U xt t t≤ > ≤=, 0

Let the conditional utility U(x>t | x≤t) be strategically equivalent to U(x≤t,x>t) with

( )U x xt t> ≤ =0 0| for all x≤t.

Then U(x>t−1 | x≤t−1) can be recursively expressed in terms of U(x>t | x≤t).  This is due to the fact

that these two utility functions are strategically equivalent over x>t:

( ) ( ) ( ) ( ) ( )U x x U x x x U x x x U x x U x xt t t t t x t t t t t x t tt t> − ≤ − > ≤ − ≤ − > ≤ > > ≤= =
>1 1 1 1| , | ~ , , , ~ |

Therefore there is an affine relationship between U(x>t-1 | x≤t-1) and U(x>t | x≤t), which may depend

on the other variables x≤t−1 and xt, that is, there are quantities ∆U(xt | x≤t−1) > 0 and a(xt | x≤t−1)

such that

U(x>t−1 | x≤t−1) = a(xt | x≤t−1) + ∆U(xt | x≤t−1) U(x>t | x≤t).

Set x>t = x t>
0  to conclude that
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a(xt | x≤t-1) = U(xt, x t>
0  | x≤t−1) = U(xt | x≤t−1).

and substitute into the previous relation to get

U(x>t−1 | x≤t−1) = U(xt | x≤t−1).+ ∆U(xt | x≤t−1) U(x>t | x≤t). (2.2)

The analog of the recursion (2.1) in terms of conditional utilities can be expressed if we let

φt(X≤t) = ( )[ ]E U X X XX t t tt> > ≤ ≤| |

be the conditional utility of the future given history X≤t.  Using (2.2) we obtain the conditional

recursion

( ) ( )[ ] ( ) ( )[ ]φ φt t X t t t X t t t t tX E U X X X E U X X X X
t t− ≤ − ≤ − ≤ − ≤ − ≤ ≤ −= +1 1 1 1 1 1| | | |∆ (2.3)

This is the analog of Theorem 2.1 below.

Opportunities for computational simplification in (2.3) are more obvious.  For example,

suppose the Xt are probabilistically independent.  Also suppose there is a low-dimensional

preference summary q = e(x≤t−1) such that U(xt | x≤t−1) and ∆U(xt | x≤t−1) depend on x≤t−1 only

through q.  If the preference summary is updatable in the sense that

e(x≤t−1,xt) = θ(xt,e(x≤t−1))

for some function θ, then the recursion (2.3) simplifies to

( ) ( )[ ] ( ) ( )( )[ ]φ φt X t X t t tq E U X q E U X q e X q
t t− = +1 | | ,∆ .

This is the analog of Theorem 2.2 below.

The notions of preference summary was introduced by Meyer (1976), who uses the term

state descriptor.  Updatability is also discussed by Meyer.  Examples of updatable preference

summaries are the memoryless summary e(x≤t) = ∅ in which conditional preference depends not at

all on the past; and the Markov summary e(x≤t) = xt, in which conditional preference depends only

on the most recent state.

An important question is whether there are any utility functions at all which possess these

preference summaries, and if so, what they are.  For example, the existence of a memoryless

preference summary is equivalent to the statement that the future is utility independent of the past.

Meyer presents the most general class of utility functions having this property.  Fishburn (1965)

and Bell (1977) present utility functions with Markov preference summaries.

We investigate analogous existence questions below, but in the context of stochastic trees.

We introduce the corresponding notions of memoryless, Markovian, and also semi-Markovian

preference summaries appropriate for stochastic tree models, and identify the classes of utility

functions over stochastic trees having these preference summaries.
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Recursive utility has also been studied in the economics literature, where the motivation is

descriptive rather than prescriptive, as here.  Epstein and Zinn (1989) examine a recursive model

in which there is a value function V assigning conditional utility V(X>t | x≤t) to the stochastic

process X>t given the realization X≤t = x≤t.  V is postulated to obey the recursive rule

( ) ( )( )( )V X x W x V X x Xt t t t t t> ≤ > + ≤ +=| , | ,µ 1 1 (2.4)

Here µ is a certainty equivalent operator, assigning a certainty equivalent to the uncertain value

V(X>t+1 | x≤t, Xt+1) (uncertain because Xt+1 is uncertain); and W is an aggregator, combining

current payoff xt with certainty equivalent future payoffs.  Overall utility is V(X>0) = V(X>0 | x≤0).

Epstein and Zinn show the existence of solutions V to (2.4) under reasonable conditions.  Duffie

and Epstein (1992) extend (2.4) to continuous time.

For specific choices of W and µ, the recursion (2.4) includes the dynamic choice theory of

Kreps and Porteus (1978), which in turn includes the expected utility recursion (2.1).  The latter,

to which we confine ourselves in this paper, has the simple aggregator W(x,y) = U(y), where U is

the utility function.  Despite its suggestive name, the aggregator W has no connection to our

notion of preference summary.  Our results concerning utility functions with specific preference

summaries have therefore no direct connection to the economics literature on recursive utility.

Moreover, none of that work attempts to find structural preference conditions which speed

recursive computations, which is our main focus.

Preliminaries

Let x,y,z denote states of a stochastic process.  For a state x and a duration t > 0, let x t

denote the function defined by

x x     if 0 tt ( )τ τ= ≤ < .

Then x t  is possible sample path of a stochastic process.  If g is a sample path with domain [0,s)

and h is any other sample path, define the concatenation gh of g and h by

gh t
g t

( )
( )= ≤

≥




if 0 t < s
h(t - s) if t s.

Informally, gh is obtained by sliding h a distance s to the right and appending it to g.  Note the

visually familiar identity

x x xs t s t= +

which is one motivation for the notation.
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We follow the usual convention of designating random quantities by capital letters.  So xT

denotes a sojourn of random duration T in state x, and XT denotes a sojourn of random duration

T in uncertain state X.

Stochastic trees

The stochastic trees discussed in Section 1 were Markov processes with chance nodes

added.  In general we allow semi-Markov processes as well.  Formally, we define a stochastic tree

diagram to be a directed graph with a finite or countable number of nodes such that

a) each node in the diagram is either a stochastic node or a chance node;

b) arcs from stochastic nodes are labeled with absolutely continuous probability

distributions over [0,∞);

c) arcs from chance nodes are labeled with probabilities summing to 1.

The tree terminology is meant to emphasize the analogy with decision trees.  We do not formally

require that the diagram be a tree, although it may always be converted to one by using phantom

nodes, as illustrated in Section 1.  A stochastic tree is the stochastic process suggested by the

stochastic tree diagram.  Formally, we replace each distribution in the diagram with an

independent random duration having that distribution, and at each chance node we independently

replace all probabilities by mutually exclusive, collectively exhaustive events having those

probabilities.  In the resulting process, transition from a stochastic node x proceeds along the arc

from x whose duration is the minimum, and transition from a chance node y proceeds along the

arc from y whose event occurs.  Any stochastic tree is a continuous-duration semi-Markov

process and any continuous-duration semi-Markov process can be represented by a stochastic tree

diagram.†  We shall only be interested in stochastic trees which are really stochastic, that is, which

cannot visit only chance nodes.  Formally, we require that every chance node leads with positive

probability to some stochastic node.

Consider a stochastic tree diagram H′ of the form

H′ = x1 x2 xn...
λ1 λ2 λn−1

G'

where x1, ..., xn are states, λ1, ..., λn are distributions and G′ is an arbitrary stochastic tree

diagram.  The realization of H′ as a stochastic tree is

                                               
†The requirement that all durations have densities is meant to insure that ties have probability zero in determining

the minimum-duration arc out of a given node.  The density requirement may be relaxed as long as the probability

of a tie remains zero.
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H x x G GT
n
Tn= =1

1K xT

where T = ( , , )T Tn1 K  are independent durations with distributions λλ = (λ1,...,λn), and x =

( , , )x xn1 K .  We therefore write

′ = ′ = ′H x x G Gn
n

1
1λ λ λK x .

We refer to H as a stochastic tree with trunk xT , and to H′ as a stochastic tree diagram with trunk

xλλ.  However, in the sequel, we will often for simplicity drop the distinction between stochastic

tree diagrams and stochastic trees.  We will sometimes refer to xλλ as a history.  We allow the

empty history ∅, with the property that ∅G = G for any stochastic tree G.
We denote the convolution of two distributions λ and µ by λ∗µ .  If S and T are

independent durations with respective distributions λ and µ, then S + T has distribution λ µ∗ .

Therefore the two stochastic tree diagrams xλxµ and xλ*µ, which are distinct as diagrams, represent

the same stochastic tree, and we simply write x x xλ µ λ µ= ∗ .

Preference over stochastic trees

We assume that preference over stochastic trees is represented by a utility function U, so

that for two stochastic trees H and G

[ ] [ ]H G E U H E U Gf ⇔ >( ) ( ) .

The domain of U is the set of all semi-Markov sample paths h.
For stochastic trees xλG  we write U( xλG ) to mean E U GT

Tx[ ( )]  where T has

distribution λλ.  In addition, define a conditional preference relation over stochastic trees G,H by

G H  given  G Hf fx x xλ λ λ⇔ .

In other words, conditional preference over stochastic trees H given xλ  coincides with

unconditional preference over trees with trunk xλ .  It therefore has an expected utility

representation, with utility function which we denote by U(h|xλ ).  The latter is by definition

strategically equivalent (as a function of h) to U(xλ h).  Conditional preference given the empty

history ∅ is the same as unconditional preference, and U(h|∅) = U(h).

We introduce a special sample path φ to which all conditional and unconditional utility

functions U(⋅ |xλ ) assign utility zero:

U(φ|xλ ) = 0.

In medical models, it is convenient to take φ to be the sample path in which the dead state is

occupied forever.  However, any convenient sample path is acceptable.  If yµµ is any history, we

will write U(yµµh|xλ ) to mean E U hS
Sy x[ ( | )]λ , where S has distribution µµ.  We will abbreviate
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U(yµµφ) by U(yµµ).  We say that preference over stochastic trees is nontrivial if for every history xλ

there is a sample path h such that xλ h f  xλ φ or xλ h p  xλ φ.

Theorem 2.1 Assume nontriviality holds and U(φ|xλ ) = 0 for all xλ .  Then there are functions

∆U y( | )µ λx  > 0 such that an affine restriction

∆ ∆U y U h y U y U h y d ss s( | ) ( | ) ( | ) ( | ) ( )µ λ λ µ λ λ µx x x x=
∞

∫0
(2.5)

holds for all histories h, a concatenation restriction

∆ ∆ ∆U y U y U y y( | ) ( | ) ( | )µ ν λ µ λ ν λ µ∗ =x x x (2.6)

holds, and a recursive equation

U y h U y U y U h y( | ) ( | ) ( | ) ( | )µ λ µ λ µ λ λ µx x x x= + ∆ (2.7)

holds for all sample paths h.

The recursive equation (2.7) allows stochastic tree rollback for an arbitrary utility function

U.  To see how this works for acyclic trees G with a single root node, consider an arbitrary

stochastic node y in G:

H = y λi

where we let H be the subtree of G with root node y.  Since G is acyclic with a single root, there
is a unique path x xn

n
1

1λ λK  = xλλ from the root node x1 to y.  Attach expected utility E U HH ( | )xλ

to node y.  We show below how this expected utility can be calculated as a function of the

expected utilities attached to the direct successors of y.  At chance nodes z, calculate expected

utility by averaging utilities at the direct successors of z, just as in a decision tree.  These

calculations repeated recursively from right to left in the tree results in E[U(G)] at the root node

of G.  Here are the details:

We begin by converting the fork at y to the equivalent form

H =
µipi yi
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where the new states yi represent the information “state y is occupied and fork i is taken”.  If Ti

are the random durations corresponding to the distributions λi, then pi = P(Ti = minj Tj) is the

probability that the ith fork is taken, and µi is the conditional distribution of Ti given Ti = minj Tj.

Then H = Y KS  is a stochastic tree in which:

(i) an uncertain state Y = yi is first visited with probability pi,

(ii) an uncertain sojourn S in Y next occurs, where S has distribution µi given Y = yi,

(iii) stochastic tree K is entered, where K is identical in distribution to the tree Ki given Y

= yi (so K is conditionally independent of S given Y).

This situation is depicted in Figure 4, along with a proposed rollback procedure.

...
λ1

x1

U U y U y Ui i
i i= + ⋅ +( | ) ( | )µ λ µ λx x∆

                  

Ki6 74 84                                                        
H6 7444444 8444444

[ ]U E U K yi i i
i

+ = ( | )x λ µ

[ ]U E U H

p U

y

i ii

=

= ∑
( | )xλ

xn

µipiλn yi

Figure 4:  Stochastic tree rollback for arbitrary U

This rollback procedure can be derived algebraically as follows.  We have

[ ] [ ][ ]
[ ]

[ ]
[ ]

[ ]( )

E U H E E U Y K Y

p E U y K Y y

p E U y K

E U y U y U K y

U y U y E U K y

H Y S K
S

i S K i
S

ii

i K i ii

K i i i i

i i K i i

i

i

i

i i i

i i

i

i

( | ) ( | )|

( | )|

( | )

( | ) ( | ) ( | )

( | ) ( | ) ( | ) .

,

,

x x

x

x

x x x

x x x

λ λ

λ

µ λ

µ λ µ λ λ µ

µ λ µ λ λ µ

=

= =

=

+

+

∑
∑
∑
∑

     (because K,S are independent given Y = y)

= p     (recursive equation)

= p

ii

ii

∆

∆

According to this last equation, the conditional expected utility E U HH ( | )xλ  at node y may be

calculated recursively from the conditional expected utilities [ ]E U K yK ii

i( | )xλ µ .  The latter are

precisely the utilities attached to the successors of y.  A rollback procedure for single-root acyclic

trees G has therefore been demonstrated.  For a single-root cyclic tree G, rollback may be

performed by the usual successive approximation of G by finitely deep acyclic trees Gn.  We

present an example at the end of this section.
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For the most general types of stochastic trees, this recursion may be intractable, because

the probabilities pi and distributions µi must be calculated from the distributions λi at each node.

However, for special cases such as exponential distributions or Weibull distributions with

common shape parameter, the calculation may be done in closed form.  We assume that the λi

have been chosen so as to facilitate this calculation.

The recursion will, however, still be intractable without further restrictions on the utility

structure.  The reason is that the recursion requires the calculation at state y of a conditional

utility given every possible path through the stochastic tree leading to y, a computationally

intractable task for cyclic stochastic trees, which are, in effect, infinitely deep.  For acyclic trees,

the recursion is equivalent to the direct calculation of the unconditional expected utility of the

entire tree by successively applying conditional expectation from right to left.  Therefore, although

this calculation technically qualifies as a recursion, it carries with it none of the conceptual or

computational advantages usually associated with recursive calculation.

Therefore, in answer to the fundamental question raised in Section 1, stochastic tree

rollback may be performed with an arbitrary utility function.  However, the rollback algorithm is

not a practical one for cyclic trees.  Nevertheless, in special cases the utility structure may allow

computational savings.  We discuss how this may occur next.

Preference summaries

Potential computational simplifications are available in stochastic tree rollback if the

quantities U( )⋅ |xλ  and ∆U( )⋅ |xλ  depend on xλ  only through a low dimensional preference

summary q = e(xλ ) of xλ .  To be useful in a recursion such as (2.7), the summary should be

updatable, that is, if q = e(xλ ) then e(xλ yµ ) should be obtainable as some function of q and yµ .

We therefore make the following definitions.  A preference summary is a function which

assigns preference states q to histories xλ  in such a way that if e(xλ ) = e(zν ) then conditional

preferences given xλ  and given zν  are identical.  We say that e is an updatable preference

summary if there is a function θ such that e(xλ yµ ) = ( )( )θ λ µe yx , .

When there is an updatable preference summary, the results of Theorem 2.1 take the

following form.

Theorem 2.2 Assume nontriviality holds and U(φ|xλ ) = 0 for all xλ .  If U has an updatable

preference summary (e,θ), then there is a summary utility function u(h|q) on sample paths h given

preference states q such that u(φ|q) = 0 and

u(⋅ |q)  ~  U(⋅ |xλ )  whenever  e(xλ ) = q.

Moreover, there are summary discount factors ∆u(yµ |q) > 0 satisfying the affine restriction
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∆ ∆u y q u h q y u y q u h q y d ss s( | ) ( | ( , )) ( | ) ( | ( , )) ( )µ µθ θ µ=
∞

∫0
(2.8)

for all sample paths h, the concatenation restriction

∆ ∆ ∆u y q u y q u y q y( | ) ( | ) ( | ( , ))µ ν µ ν µθ∗ = (2.9)

and the recursive equation

u y h q u y q u y q u h q y( | ) ( | ) ( | ) ( | ( , ))µ µ µ µθ= + ∆ (2.10)

for all sample paths h.

Figure 5 illustrates rollback when there is an updatable preference summary.

Computational savings can occur because conditional utilities need be calculated only for each of

the preference summaries that could occur at a given state y, rather than each of the histories that

could precede y.  For cyclic trees the number of preceding histories can be arbitrarily large.

However, for properly chosen utility functions, the number of preceding preference summaries

may be small even for cyclic trees (see the computational example in the concluding subsection

below).  We discuss such utility functions in the next three subsections.

y

u u y q u y q ui i
i i= + ⋅ +( | ) ( | )µ µ∆

pi µi

                  

Ki6 74 84                                                        
H6 7444444 8444444

[ ]u E u K q

q y

i i

i

+
+=

=

( | )

( , )  q + θ µ

[ ]u E u H q

p ui ii

=

= ∑
( | )

Preference
summary q

Figure 5: Stochastic tree rollback when there is an updatable preference summary q

Memoryless preference summaries

Stochastic tree rollback is particularly simple with quality-adjusted duration as the utility

measure, as we saw in Section 1.  What preference summary is associated with this utility

function?  The quality-adjusted duration expected utility measure is

U U x x v x mn i ii
n( ) ( ) ( )xλ λ λ= = ∑1

1K
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where m t d ti i= ⋅
∞

∫ λ ( )
0

 is the mean of the distribution λ i.  Then

U y U y v y s v x m v y ss

y

s
i ii ys s( | ) ~ ( ) ( ) ( ) ~ ( )x xλ λ = ⋅ + ⋅∑ .

By inspection, we see that conditional utility given xλ  depends not at all on xλ , that is, it is

memoryless.  Therefore, the preference summary can be taken to be the constant function e(xλ ) =

∅.  This preference summary is (trivially) updatable.  The summary utility function u(⋅ |q) of

Theorem 2.2 is

u y u y v y ss s( | ) ( ) ( )∅ = = ⋅ .

By inspection, the summary discount factor ∆u(⋅ |q) of Theorem 2.2 is ∆ ∆u y u ys s( | ) ( )∅ =  = 1.

Are there other utility functions over stochastic trees having memoryless preference

summaries, and if so, what are they?  In the following, we say that utility is continuous in its

duration arguments if for all n, U x xt
n
tn( )1

1K  is continuous as a function of t1 > 0, ..., tn > 0.  We

also use the notation α
β







 to represent the affine function with slope β and intercept α.  In other

words

α
β α β





= +( )t t .

Moreover, if f and g are functions, let the symbol f go  denote functional composition of f and g,

so that (f go )(t) = f(g(t)).

Theorem 2.3: Let U be a utility function over stochastic trees which is continuous in its duration

arguments, satisfies nontriviality and has U(φ|xλ ) = 0 for all xλ .  Then U is memoryless if and

only if there are functions v(⋅) and a(⋅) such that

U
u x
u x

u x
u x

t

t
n
t

n
t

n

n
( ) ~

( )
( )

( )
( )

( )x t 1

1

1

1
0

∆ ∆


















oKo

where

u x v x e dst a x st
( ) ( ) ( )= −∫0

∆u x et a x t( ) ( )= − .
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Theorem 2.4: Under the assumptions of the previous theorem, if U has a memoryless preference

summary, then its summary utility and discount factors are given for t ≥ 0 by

u y u y v y e dst t a y s
t

( | ) ( ) ( ) ( )∅ = = −∫0

∆ ∆u y u y et t a y t( | ) ( ) ( )∅ = = − .

Moreover for a distribution µ on [0,∞),

∆ ∆u y u y d s e d ss a y s( ) ( ) ( ) ( )( )µ µ µ= =
∞ −∞

∫ ∫0 0
.

For utility functions with memoryless preference summaries, the recursive equations

(2.10) become

u y h u y h v y e ds e u ht t a y s
t

a y t( | ) ( ) ( ) ( )( ) ( )∅ = = +− −∫0
.

Memoryless utility is therefore identical to quality-adjusted duration with the future discounted at

the state-dependent rate a(y) when state y is occupied.  When a(y) = 0 for all y, we recover the

pure quality-adjusted duration form.  When a(y) ≠ 0 we  obtain

( )u y v y e ds
v y

a y
et a y st a y t( ) ( )

( )

( )
( ) ( )= = −− −∫0

1 .

The summary u may therefore be regarded as a utility function having constant risk attitude a(y)

for durations spent in state y.

It is interesting to calculate u y( )λ  when λ represents an exponential ( )λ  distribution

convenient for stochastic tree modeling.  Here λ is the rate of departure from state y.  We obtain

( )u y
v y

a y
e e dt

v y

a y
a y t t( )

( )

( )

( )

( )
( )λ λλ

λ
= − =

+
− −∞

∫ 1
0

(2.11)

provided a(y) + λ > 0 (and equal to +∞ if a(y) + λ ≤ 0).  In the risk-neutral case a(y) = 0, we

obtain the quality-adjusted duration u y( )λ  = v y( ) ⋅ −λ 1.  When a(y) ≠ 0, u y( )λ  may still be

regarded as quality-adjusted duration, but with departure rate incremented by the subjective term

a(y).  A risk averter in effect perceives the departure rate from y to be larger than its true value,

and a risk seeker perceives it smaller.

One difficulty with the combination of memoryless utility and exponential durations is that

u y( )λ  diverges to +∞ when a(y) + λ ≤ 0.  Therefore only moderately risk-seeking preference (-λ

≤ a(y) ≤ 0 ) may be portrayed.
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Markovian preference summaries

The simplest preference summary which has some memory of its history remembers only

the most recent state visited:

e x x xn n
n( )1

1λ λL = .

We call this the Markovian preference summary.  For completeness, set e(∅) = ∅.  This is an

updatable preference summary with

θ µ( , )x y y= .

Call the utility functions having this preference summary the Markovian utility functions.

Memoryless utility is Markovian because preferences depending on the null portion of the

preceding history depend (vacuously) on the last state in the history.  It follows that the class of

Markovian utility functions includes the memoryless utility functions and possibly more.  We

describe exactly how much more in the following theorem.

Theorem 2.5: Let U be a utility function over stochastic trees which is continuous in its duration

arguments, satisfies nontriviality and has U(φ|xλ ) = 0 for all xλ .  Then U has a Markovian

preference summary if and only if there are functions w(y|x), ∆w(y|x) > 0, v(y) and a(y) such that

U
u x
u x

u x x
u x x

u x x
u x x

t

t

t

t
n
t

n

n
t

n

n

n
( ) ~

( | )
( | )

( | )
( | )

( | )
( | )

( )x t 1

1

2 1

2 1

1

1

1

1

2

2
0

∅
∅































−

−∆ ∆ ∆
o oKo

where

u y x w y x w y x v y e dst a y s
t

( | ) ( | ) ( | ) ( ) ( )= + −∫∆
0

∆ ∆u y x w y x et a y t( | ) ( | ) ( )= −

for some functions w(y|x), ∆w(y|x) > 0, v(y), a(y) with w(y|y) = 0, ∆w(y|y) = 1.

Theorem 2.6: Under the assumptions of the previous theorem, if U has a Markovian preference

summary, then its summary utility and discount factors are given for t ≥ 0 by

u y x w y x w y x v y e dst a y st
( | ) ( | ) ( | ) ( ) ( )= + −∫∆

0

∆ ∆u y x w y x et a y t( | ) ( | ) ( )= − .

Moreover for a distribution µ on [0,∞),
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∆ ∆ ∆u y x u y x d s w y x e d ss a y s( | ) ( | ) ( ) ( | ) ( )( )µ µ µ= =
∞ −∞

∫ ∫0 0
.

Markovian utility extends memoryless utility by adding the functions w(y|x) and ∆w(y|x).

The former may be interpreted as an instantaneous toll or bonus accrued in the transition from x

to y.  The latter is a discount factor, in that all utility subsequent to the transition from x to y is

increased or decreased by that factor.  (Roach et al. (1988) use such transition-induced discount

factors to model morbidity effects.).  The quantities v(y) and a(y) have the same interpretation as

under the memoryless preference summary.  In particular, risk attitude for durations spent in state

y is constant as well under Markovian preference summaries.

Semi-Markovian preference summaries

One possible generalization of the Markovian preference summary would be a preference

summary which remembers not only the last state visited, but also the associated duration (or

distribution thereof).  We call this the semi-Markov preference summary.  It is formally defined as

follows: For nonzero λ1, λ2, ..., λn

e x x x x xn k k n
n k n( )1

1λ λ λ λL LL= ≠ = =∗ ∗       if  xk-1

Note that the preference summary must keep track of whether previous states in the history are

identical to the last one, in which case the distribution of time spent in that state is the convolution

λ λk n∗ ∗K  of the distributions λ iof the previous identical states.  For completeness, set e(∅) = ∅.

This is also an updatable preference summary, with

θ λ µ
µ

λ( , )
.

x y
y y x

x y x
= ≠

=




∗µ

The corresponding class of semi-Markovian utility functions includes the Markovian utility

functions but is considerably broader than that class, as the next two results show.

Theorem 2.7: Assume nontriviality holds and U(φ|xλ ) = 0 for all xλ .  Then U has a semi-

Markovian preference summary if and only if there are functions ∆w x( )λ  > 0, w y( )µ , and for x ≠
y, functions ∆w y x( | )λ  > 0, w y x( | )λ  with

w(y|∅) = 0, ∆w(y|∅) = 1

such that the affine restrictions

w y w y d tt( ) ( ) ( )µ µ=
∞

∫0
(2.12)
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∆ ∆w x w y x w x w y x d tt t( ) ( | ) ( ) ( | ) ( )λ λ λ=
∞

∫0
(2.13)

∆ ∆ ∆ ∆w x w y x w x w y x d tt t( ) ( | ) ( ) ( | ) ( )λ λ λ=
∞

∫0
(2.14)

hold, and for x x xn1 2≠ ≠ ≠L

( ) ( )U x x x
w x
w x

w x
w x

w x x
w x x

w x
w x

t t
n
t

t

t
n n

t

n n
t

n
t

n
t

n
n

n

n

n1 2
1

1

1

1

1

1

1 2
1

1

1

1
0L o o L o o= ∅

∅




































−

−

−

−

( | )
( | )

( )
( )

( | )
( | )

( )
( )∆ ∆ ∆ ∆

   (2.15)

Theorem 2.8: Under the assumptions of the previous theorem, if U has a semi-Markovian

preference summary, then its summary utility and discount factors are given by

u y x
w y x w y x w y y x

w y w y

w y
y x

( | )
( | ) ( | ) ( )

( ) ( )

( )

ν λ

λ λ ν

λ ν λ

λ

=
+ ≠

−
=







∗
∆

∆
(2.16)

and

∆
∆ ∆

∆
∆

u y x
w y x w y y x

w y

w y
y x

( | )
( | ) ( )

( )

( )
.

ν λ

λ ν

λ ν

λ

=
≠

=







∗ (2.17)

To gain some insight into the nature of semi-Markov utility, use the results of the last

theorem in the recursive equation (2.10) to obtain for y ≠ x

( )

u y h x u y x u y x u h y

w y x w y x w y w y x w y u h y

w y x
w y x

w y
w y

u h y

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( ) ( | ) ( ) ( | )

( | )
( | )

( )
( )

( | ) .

ν λ ν λ ν λ ν

λ λ ν λ ν ν

λ

λ

ν

ν
ν

= +

= + +

= 












∆

∆ ∆ ∆

∆ ∆
o (2.18)

From this we see that a single semi-Markov recursion consists of two stages: First the subsequent

utility u h y( | )ν  is discounted by the factor ∆w y( )ν  and the result is incremented by the utility

w y( )ν .  Second, this result is in turn discounted by the factor ∆w y x( | )λ , after which the

bonus/toll w y x( | )λ  is added.  The first stage uses the state y and its duration ν, but not the

preference summary xλ ; the second stage uses the state y without its duration ν, and the

preference summary xλ .

On the other hand, when y = x, the recursive equation (2.10) becomes
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u y h y u y y u y y u h y

w y w y

w y

w y

w y
u h y

( | ) ( | ) ( | ) ( | )

( ) ( )

( )

( )

( )
( | )

ν λ ν λ ν λ λ ν

λ ν λ

λ

λ ν

λ
λ ν

= +

=
−

+

∗

∗ ∗
∗

∆

∆
∆
∆

Semi-Markovian utility must distinguish the cases y ≠ x and y = x in order to keep utility recursion

consistent with concatenation.  In essence, this is the price paid for departure from exponential

utility (the Markovian case), which is automatically consistent with concatenation.

A particularly convenient form of semi-Markov utility arises when it is assumed that the

tolls w y x( | )λ  and discount factors ∆w y x( | )λ  are duration-independent, that is, w y x( | )λ  =

w(y|x) and ∆w y x( | )λ  = ∆w(y|x).  In this case, these quantities cancel out of the affine restrictions

(2.13) and (2.14), which reduce to

∆ ∆w x w x d tt( ) ( ) ( )λ λ=
∞

∫0
. (2.19)

Semi-Markov utility is in this case completely determined by w(y|x), ∆w(y|x), and the quantities

w(y t ) and ∆w yt( ), for constant durations t.

Representations for semi-Markovian utility

The semi-Markovian class of utilities broadens the class of Markovian utilities by replacing

exponential utility and exponential discount factors with utilities w yt( ) and discount factors

∆w yt( ) of arbitrary forms.  However, it is possible to represent semi-Markovian utility in a

generalized exponential form which clarifies some of its properties.  If w yt( ) is positive and

strictly increasing (or negative and strictly decreasing) in t, and differentiable, it may always be

represented as

w y v y e dst A st
y( ) ( ) ( )= −∫0

for some functions v(y), A ty ( ).  Moreover, because ∆w yt( ) > 0, it may always be represented as

∆w y et B ty( ) ( )= −

for some function B ty ( ).  When A ty ( ) = B ty ( ) = a(y)t and duration independence holds, we

recover the Markovian case.  In addition, the risk aversion function a ty ( ) associated with w yt( )

is the derivative (should it exist) of A ty ( ):

a t
w y

w y
A ty

d
dt

t

d
dt

t y( )
( )

( )
( )= − = ′

2

2

.

General formulas for evaluating an exponential(µ) sojourn in a state y are readily devised.

By interchanging the order of integration one can show
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w y v y e ds e dt

v y e ds

A st t

A s s

y

y

( ) ( )

( ) .

( )

( )

µ µ

µ

µ= 





=

−∞ −

− −∞

∫∫

∫
00

0
(2.20)

Moreover, in the duration-independent case

∆w y e e dt e dtB t t B t ty y( ) ( ) ( )µ µ µµ µ= =− −∞ − −∞

∫ ∫0 0
(2.21)

A convenient form for evaluating exponential sojourns is the power form for semi-Markov

utility

w y
v y

tt

y

y( )
( )

=
−

−

1
1

α
α . (2.22)

defined for α y  < 1.  The associated risk-aversion function is

a t
ty

y( ) =
α

.

It is not difficult to show that for exponential (µ) sojourns in state y

( )w y v y
y

y( ) ( )µ

α

µ
α=







 −

−
1

1
1

Γ (2.23)

The advantage here is that in contrast to the case of exponential utility, w y( )µ  is finite for all
values of µ and all permitted risk attitudes, both risk averse (0 ≤ α y  < 1) and risk seeking (α y  ≤

0).  The companion power form

∆w y tt y( ) = −β

is less realistic as a discount factor since its values can exceed 1 for βy ≠ 0.  However for

exponential sojourns, there is the convenient closed-form expression

( )∆ Γw y y

y( )µ βµ β= −1 (2.24)

the latter equation holding in the duration-independent case and for βy < 1.

Stochastic tree rollback

The results presented above may be used to derive special rollback formulas for stochastic

trees having only exponential durations.  That is the purpose of this section.  We begin by
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considering the case of semi-Markovian utility, since both Markovian and memoryless utility are

special cases.

Consider a schematic representation of a stochastic fork

G      =
µiy H i =

pi
Hiy

µ

formed by competing rates µ i  > 0 at state y, where µ = µ ii∑  and p i i= µ µ .  Here H i  is itself a

stochastic subtree for which the utility E u H y( | )i
µ  has already been calculated.  Supposing that

the preference summary at G is xλ , we wish to derive a useful recursive formula for E u G x( | )λ .

Because self-transitions may be eliminated when durations are exponential, we assume that x ≠ y.

Denote by H the stochastic subtree consisting of a chance p i  of subtree H i .  Then G = yµ H, and

according to (2.18)
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When the semi-Markov representations (2.20), (2.21) are substituted, the result in the duration-

independent case is
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In the special case of the semi-Markov power forms (2.23), (2.24), we obtain
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1 (2.25)

valid for α y  < 1 and βy < 1.  Finally, in the statewise exponential case giving rise to Markovian

utility, we obtain
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(2.26)

valid whenever a(y) + µ  > 0.

Cyclic stochastic tree rollback

The utility rollback algorithm for cyclic stochastic trees is an intuitive extension of the

acyclic rollback algorithm, and indeed is merely a version of the method of successive

approximations (value iteration) from infinite horizon dynamic programming (e.g., Bertsekas

1976, Ross 1983).  We give here a simple example to illustrate the technique.  The example is

also meant to concretely illustrate rollback using preference summaries, with its associated

computational simplifications.

Consider the hypothetical stochastic tree

0
0

0

1

2

2

µ1

µ0

λ01

λ02

λ10

λ20

λ12

µ2

having three possible states which we label 0,1,2.  The transition rate from x to y is λ xy .  A

transition with rate µx  having no destination state indicates subsequent sample path φ.  The rates

are given by
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We evaluate the tree using the power form of semi-Markov utility with βy = 0, α y = 05.  for all

states y, and

( )v v y= =( )
10
0 6
0 2

.

.

.
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



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We set all bonuses w(y|x) to zero and all discount factors ∆w(y|x) to one, with the exceptions

w(0|1) = −0.10 ∆w(0|1) = 0.90
w(0|2) = −0.20 ∆w(0|2) = 0.50.

In other words, a transition from 1 to 0 is accompanied by a toll of 0.10 and all subsequent utility

is discounted by a factor of 0.90; for the transition from 2 to 0, the toll is 0.20 and subsequent

utility is discounted by a factor of 0.50.

We use the recursion formula (2.25) moving from right to left in the tree.  We begin by

setting the utility of all terminal nodes in the tree to zero, then applying (2.25) from right to left

until all nodes are assigned utilities.  These newly computed values are assigned to the terminal

nodes, and the process is repeated.  Eventually the utilities converge to the true values for the

cyclic tree.  A numerical summary is presented in Table 1.
In Table 1, the expression Eu G xyn( | ) denotes the expected utility, given preference

summary (that is, preceding state) x, of the stochastic subtree Gyn  which begins at state y and is

truncated after n repeated levels.  Notice that for each y, Eu G xyn( | ) must be calculated for each x

which could precede y, that is, for each preference summary which could occur at y.  So state 0 is

tagged with three utility values (predecessors ∅,1,2), state 1 with one (predecessor 0), and state 2

by two (predecessors 0,1).  Contrast this with the most general form of recursion (Theorem 2.1),

in which the preference summary at y is in effect the entire history preceding y.  In that case
Eu Gyn( | )xλ  would be required for every possible history xλ  preceding y.  The computational

simplification due to an available preference summary is dramatic.
We assert without proof that the expected utilities Eu G xyn( | ) converge to the

corresponding infinite-horizon values Eu G xy( | )  as n → ∞.  Convergence questions will not be

treated here.  The overall expected utility of the cyclic tree is therefore the approximate value
Eu G n( )0  = 0.508 with n = 10.
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Table 1: Recursive calculations for a cyclic stochastic tree

n Eu(G1n|0) Eu(G2n|0) Eu(G2n|1) Eu(G0n) Eu(G0n|1) Eu(G0n|2)

0 0 0 0 0 0 0

1 0.15 0.053 0.053 0.425 0.283 0.013

2 0.285 0.064 0.064 0.481 0.333 0.041

3 0.309 0.089 0.089 0.496 0.346 0.048

4 0.325 0.095 0.095 0.503 0.353 0.052

5 0.33 0.099 0.099 0.506 0.356 0.053

6 0.332 0.1 0.1 0.507 0.357 0.054

7 0.333 0.101 0.101 0.508 0.357 0.054

8 0.333 0.101 0.101 0.508 0.357 0.054

9 0.334 0.101 0.101 0.508 0.357 0.054

10 0.334 0.101 0.101 0.508 0.357 0.054

3. Assessment and Application

Utility assessment procedures

Space does not permit a complete discussion of assessment procedures for the classes of

utility functions we have introduced here.  We will confine the discussion to the assessment of the

risk attitude parameters for the exponential and power forms described above.  A possible

assessment setting is a generalization of the vaccine scenario discussed in Section 1, which an

assessor might present as follows:

You have been exposed to a virus which might reduce your life-span if left untreated.  Your untreated
lifetime is has distribution µ1 with mean c% lower than before.  There is a treatment which will restore
your life-span to its baseline distribution µ0 but there is a probability p of fatal side effects.  What is the
largest value of p for which you would accept treatment?

Using stochastic tree notation, we require a value p = pvaccine  which produces the indifference

y
µ0

p

1 - p

~ y
µ1

(3.1)

A convenient aspect of this scenario is that the risk-neutral response is pvaccine  = c, so that lower

values of pvaccine  correspond to risk aversion.
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Ideally, the distributions µ0  and µ1 should be realistic lifetime distributions whose

expected utilities have convenient closed forms.  A class of distributions compatible with

exponential utility is the gamma (m, λ) family (the distribution of the sum of m independent

exponential (λ) durations).  The gamma parameters can be chosen to reasonably approximate

human survival curves (Hazen 1992).  If µ is gamma(m, λ) and utility has the exponential form of

Theorem 2.4, then

u y
v y

a y a y

m
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When µ0  is gamma(m,λ) and µ1 is gamma(m, λ/(1-c)), the indifference (3.1) forces the equality
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which can be solved numerically for a(y).  When m = 1 (exponential lifetimes), the solution is

a y p
c p

c
( ) =

−
−1

λ

A flexible class of distributions compatible with power utility is the Weibull family with

parameters m and θ, having hazard rate function

µ
θ θ

( )t
m t

m

= 



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−1

and mean θΓ(1 + 1/m).  When semi-Markov utility takes on the power form (2.22), then

w y v y
m m

y
y

( ) ( )µ
αθ α

=
−








−1 1
Γ .

When µ0  is Weibull(m,θ) and µ1 is Weibull(m, (1-c)θ), the indifference (3.2) forces an equality

which can be solved to yield

α y

p
c

= −
−
−

1
1
1

ln( )
ln( )

(independent of m and θ).

We advocate the use of continuous-risk assessment scenarios such as (3.1) involving small

risks present in continuous time because such scenarios more closely approximate the decisions to

which the assessed utility functions will be applied.  Although continuous-risk assessment
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scenarios are cognitively demanding, we have found that subjects can provide answers when

options are portrayed as survival curves using an interactive graphical computer interface.  The

resulting utility functions seem to more accurately portray risk attitudes than do utilities assessed

with standard binary gamble/ sure thing lotteries (Hazen, Hopp and Pellissier 1990; Pellissier and

Hazen 1993).

An analysis of the decision to perform carotid endarterectomy

The material in this section is based on Matchar and Pauker (1986), who conduct a

decision analysis of whether to perform a carotid endarterectomy (a surgical clearing of the

carotid arteries) on a patient experiencing transient ischemic attacks (temporary symptoms such as

lightheadedness and garbled speech, due to impaired blood supply).  Matchar and Pauker report

that "despite controversy regarding their value, approximately 85,000 carotid endarterectomies

are performed annually."  Their analysis, which was based on a discrete-time Markov chain

model, found the decision to be a toss-up, that is, there was no clinically significant net benefit to

performing carotid endarterectomy.  The evaluation criterion was mean quality-adjusted duration.

Here we present the equivalent stochastic tree model, but evaluate the alternatives using

Markovian and semi-Markovian utility functions.  We can therefore examine the impact of patient

risk attitude on the preferred decision.

Henceforth let the surgical option be to perform endarterectomy, and the nonsurgical

option to forego it.  The stochastic tree for the nonsurgical option has been presented  in Figure 1

of Section 1.  The complete stochastic tree for this decision is depicted in Figure 6, which shows

the initial decision as to whether to perform surgery, as well as chances of mortality and stroke

following surgery, and the 30-day chance of stroke for transient ischemic patients in the absence

of surgery.  As an approximation, all states depicted in Figure 6 are assumed instantaneous.  (The

true elapsed time of one month or less is small compared to other durations in the model.)  This

portion of the stochastic tree is therefore identical in structure and function to a decision tree.

Patients foregoing surgery enter the stochastic tree of Figure 1 at the appropriate state (Well or

Stroke, depending on whether a stroke has occurred in the short term) with unreduced subsequent

stroke rate µstroke  = .05/yr.  Patients undergoing and surviving surgery enter the same tree at the

appropriate state with subsequent stroke rate µstroke  = .05/yr. reduced by the efficacy factor EFF.

Matchar and Pauker use EFF = .50.  The values for the remaining parameters in the stochastic

tree are summarized in Table 2.
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Well

Dead

Stroke

Survive

Surgery

No surgery

µstroke = .05 / yr.

µstroke = .05 / yr.

µstroke = EFF . .05 / yr.

µstroke = EFF . .05 / yr.

Popdie

Popstroke

1 - Popstroke

1 - Popdie

Well

Stroke
Pearlystrk

1 - Pearlystrk

Figure 6: The decision to perform carotid endarterectomy

We begin by evaluating the stochastic tree under Markovian utility.  For simplicity and

consistency with Matchar and Pauker, we use no tolls or discount factors (that is, we assume

w y x( | ) = 0 and ∆w y x( | ) = 1 for all x,y).  We assign the same quality factors v(y) as Matchar and

Pauker, namely

y v(y)

Well 1.0

Post Small Stroke 0.8

Post Big Stroke 0.2

Dead 0

We suppose the risk aversion parameters a(y) are determined using the vaccine scenario discussed

in the previous subsection.  Specifically, let a(y) be the parameter for which an immediate

mortality probability pvaccine  would be just acceptable in order to eliminate a c = 10% reduction in

mean (exponentially distributed) lifetime.  Recall that the risk neutral response would be pvaccine  =

c =10−1.  For simplicity we assume that pvaccine  (and therefore a(y)) is the same regardless of the

state y.
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Table 2: Variables used in the Matchar-Pauker analysis

Description
Variable
Name

Value

Operative mortality probability (30 days) Popdie .06

Operative stroke probability
(30 days)

Popstroke .08

30-day stroke probability for non-
surgical patients

Pearlystrk .04

Annual stroke rate for non-surgical
patients

µstroke .05 / yr.

First-month death probability for big-
stroke victims

Pearlydie 0.38

Proportion of strokes having significant
mortality/morbidity

Pbig 2/3

Excess risk of non-stroke death µexcess .065 / yr.

Mortality due to other causes (58-yr-old
white male)

µo .01106 / yr.

Stochastic tree rollback proceeds recursively by invoking the exponential utility formula

(2.26) at stochastic forks, and averaging utilities at chance forks.  Rollback proceeds from right to

left in the stochastic tree, until utilities are calculated for the Surgery and No Surgery nodes in

Figure 6.  As an aid to interpreting the utility values, one may calculate certainty equivalent

lifetimes at each node, that is, constant durations t spent in the state Well such that u Well t( ) is

equal to the expected utility at the node in question.
These certainty equivalent lifetimes are given as a function of ( )log10 p vaccine  in Figure 7.

Values of pvaccine  less than 10−1 yield risk aversion (a(y) > 0), and those exceeding 10−1 yield risk
seeking (a(y) < 0).  The risk-neutral certainty equivalent lifetimes are eCESurg = 9 705.  yr.,

eCEnoSurg = 9 093.  yr., slightly favoring surgery.  Matchar and Pauker obtain the respective values

8.00 yr. and 7.76 yr.  We attribute the discrepancy to continuous- versus discrete-time model

structure.

Matchar and Pauker do attempt to model risk aversion by including a discount rate for

future life-years.  Because our risk attitude parameter a(y) may be regarded as a discount rate,

their approach would be the discrete-time equivalent of ours.  They found that the surgical and

nonsurgical options become essentially equivalent as discount rate increases beyond 5%.  This is

in agreement with the results of Figure 7 for log( )pvaccine  < -1.8, or equivalently a y( ) %> 6 .
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Risk Averse Risk Seeking

2 1.5 1 0.5 0
6

7

8

9

10

11

eCE Surg log_p vaccine

eCE noSurg log_p vaccine

12

log_p vaccine

Figure 7: Certainty equivalent lifetimes (in years) as a function of pvaccine  for exponential
utility

For other utility functions, however, results can be quite different.  Figure 8 shows

certainty equivalent lifetimes as a function of pvaccine  when a particular version of the power form

of semi-Markov utility is used.  Here we have assumed the same quality factors v(y) as above, but
have eliminated any discounting effects by setting βy = 0, and have let the remaining parameters

α y  be determined by assessing the immediate mortality probability pvaccine  which would be just

acceptable in order to eliminate a c = 10% reduction in mean (Weibull distributed) lifetime, as

described in the previous section.  Once again, pvaccine  = 10−1 is the risk-neutral response.  For
simplicity we suppose α y  is independent of y.  Rollback proceeds using (2.25) at stochastic forks,

and utility averaging at chance forks.  As Figure 8 shows, the nonsurgical option is increasingly
preferred as risk aversion increases.  This is not surprising, due to the form  =a t ty y( ) α  of the

coefficient of risk aversion for power utility, which becomes arbitrarily risk averse as t approaches

zero.  Risks of immediate death are therefore increasingly undesirable, and options which avoid

such near-term risks are increasingly desirable as risk aversion increases.
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The lessons here are threefold: First, risk attitude as captured by utility functions over

stochastic trees can play an important role in medical treatment choice.  Second, there are aspects

of risk aversion, such as aversion to near-term risks, which are not adequately modeled by time

discounting, but which can be captured by the semi-Markovian class of utility functions.  Third, it

may be beneficial to portray risk attitude not just as an abstract parameter, but also as the

indifference level of a proxy quantity such as pvaccine  which plays a meaningful role in some simple

scenario resembling the decision problem of interest.  The relation between treatment choice and a

meaningful proxy measure of risk attitude can provide a convincing argument for the optimality of

the option in question.

Risk Averse Risk Seeking

2 1.5 1 0.5 0

5

10

15

20

25

CESurg log_p vaccine

CEnoSurg log_p vaccine

1

log_p vaccine

Figure 8: Certainty equivalent lifetimes (in years) as a function of pvaccine  for power
utility

Conclusion

What utility functions over stochastic trees can be evaluated recursively?  We have shown

that any utility function can be so evaluated, but that recursive evaluation is computationally

worthwhile only for utility functions having preference summaries of low dimension.  For three

specific low-dimensional summaries, the memoryless, the Markovian, and the semi-Markovian,

we have identified the respective classes of utility functions having those summaries.  We have
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illustrated how such utility functions may be used to model risk attitude in the medical decision of

whether to perform a carotid endarterectomy.
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Appendix

Proof of Theorem 2.1

For fixed xλ  and yµ , the utility functions U(h|xλ yµ ) and U(yµ h|xλ ) both represent the

same preference relation over stochastic trees of the form xλ yµ h.  They must therefore be

strategically equivalent, that is, there must be constants ∆U y( | )µ λx  > 0 and a y( | )µ λx  such that

U y h a y U y U h y( | ) ( | ) ( | ) ( | )µ λ µ λ µ λ λ µx x x x= + ∆

Set h = φ to conclude that a y( | )µ λx  = U y( | )µ λx , from which the recursive equation (2.7)

follows.

To show the affine restriction (2.5), note that by definition we have

( )U y h U y U y U h y d s

U y U y U h y d s

s s s

s s

( | ) ( | ) ( | ) ( | ) ( )

( | ) ( | ) ( | ) ( ).

µ λ λ λ λ

µ λ λ λ

µ

µ

x x x x

x x x

= +

= +

∞

∞

∫
∫

∆

∆

0

0

The affine restriction (2.5) is an immediate consequence when the last equation is compared to

(2.7).

To show the concatenation restriction (2.6), note first that

x xλ µ ν λ µ νy y h y h= ∗ .

The utility of the left side of this expression is, using the recursion (2.7),

( )
U y y h U y U y U y h y

U y U y U y y U y y U h y y

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | ) ( | ) ( |

µ ν λ µ λ µ λ ν λ µ

µ λ µ λ ν λ µ ν λ µ λ µ ν

x x x x

x x x x x

= +

= + +

∆

∆ ∆

and the utility of the right side is

U y h U y U y U h y( | ) ( | ) ( | ) ( | )µ ν λ µ ν λ µ ν λ λ µ ν∗ ∗ ∗ ∗= +x x x x∆ .

Set h = φ in each of these last two equations and equate the results to obtain

U y U y U y U y y( | ) ( | ) ( | ) ( | )µ ν λ µ λ µ λ ν λ µ∗ = +x x x x∆ .

Substitute this into the right side of the preceding equation, equate the result to the right side of

its precedecessor, and cancel terms to conclude

∆ ∆ ∆U y U y y U h y y U y U h y( | ) ( | ) ( | ) ( | ) ( | )µ λ ν λ µ λ µ ν µ ν λ λ µ νx x x x x= ∗ ∗ .

By nontriviality there is a sample path h with U h y y U h y( | ) ( | )x xλ µ ν λ µ ν= ≠∗ 0.  Therefore this

utility term can be cancelled from the last equation, and (2.6) results.  QED.
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Proof of Theorem 2.2

Given a sample path h and preference state q, we define u(h|q) by selecting an arbitrary zν

with e(zν ) = q, and letting u(h|q) = U(h|zν ).  If e(xλ ) = q = e(zν ), then because e is a preference

summary, conditional preferences given xλ  and given zν  are identical, so U(⋅ |xλ ) ~ U(⋅ |zν ) = u(⋅
|q), as claimed.  In fact, because U(φ|xλ ) = 0 for all xλ , it follows that

U a u q( | ) ( ) ( | )⋅ = ⋅  x xλ λ

for some function a(xλ ) > 0.  Substitute this equation into (2.1) and use preference updatability to

conclude

a u y h q a u y q U y a y u h q y( ) ( | ) ( ) ( | ) ( | ) ( ) ( | ( , ))x x x xλ µ λ µ µ λ λ µ µθ= + ∆ .

Then

∆
∆

U y a y
a

u y h q u y q
u h q y

u y q
( | ) ( )

( )
( | ) ( | )

( | ( , ))
( | )

µ λ λ µ

λ

µ µ

µ
µ

θ
x x

x
=

−
≡ .

Equation (2.10) is an immediate consequence of this definition of ∆u y q( | )µ .  To show (2.9), use

the definition of ∆u and (2.6) to write

∆ ∆ ∆ ∆

∆

∆

u y q u y q y U y U y y
a y
a

a y y
a y

U y
a y y

a

u y q

( | ) ( | ( , )) ( | ) ( | )
( )
( )

( )
( )

( | )
( )

( )

( | )

µ ν µ µ λ ν λ µ
λ µ

λ

λ µ ν

λ µ

µ ν λ
λ µ ν

λ

µ ν

θ =

=

=

∗

∗

x x
x
x

x
x

x
x

x

which is the desired result.  Finally, equation (2.8) follows from (2.10) because

( )
∆

∆

u y q u h q y u y h q u y q

u y h q u y q ds

u y q u h q y ds

s s

s s

( | ) ( | ( , )) ( | ) ( | )

( | ) ( | )

( | ) ( | ( , ))

µ µ µ µθ

θ

= −

= −

=

∞

∞

∫
∫

0

0

QED

Proof of Theorems 2.3 and 2.4

We require the following lemma.

Lemma A.1: The only continuous functions g(t) satisfying

g s t g s e g tas( ) ( ) ( )+ = + −
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in some interval of values t are

g t k e duaut
( ) = −∫0

for real k.

Proof: If a = 0, the functional equation becomes

g(s + t) = g(s) + g(t)

whose only continuous solution is the linear function g(t) = kt = k ds k e ds
t ast
1

0 0
⋅ =∫ ∫ − , as claimed.

Suppose a ≠ 0.  Equate g(s + t) with g(t + s) to obtain

g s e g t g t e g sas at( ) ( ) ( ) ( )+ = +− −

or equivalently

g s
e

g t
eas at

( ) ( )
1 1−

=
−− −

holding for all nonzero s,t.  It follows that both sides must be constant, that is,

g t
e

k
aat

( )
1−

=−

for all nonzero t (and by continuity, for t = 0 as well, if 0 is in the interval of interest).  So

( )g t
k
a

e k e dsat as
t

( ) = ⋅ − =− −∫1
0

.

The latter function has the property that

g s t k e du

k e du e du

k e du e e du

g s e g t

au
s t

au
s

au

s

s t

au
s

as au
t

as

( )

( ) ( )

+ =

= +





= +





= +

−+

− −+

− − −

−

∫

∫ ∫

∫ ∫

0

0

0 0

as claimed.  QED.

To begin the proof of Theorem 2.4, invoke the concatenation restriction (2.9) under

memoryless utility to obtain

∆ ∆ ∆u y u y u y( ) ( ) ( )µ ν µ ν∗ = .
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Letting µ and ν be degenerate distributions at s and t, respectively, we conclude that the function

g(t) = ∆u yt( ) satisfies the functional equation g(s+t) = g(s)g(t) for all s,t > 0.  Since ∆u  may be

expressed in terms of U, which is continuous in its duration arguments, it follows that the function

g is continuous.  Therefore g(t) = e a y t− ( )  =∆u yt( ) for some constant a(y) which may depend on the

state y (e.g., Section 1 in Aczel 1987).

Next, invoke the recursive equation (2.10) under memoryless utility to obtain

u y u y u y u y( ) ( ) ( ) ( )µ ν µ µ ν∗ = + ∆ .

Let µ and ν be degenerate respectively at s and t to obtain

u y u y u y u y u y e u ys t s s t s a y s t( ) ( ) ( ) ( ) ( ) ( )( )+ −= + = +∆ .

The function g(t) = u yt( ) therefore satisfies the functional equation of Lemma A.1 and is

continuous in t.  Therefore

u y v y e dst a y st
( ) ( ) ( )= −∫0

as the theorem claims.

Finally, invoke the affine restriction (2.8) under memoryless utility to obtain

∆ ∆u y u h u y u h d ss( ) ( ) ( ) ( ) ( )µ µ=
∞

∫0

Cancel u(h) to obtain the last claim of the theorem.

Next we turn to Theorem 2.3.  By Theorem 2.2 under memoryless utility, U(⋅) ~ u(⋅|∅) =

u(⋅).  To show necessity, invoke the recursive equation (2.10) for memoryless utility to obtain

u x u x u x u

u x
u x

u

t t t

t

t

( ) ( ) ( ) ( )

( )
( )

( )

y y

y

s s

s

= +

= 





∆

∆

Now apply the same procedure to u( )ys , and so on, to obtain the claim of the theorem.

To show sufficiency it must be demonstrated that U has a memoryless preference

summary.  As a preliminary step, note that

[ ]
( )

( )

U y E U y

a b E
u x
u x

u x
u x

u y

a b
u x
u x

u x
u x

u y

s s

T

T
n
T

n
T

s

n

n

s

n

n

n

n

( ) ( )

( )
( )

( )
( )

( )

( )
( )

( )
( )

( )

x xTλ

λ

λ

λ

λ

=

= + ⋅






























= + ⋅




















1

1

1

1

1

1

1

1

∆ ∆

∆ ∆

oKo

oKo
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for some constants b > 0, a.  In the same way

U a b
u x
u x

u x
u x

n

n

n

n
( )

( )
( )

( )
( )

( )xλ
λ

λ

λ

λ= + ⋅




















1

1

1

1
0

∆ ∆
oKo .

Then

( )U y c U y U c

c b u x u x u y

s s

n
sn

( | ) ( ) ( )

( ) ( ) ( )

x x xλ λ λ

λ λ

= ⋅ − >

= ⋅ ⋅

0

1
1∆ ∆K

which is strategically equivalent (as a function of ys) to u ys( ).  The associated preference

summary therefore does not depend on xλ , hence is memoryless.  QED.

Proof of Theorems 2.5 and 2.6

We require the following extension of Lemma A1.

Lemma A.2: The only continuous functions g(t), f(t) satisfying

g(s + t) = g(s) + e−asf(t) (A.1)

for s,t > 0 are

f t k e du

g t c k e du

au
t

aut

( )

( )

=

= +

−

−

∫
∫

0

0

for real k,c.

Proof: Set s =1 in (A.1) to get

( )
g t g e f t

f t e g t g

a

a

( ) ( ) ( )

( ) ( ) ( ) .

1 1

1 1

+ = +

= + −

−

Resubstitute into (A.1) to get

( )g s t g s e g t ga s( ) ( ) ( ) ( )( )+ = + + −− −1 1 1 .

Replace s by s + 1 and subtract g(1) to get

( )g s t g g s g e g t gas( ) ( ) ( ) ( ) ( ) ( )+ + − = + − + + −−1 1 1 1 1 1 .

Now apply Lemma A.1 to the function g(t + 1) − g(1) to conclude

g t g k e duau
t

( ) ( )+ = + −∫1 1 1 0

and
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( )f t e g t g k e dua au
t

( ) ( ) ( ) .= + − = −∫1 1
0

.

where k = k1e
a.  Replace t by t − 1 in the penultimate equation to get

g t g k e du g k e dv k e e dv

g k e e dv e dv

c k e dv

au
t

a v
t

a av
t

a av avt

avt

( ) ( ) ( )

( )

( )= + = + =

= + − +





= +

−− − − −

− −

−

∫ ∫ ∫

∫ ∫

∫

1 1

1

1 0

1

1
1

1 1 1

1 0

1

0

0

as claimed.  This pair g(t), f(t) does satisfy A.1:

g s t c k e du

c k e du e du

c k e du e e du

g s e f t

au
s t

au
s

au

s

s t

au
s

as au
t

as

( )

( ) ( )

+ = +

= + +





= + +





= +

−+

− −+

− − −

−

∫

∫ ∫

∫ ∫

0

0

0 0

as desired.  QED

We now turn to Theorem 2.6.  From the concatenation restriction (2.9) we get

∆ ∆ ∆u y x u y x u y ys t s t( | ) ( | ) ( | )+ = .

Take natural logs and apply Lemma A.2 with a = 0 to get

( )
( )

∆

∆

u y x k s c

u y y k t

s
xy xy

t
xy

( | ) exp

( | ) exp .

= +

=

The last equation forces kxy to be independent of x.  So let kxy = −a(y), ∆w(y|x) = exp(cxy) for x ≠
y and ∆w(y|y) = 1 to get

∆ ∆u y x w y x et a y t( | ) ( | ) ( )= −

for all x,y, as desired.

According to the recursive equation (2.10) we have

u y x u y x u y x u y y

u y x w y x e u y y

s t s s t

s a y s t

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( | ).( )

+

−

= +

= +

∆

∆

Invoking Lemma A.2 we obtain
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∆w y x u y y k e ds

u y x c k e ds

t
xy

a y s
t

t
xy xy

a y s
t

( | ) ( | )

( | )

( )

( )

=

= +

−

−

∫
∫

0

0

(A.2)

(A.3)

for new constants kxy and cxy.  Set x = y in (A.2) and define v(y) = kyy to get

u y y v y e dst a y s
t

( | ) ( ) ( )= −∫0
.

Resubstitute into (A.2) to get

∆w y x v y k xy( | ) ( ) = .

Letting w(y|x) = cxy, we have according to (A.3)

u y x w y x w y x v y e dst a y st
( | ) ( | ) ( | ) ( ) ( )= + −∫∆

0
.

Substitute x = y here and compare to the equation for u(yt|y) to conclude that w(y|y) = 0.

This establishes all but the last claim of Theorem 2.6.  To derive that, substitute the

Markovian summary into the affine restriction (2.8) to get

∆ ∆u y x u h y u y x u h y d ss( | ) ( | ) ( | ) ( | ) ( )µ µ=
∞

∫0

and cancel the factor u(h|y).

To show necessity in Theorem 2.5, invoke the recursive equation (2.10) to obtain

( )
u u x u x u x x x

u x
u x

u x x x

t t t
n
t

t

t
t

n
t

n

n

( | ) ( | ) ( | ) ( | )

( | )
( | )
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



1 1 2 1

1

1
2 1

1 1 2

1

1

2

∆

∆

K

K

Apply (2.10) again to obtain

( )

( )

u
u x
u x

u x x u x x u x x x

u x
u x

u x x
u x x

u x x x

t

t
t t t
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n
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( | )

( | ) ( | ) ( | )

( | )
( | )

( | )
( | )

( | ) .

x t ∅ = ∅
∅







+

= ∅
∅





















1

1
2 1 2 1 3 2

1

1

2 1

2 1
3 2

1

1

2 2 3

1

1

2

2

3

∆
∆
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o K

Repeat until one obtains

( )u
u x
u x

u x x
u x x

u x x
u x x
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−
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1

2 1
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2
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o oKo .

Because U(x t) ~ u(x t |φ), the conclusion of the theorem follows.



45

To show sufficiency in Theorem 2.5, we must show that the given U has a Markovian

preference summary.  We have

[ ]
( )

U y E U y
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and similarly
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Therefore

U y U y U

u x u x x u x x u y x

s s

t t
n
t

n
s

n
n

( | ) ( ) ( )

( | ) ( | ) ( | ) ( | ).

x x xλ λ λ= −

= ∅ −∆ ∆ ∆1 2 1 1
1 2 K

from which it may be seen that U ys( | )xλ  is strategically equivalent (as a function of ys) to

u y xs
n( | ) .  Thus U has a Markovian preference summary.  QED.

Proof of Theorems 2.7 and 2.8

Invoke the concatenation equations (2.9) under the semi-Markov preference summary to

obtain

∆ ∆ ∆u y y u y y u y y( | ) ( | ) ( | )µ ν λ µ λ ν λ µ∗ ∗= (A.4)

and for y ≠ x

∆ ∆ ∆u y x u y x u y y( | ) ( | ) ( | ).µ ν λ µ λ ν µ∗ = (A.5)

The last equation when xλ is the null preference summary is

∆ ∆ ∆u(y u(y u(y yµ ν µ ν µ∗ ∅ = ∅| ) | ) | ) .

Define ∆w(yµ) = ∆u(yµ|∅), and solve the last equation for ∆u(yν|yµ) to get

∆
∆
∆

u(y y
w y

w y
ν µ

µ ν

µ| )
( )

( )
=

∗

. (A.6)

Substitute this back into (A.5) to get
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∆
∆

∆
∆

u(y x

w y

u(y x

w y

µ ν λ

µ ν

µ λ

µ

∗

∗ =
| )

( )

| )

( )
x ≠ y.

Replace µ ∗ ν and µ by constant durations s > 0, t > 0 to conclude that the ratio ∆u(ys|xλ)/∆w(ys)

does not depend on s.  Let ∆w(y|xλ) be this ratio.  We therefore have

∆u(ys|xλ) = ∆w(y|xλ)∆w(ys). (A.7)

Note that

∆
∆
∆

∆
∆

w y
u(y

w y

u(y

u(y

s

s

s

s( | )
| )

( )

| )

| )
∅ =

∅
=

∅
∅

= 1.

We show that (A.7) remains valid when a distribution µ replaces s.  Invoke the affine restriction

(2.8) under the semi-Markov preference summary to get for x ≠ y

∆ ∆u(y x u(h y u(y x u(h y d ss sµ λ µ λ µ| ) | ) | ) | ) ( )= ∫ .

When xλ is the null summary this becomes

∆ ∆w y u(h y w y u(h y d ss s( ) | ) ( ) | ) ( )µ µ µ= ∫ .

Use (A.7) in the penultimate equation to get

∆ ∆ ∆

∆ ∆

∆ ∆

u(y x u(h y w y x w y u(h y d s

w y x w y u(h y d s

w y x w y u(h y

s s

s s

µ λ µ λ

λ

λ µ µ

µ

µ

| ) | ) ( | ) ( ) | ) ( )

( | ) ( ) | ) ( )

( | ) ( ) | )

=

=
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∞

∞

∫
∫

0

0

Cancel the factor u(h|yµ), which by nontriviality can be considered nonzero, to obtain

∆u(yµ|xλ) = ∆w(y|xλ)∆w(yµ) (A.8)

the desired analog of (A.7).  (A.6) and (A.8) together establish the second equation (2.17) of

Theorem 2.8.

Now consider the recursive equation (2.10), which becomes under a semi-Markov

preference summary:

u y h y u y y u y y u h y

u y y
w y

w y
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( | )

µ λ µ λ µ λ λ µ

µ λ
λ µ

λ
λ µ

= +

= +

∗

∗
∗

∆

∆
∆

and for y ≠ x,



47

u y h x u y x u y x u h y

u y x w y x w y u h y

( | ) ( | ) ( | ) ( | )

( | ) ( | ) ( ) ( | ).

µ λ µ λ µ λ µ

µ λ λ µ µ

= +

= +

∆

∆ ∆

Set h = yT  in the last two equations, where T has distribution ν, and then take expectations to get
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λ µ

λ
ν λ µ∗

∗
∗= +

∆
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(A.9)

and for y ≠ x

u y x u y x w y x w y u y y( | ) ( | ) ( | ) ( ) ( | )µ ν λ µ λ λ µ ν µ∗ = + ∆ ∆ . (A.10)

When xλ is the null summary, the last equation becomes

w y w y w y u(y y( ) ( ) ( ) | )µ ν µ µ ν µ∗ = + ∆

where we define w(yµ) = u(yµ|∅).  Then w is affine in µ because u( )⋅ | y0  is a utility function, so

the first affine restriction (2.12) holds.  Solve to obtain

u(y y
w y w y

w y
ν µ

µ ν µ

µ| )
( ) ( )

( )
=

−∗

∆

and substitute back into (A.10) to get

( )u(y x u(y x w y x w y w yµ ν λ µ λ λ µ ν µ∗ ∗= + −| ) | ) ( | ) ( ) ( )∆ .

The constant-duration version of this last equation

( )u y x u y x w y x w y w ys t t s t t( | ) ( | ) ( | ) ( ) ( )+ +− = −λ λ λ∆

implies that u(yt|xλ) and w(yt) are related by an affine transformation with slope ∆w(y|xλ).  Letting

w(y|xλ) be the intercept, we have

u(y x w y x w y x w yt t| ) ( | ) ( | ) ( )λ λ λ= + ∆ .

Let t have distribution ν and take expectations to get

u(y x w y x w y x w yν λ λ λ ν| ) ( | ) ( | ) ( )= + ∆ .

This establishes (2.16) and therefore completes the proof of Theorem 2.8.

Turning to the remaining necessary conditions in Theorem 2.7, note first that the affine

restriction (2.8) requires that ∆u y q u h q y( | ) ( | ( , ))µ µθ  be an affine function of the measure µ.  For

the semi-Markov preference summary, this restriction forces

∆

∆

u y x u h y

u y y u h y

( | ) ( | )

( | ) ( | ) .

µ λ µ

µ λ λ µ

µ

µ

   affine in 

   affine in ∗
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Using (A.8) we conclude

∆w y u h y( ) ( | )µ µ µ   affine in .

For z ≠ y, set h = zν φ and then h = zνk, where (by nontriviality) w(zν) ≠ w(zνk), to conclude using

Theorem 2.8

( )∆ ∆w y w z y w z y w z( ) ( | ) ( | ) ( )µ µ µ ν µ+    affine in ;

( )∆ ∆w y w z y w z y w z k( ) ( | ) ( | ) ( )µ µ µ ν µ+    affine in .

The difference of these two expressions

( )∆ ∆w y w z y w z k w z( ) ( | ) ( ) ( )µ µ ν ν−   

is affine in µ, and is proportional to ∆w(yµ)∆w(z|yµ), so the latter is affine in µ as well.  Subtract

the affine ∆w(yµ)∆w(z|yµ)w(zν) from the first affine expression to conclude that the result

∆w(yµ)w(z|yµ) is also affine in µ.  This establishes the affine restrictions (2.13), (2.14).

Finally, to establish (2.15), suppose x x xn1 2≠ ≠ ≠L , and let x k k nx x= ( , , )K ,

tk k nt t= ( , , )K .  According to Theorem 2.8 and the recursive equations (2.10), we have
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Combine these to obtain u( | )x t ∅ .  Then (2.15) follows because U( )x t  ~ u( | )x t ∅ .  This

completes the proof of necessity in Theorem 2.7.

To show sufficiency, suppose U is specified by (2.15), where the affine restrictions (2.12)

through (2.14) hold.  To show U has a semi-Markov preference summary, we examine

conditional preference over sample paths h given ′ ′x λ , where ′ = ′ ′x ( , , )x xn1 K , λλ ' = ( , , )′ ′λ λ1 K n .  If
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x' has adjacent states ′ = ′+x xi i1  which are the same, then we can concatenate ′ ′′ ′+x xi i
i iλ λ 1  into ′ ′∗ ′+x i

i iλ λ 1 ,

and we may continue concatenation until all adjacent states are distinct.  Let xλ  denote the result

of this concatenation process, in which x x xn1 2≠ ≠ ≠L .  Note that the semi-Markov preference

summary e( ′ ′x λ ) of ′ ′x λ  is e( ′ ′x λ ) = xn
nλ .  We intend to show that under the utility function U of

(2.15), conditional preference given ′ ′x λ  depends only on the semi-Markov summary xn
nλ .

Let h be a sample path which after concatenation of successive identical states, becomes

ys, where y = ( , , )y ym1 K , s = ( , , )s sm1 K , and y y ym1 2≠ ≠ ≠L .  Consider first the case in which

x yn ≠ 1 .  According to (2.15), if T = ( , , )T Tn1 K  are independent durations with distributions λλ

then
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The last equality results from n applications of the affine restrictions (2.12) - (2.14), which at the

ith application looks like
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The case where x yn = 1  is similar.  In x ysλ , concatenate x yn
snλ
1

1  into xn
snλ ∗ 1 .  The analog of (A.11)

is then
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Now consider U( )x ysλ  as a utility function over ys with xλ  fixed.  Then in (A.11) and (A.12) all

terms not involving ys are effectively constants.  By removing all initial additive constant terms

and initial positive constant factors, we see that as a function of ys
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It follows that conditional preference given xλ  depends only on the semi-Markov summary e(xλ )

= xn
nλ , as claimed.  QED.
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Fragments deleted from the paper

  For example, consider the stochastic tree H = y y yλ λ λ1 2 3  = yλ λ λ1 2 3∗ ∗ .  The utility u y( )λ λ λ1 2 3∗ ∗  may

be calculated directly, and the utility u(y y yλ λ λ1 2 3 ) can be calculated by recursion.  The results

should be identical, and it is not difficult to see that they are:  The direct calculation is
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The recursive and the direct calculations therefore give the same results.  However, the direct

calculation is obviously more economical.  Whenever possible, it is preferable to concatenate

rather than use the recursion.

A parameterized family of semi-Markovian utility functions

Consider the family of semi-Markovian utility functions for which w yt( ) has risk aversion

function
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a t ey y y
ty( ) = −β γ γ

where βy is unrestricted in sign and γ y  > 0.  members of this family are, for each y, either

decreasingly risk averse (βy > 0), increasingly risk prone (βy < 0) or risk neutral (βy = 0).  Then

A t ey y
ty( ) = − −β γ .

One could also postulate a similar form for B ty ( ).  An advantage of these forms is that in the

stochastic tree rollback formula (3.Error! Bookmark not defined.), the integrals converge for all
values of βy, γ y , µ.  Although there is no closed form expression for these integrals, if one

expands e A ty− ( ) into its Taylor series and integrates the resulting expression term by term, one

obtains

e dt
k

kA t t y
k

y
k

y− −∞ −

=

∞z ∑= +( )

!
µ β

µ γ
0

1

0

d i (3.2)

which may be used to approximate the integrals to any desired degree of accuracy.


