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Abstract

Sochastic trees are semi-Markov processes represented using tree diagrams. Such trees have been found
useful for prescriptive modeling of temporal medical treatment choice. We consider utility functions over
stochastic trees which permit recursive evaluation in a graphically intuitive manner analogous to decision tree
rollback. Such rollback is computationally intractable unless a low-dimensional preference summary exists. We
present the most general classes of utility functions having specific tractable preference summaries. We examine
three preference summaries - memoryless, Markovian, and semi-Markovian - which promise both computational
feasibility and convenience in assessment. Their useisillustrated by application to a previous medical decision
analysis of whether to perform carotid endarterectomy.



A stochastic tree is a graphical modeling approach which combines useful features from
semi-Markov process transition diagrams and decision trees. This paper concerns itself with the
recursive evauation of utility functions over stochastic trees, that is, the calculation of an
expected utility measure using iterative methods akin to the method of successive approximations
(value iteration) in the stochastic dynamic programming literature (e.g. Bertsekas 1976, Ross
1983). Predecessorsin this areainclude the works of Mitten (1974), Sobel (1975) and
Sniedovich (1981) on preference-order dynamic programming; Howard and Matheson (1972),
and Chung and Sobel (1987) on dynamic programming with an exponential utility function; and
Kreps (19773, 1977b, 1978) on dynamic programming using arbitrary utility functions.

One of the most striking properties of the utility functions we present is that they may be
evaluated over any particular stochastic tree using arollback process akin to that used for
decision trees. Such rollback is achievable in principle for an arbitrary utility function (a
nonobvious fact on which we elaborate below), but isin general computationally intractable
unless alow-dimensional preference summary exists. The essential contribution of this paper isto
present the most general classes of utility functions having specific tractable preference
summaries. We examine three preference summaries - memoryless, Markovian, and semi-
Markovian - which promise both computational tractability and convenience in assessment. For
each of these summaries, we derive the corresponding class of utility functions having that
summary.

Our approach may be viewed as an addition to the decision analytic literature on utility
over time streams (Fishburn 1965, Keeney and Raiffa 1976, Bell 1977, Fishburn 1978, Barrager
1980, Harvey 1988). Stochastic tree modeling was motivated by applications to medical
treatment decision making (Hazen 1992, 1993). This paper may therefore also be regarded as a
contribution to the literature on health status indices (Torrance 1976, Bodily 1980, Pliskin,
Shepard and Weinstein 1980, Torrance, Boyle and Horwood 1982). One distinguishing aspect of
our work isthat in contrast to nearly all the literature mentioned above, we model time as a
continuous rather than a discrete quantity. We fed that modeling in continuous rather than
discrete time has significant advantages in formulation and presentation (Hazen 1992).

Because stochastic trees have only recently been introduced and are as yet not widely
used, we open the paper in Section 1 with a brief introduction to the topic. Our main results are
presented in Section 2. We discuss assessment issues and present an application in Section 3.

1. Stochastic Trees
What is a stochastic tree? In its simplest and most useful form, a stochastic tree is merely
atrangition diagram for a continuous-time Markov chain, unfolded into a tree structure, and



augmented by chance nodes. We have used stochastic trees as modeling tools for the analysis of
medical treatment decisions (Hazen 1992; Hazen 1993; Chang, Pellissier & Hazen 1993, Pellissier
and Hazen 1994).

As an example, consider the stochastic tree of Figure 1, which isamodel of nonsurgica
treatment of transient ischemic attacks, based on Matchar and Pauker (1986). The usudl
conventions for transition diagrams apply: The nodes represent states (Well, Big Stroke, Post Big
Stroke, and so on), and the arrows represent transitions between states. There are two types of
arrows, corresponding to the two types of possible transitions. Wavy arrows are labeled with
rates, and signify transitions which take time to accomplish. For instance, from the initial state
Well, there is an exponentially distributed duration with rate m, + m, .. until transition to Dead,
and an exponentia (m,,.) duration until transition to Stroke. The next state occupied is
determined by the shorter transition time, just as in any continuous-time Markov chain. Straight
arrows are labeled with probabilities, and signify immediate transition to one of the states
indicated. For example, from the state Stroke, there is an immediate transition to Big Stroke with
probability prig and to Small Stroke with probability 1 - puig. Wavy arrows emanate from
stochastic nodes, and straight arrows from chance nodes.
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Figure 1. Stochastic tree model for nonsurgical treatment of transient ischemic attacks



Nodes with dashed-line borders indicate transitions to previously depicted states. We call
these phantom nodes. For example, from the state Post Small Stroke, the next state visited is
either Dead or the previously depicted state Stroke. Note that there are several states to which
repeated visits are possible. When this occurs, we say the stochastic treeis cyclic. Otherwiseitis
acyclic.

Transformation of stochastic trees

There are several ways in which a stochastic tree can be transformed into a different but
equivalent representation. One of the most useful is a consequence of the familiar superposition/
decomposition rules for Poisson processes (e.g. Cinlar 1975, Ch. 4), and may be depicted as
follows:
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where

I :ayly, p,=1,/l
The diagram indicates that a sojourn in state x having several competing exponentia (1 )

transitions leading to respective states y is equivalent to an exponentia (I ) sojourn in x followed
by achance p, of transitiontoy. A second elementary transformation involves the aggregation

of severa distinct transitions to the same state:
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A third useful transformation is the eimination of sdf-transitions:



Its validity arises from the fact that a sum of geometrically many independent exponential
durationsis aso exponential.

As an example, in the recurrent stroke model of Figure 1, the states Big Stroke and Small
Stroke serve only descriptive purposes and can be eliminated. Once thisis done, the resulting tree
can be transformed using these rules into the acyclic tree of Figure 2. The details are left to the
reader. (In Figure 2, the abbreviation m has been used for m, . , p, has been used for p,;, , and

so forth.)
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Figure 2: Acyclic stochastic tree equivalent to Figure 1



Quality-adjusted duration and stochastic tree rollback

One popular measure of treatment efficacy used in the medical decision making literature
is mean quality-adjusted duration. This measure is calculated by weighting each interval of time
spent in a particular health state x by a quality factor v(x) proportional to the desirability of that
state. Soif T, isthetotal duration for which state x is occupied, then one seeks the mean value of

Q=4 v()T,.

Typically the Well state is assigned quality factor 1, the Dead state O, and other states of health
are given intermediate values. Note that total lifetime and total time spent in a particular state are
instances of quality-adjusted duration with v(x) = 1 for the appropriate set of statesx and v(x) =0
for the complementary set, so a broad range of conventional measures is subsumed. For models
using mean quality-adjusted duration, see for example Weinstein and Stason (1976), Beck and
Pauker (1981), Hillner, Hollenberg and Pauker (1986), Plante, Piccirillo and Sofferman (1987),
Roach et al. (1988), Mooney, Mushlin and Phelps (1990).

A further advantage of the stochastic tree model isthat it alows the recursive computation
of mean quality-adjusted duration by "rolling back” the stochastic tree (Hazen 1992), much as one

would roll back a decision tree. To see how this works, consider a subtree of a stochastic treein
which aninitia state x is occupied until one of several competing transitions with rate |, occurs
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Invoking the superposition rule, we can transform this subtree into
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where p, =1 y/I and| = éyl y- Itistherefore apparent that beginning in x, ameantime 1/1 is

spent in state X, following which transition to y occurs with probability p, . Suppose the mean

quality-adjusted duration beginning at y is L(y). Mean quality-adjusted duration beginning in x is
therefore
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This formula can be used to recursively evaluate mean quality-adjusted lifetime in any
stochastic tree. Rollback for the recurrent stroke example of Figure 2 is depicted in Figure 3.
(See Table 2 in Section 3 for the rate and probability values. This example is discussed further
there) Mean quality-adjusted durations are indicated in italics below the corresponding states.
Nonsurgical treatment has a mean quality-adjusted lifetime of 9.325 years beginning in the Well

state.
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Figure 3: Caculating mean quality-adjusted duration by stochastic tree rollback

Rollback for stochastic trees with cycles may also be performed using the method of
successive approximations (value iteration) from dynamic programming. Hazen (1992) gives
severa examples, and we present a computational example at the end of Section 2.

Risk-aver se preferences in stochastic trees

One drawback of the mean quality-adjusted duration measure isthat it is risk neutral with
regard to longevity in any particular health state. For example, consider a hypothetical choice
between a vaccination which will reduce your mortality rate by c%, but unfortunately may result
in adverse reaction and immediate death with probability p. What isthe largest value of p you



would accept? Using stochastic tree notation, we seek the value of p which produces the
indifference

m
-

Cdll this indifference probability p,,..... Thesurprising fact isthat if p = c, then both of these
alternatives have mean lifetime 1/m Therefore according to the mean quality-adjusted lifetime
criterion, one should take p,.;. = C. If, for example, you are a 40-year-old white male, your
annual mortality rate is approximately 2.5 per 1000 (U.S. National Center for Health Statistics
1986). Would you take a 50% chance at immediate death to cut this mortality rate in half? Y our
answer would be yesif your sole criterion were mean quality-adjusted lifetime. However, most
individuals would find this a ludicrous choice.

The obvious remedy is to replace quality-adjusted duration by arisk-averse utility
function. However, it is unclear whether an arbitrary utility function possesses similar desirable
recursive propertiesin stochastic trees. For example, suppose utility is given by

uality adjustedi
Utility = ?3 du¥atlcj)n Q'

for a > 0. How might one roll back a stochastic tree using this utility function? Hereisanaive
rollback procedure applied to the ssmple stochastic tree
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in which sojourn times are certain. Assume state y has quality factor v(y) = 1. Obtain the final
utility U = (2 +p'? )a by adding the 2 yr. sure duration in state y to the p”® yr. certainty

equivalent that follows, and then applying the utility function. Unfortunately this procedure is



incoherent: If one moves the chance node to beginning of the tree and concatenates the two
resulting one-year durations, one obtains the correct expected utility:
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The lesson is that one cannot evaluate utility over stochastic treesin arbitrarily capricious ways.

Because recursive procedures offer computational advantages for stochastic trees which
are large and/or cyclic, recursively computable utility functions would certainly be desirable. The
purpose of this paper is to investigate whether recursively computable utility functions more
general than quality-adjusted duration exist, and if so, how the recursion should be performed.
The surprising answer given in the next section is that in spite of the example just given, recursive
calculation may in fact be performed with any utility function. Kreps (1977) givesthe first
account of this of which we are aware (but in discrete time). The catch is that in general the
recursion is too computationally demanding to be useful, unless there are convenient preference
summaries (called state descriptors by Meyer 1976). Therefore in the next section we aso
investigate recursive utility forms having natural and tractable preference summaries.

2. Recursive Utility Over Stochastic Trees

Mathematical overview

The stochastic tree is a continuous-time probability model. To convey a clearer picture of
the mathematical contribution of this paper and relationships to previous work, we present in this
section the discrete-time versions of our general recursive utility theorems. The nature of our
results are clearer when presented by analogy in discrete time, where the mathematical and
notational baggage isless burdensome. It isalso easier to summarize relationships to prior
contributions, since most of them were done in a discrete time context. Readers wishing to
proceed immediately to our main results can skip this subsection.

Let X4, X5, X3 ... be adiscrete-time stochastic process, and for eacht 3 0, let

th = (Xl, cery Xt)
Xot = (Xisa, Xz, -.0)



be respectively the past at timet and the future at timet. Let the utility function U(Xy,Xz, ...) be
defined over possible redlizations of (X;, X, ...). Oneway to evaluate E[U(X1,X2, ...)]
recursively without any assumption on the form of U isasfollows. Let

F(Xe) = By [U(Xer X.)IXe ]

be expected utility evaluated beyond staget given history X¢ uptotimet. Then
Foaer) =B [U(Xer 1 X0 o)Xy o]
=By JU(Xee 1 X Xor )Xoy 4]
= B [ [U(Xee 1 X0 X0 X0 X ]I Xge o
= B [ [U(Xee Xot X X
= Ey [F (X)X
This recursion
Foa(Xeq) = Ex [F (Xe)IXg, 4] (2.1)

has been studied by Kreps (1978). It is computationally intractable without further simplifying
assumptions, because the quantities F,(X,,) must be evaluated for every possible history X up to

timet. Thisistrue evenif the X, are probabilistically independent.
The nature of the required simplifying assumptions can be seen when the recursion is
expressed in terms of conditional utilities. Suppose U(x‘f,xg,..) =0, and use the notation

U(xﬁt,xgt) = U(x,,)
Let the conditional utility U(Xst | Xer) be strategically equivaent to U(Xg,Xs) with

U(x2, %) =0 for all Xe:.
Then U(Xst 1 | Xet-1) can be recursively expressed in terms of U(Xs¢ | Xgr). Thisis dueto the fact
that these two utility functions are strategically equivalent over X

U(Xo 1% 1) = U(X X0 X r) =, U(Xew 10X Xa0) = U (X X0 )~ U(XoiIXg)
Therefore there is an affine relationship between U(Xst.1 | Xer.1) and U(Xst | Xet), which may depend

on the other variables xg. 1 and x;, that is, there are quantities DU(X; | Xgt-1) > 0 and a(X; | Xet-1)
such that

U(Xst-1 | Xer-1) = a(Xt | Xer-1) + DUt | Xer-1) U(Xst | Xer)-
Set x5 = X2, to conclude that



alXe | Xer1) = U(xs, th | Xer- 1) = U(Xt | Xer- 1)
and substitute into the previous relation to get
U(Xst-1 | Xet-1) = U(Xt | Xer-1).+ DUt | Xer-1) U(Xst | Xer). (2.2
The analog of the recursion (2.1) in terms of conditional utilities can be expressed if we let

fiXe) = Ex [ U(X 11X gy )lXEt]

be the conditional utility of the future given history X Using (2.2) we obtain the conditional
recursion

f t- 1(X£t- 1) = Ext [ U(thxﬁt— 1)|x£t- 1] + Ext [DU(thxﬁt— 1)f t(xﬁt)lxﬁt- 1] (2.3

Thisis the analog of Theorem 2.1 below.

Opportunities for computational ssimplification in (2.3) are more obvious. For example,
suppose the X; are probabilistically independent. Also suppose thereis alow-dimensional
preference summary q = €(Xg. 1) such that U(X; | Xet- 1) and DU(X; | Xer-1) depend on Xg. 1 only
through q. If the preference summary is updatable in the sense that

€(Xer- 1,Xt) = (X, &(Xer-1))

for some function g, then the recursion (2.3) simplifies to
f..1(0) = Ex [U(X )] + Ex [DU(X [a)f (&X.a))]

Thisis the analog of Theorem 2.2 below.

The notions of preference summary was introduced by Meyer (1976), who uses the term
state descriptor. Updatability is also discussed by Meyer. Examples of updatable preference
summaries are the memoryless summary e(xg) = A in which conditional preference depends not at
all on the past; and the Markov summary e(xg;) = X;, in which conditional preference depends only
on the most recent state.

An important question is whether there are any utility functions at all which possess these
preference summaries, and if so, what they are. For example, the existence of a memoryless
preference summary is equivalent to the statement that the future is utility independent of the past.
Meyer presents the most general class of utility functions having this property. Fishburn (1965)
and Bell (1977) present utility functions with Markov preference summaries.

We investigate analogous existence questions below, but in the context of stochastic trees.
We introduce the corresponding notions of memoryless, Markovian, and also semi-Markovian
preference summaries appropriate for stochastic tree models, and identify the classes of utility
functions over stochastic trees having these preference summaries.

10



Recursive utility has also been studied in the economics literature, where the motivation is
descriptive rather than prescriptive, as here. Epstein and Zinn (1989) examine a recursive model
in which there is avalue function V assigning conditiona utility V(Xx | Xg) to the stochastic
process X given the realization Xg = Xg. V is postulated to obey the recursive rule

V(Xeilxer) = W(x V(X e X)) (2.4)

Here mis a certainty equivalent operator, assigning a certainty equivalent to the uncertain value
V (Xsw1 | Xer, Xi+1) (Uncertain because X4 is uncertain); and W is an aggregator, combining
current payoff x; with certainty equivalent future payoffs. Overal utility isV(Xs0) = V(X50 | Xeo)-
Epstein and Zinn show the existence of solutionsV to (2.4) under reasonable conditions. Duffie
and Epstein (1992) extend (2.4) to continuous time.

For specific choices of W and m the recursion (2.4) includes the dynamic choice theory of
Kreps and Porteus (1978), which in turn includes the expected utility recursion (2.1). The latter,
to which we confine ourselves in this paper, has the smple aggregator W(x,y) = U(y), where U is
the utility function. Despite its suggestive name, the aggregator W has no connection to our
notion of preference summary. Our results concerning utility functions with specific preference
summaries have therefore no direct connection to the economics literature on recursive utility.
Moreover, none of that work attempts to find structural preference conditions which speed
recursive computations, which is our main focus.

Preliminaries
Let x,y,z denote states of a stochastic process. For astate x and adurationt > 0, let x'
denote the function defined by
x'(t)y=x ifO£t <t.

Then x' is possible sample path of a stochastic process. If g is asample path with domain [0,s)
and h is any other sample path, define the concatenation gh of g and h by

_19(t) ifO £t<s
() =Ihi-g iftes

Informally, gh is obtained by diding h a distance s to the right and appending it to g. Note the
visualy familiar identity
syt s+t

XX =X

which is one motivation for the notation.

11



We follow the usual convention of designating random quantities by capital letters. So x'
denotes a sojourn of random duration T in state x, and X' denotes a sojourn of random duration
T in uncertain state X.

Sochastic trees

The stochastic trees discussed in Section 1 were Markov processes with chance nodes
added. In genera we allow semi-Markov processes aswell. Formally, we define a stochastic tree
diagramto be a directed graph with afinite or countable number of nodes such that

a) each nodein the diagram is either a stochastic node or a chance node;

b) arcsfrom stochastic nodes are labeled with absolutely continuous probability

distributions over [0,¥);

c) arcsfrom chance nodes are labeled with probabilities summing to 1.
The tree terminology is meant to emphasize the analogy with decision trees. We do not formally
require that the diagram be a tree, although it may always be converted to one by using phantom
nodes, asillustrated in Section 1. A stochastic tree is the stochastic process suggested by the
stochastic tree diagram. Formally, we replace each distribution in the diagram with an
independent random duration having that distribution, and at each chance node we independently
replace al probabilities by mutually exclusive, collectively exhaustive events having those
probabilities. 1n the resulting process, transition from a stochastic node x proceeds aong the arc
from x whose duration is the minimum, and transition from a chance node y proceeds along the
arc fromy whose event occurs. Any stochastic tree is a continuous-duration semi-Markov
process and any continuous-duration semi-Markov process can be represented by a stochastic tree
diagram.” We shall only be interested in stochastic trees which are really stochastic, that is, which
cannot visit only chance nodes. Formally, we require that every chance node leads with positive
probability to some stochastic node.

Consider a stochastic tree diagram H¢of the form

l |
He = @W@J\/\/\Z/\» M@J\NVWG

where xy, ..., X, are states, | 4, ..., | , are distributions and G¢is an arbitrary stochastic tree
diagram. Therealization of H¢as a stochastic tree is

"The requirement that all durations have densities is meant to insure that ties have probability zero in determining
the minimum-duration arc out of a given node. The density requirement may be relaxed as long as the probability

of atie remains zero.
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H=x"..x"G=x"G

where T = (T,,...,T,) areindependent durations with distributions| = (I 4,...,| »), and x =
(Xy5-.:X,,). We therefore write

He=x*...x\"G¢=x' G¢.

We refer to H as a stochastic tree with trunk x ', and to H¢as a stochastic tree diagram with trunk
X' . However, in the sequel, we will often for simplicity drop the distinction between stochastic
tree diagrams and stochastic trees. We will sometimesrefer to x' asahistory. We alow the

empty history A&, with the property that A£G = G for any stochastic tree G.
We denote the convolution of two distributions| andmby | *m. If Sand T are

independent durations with respective distributions| and m then S+ T has distribution | * m.
Therefore the two stochastic tree diagrams x' xX™and x' ™™ which are distinct as diagrams, represent
the same stochastic tree, and we simply write x' x™ =x'"™.

Preference over stochastic trees
We assume that preference over stochastic trees is represented by a utility function U, so
that for two stochastic treesH and G

H>-GU EU(H)]>E[U(G)].

The domain of U isthe set of all semi-Markov sample paths h.
For stochastic trees x' G wewrite U(x' G ) to mean E.[U(x"G)] where T has

distribution | . In addition, define a conditional preference relation over stochastic trees G,H by
G>H given x' U xX'G>x'H.

In other words, conditional preference over stochastic trees H given x' coincides with
unconditional preference over trees with trunk x' . It therefore has an expected utility
representation, with utility function which we denote by U(h|x' ). The latter is by definition
strategically equivalent (as afunction of h) to U(x' h). Conditional preference given the empty
history A isthe same as unconditional preference, and U(h|&) = U(h).

We introduce a special sample path f to which al conditional and unconditional utility
functions U(x|x' ) assign utility zero:

U(f|x') =0.

In medical models, it is convenient to take f to be the sample path in which the dead state is
occupied forever. However, any convenient sample path is acceptable. If y™isany history, we
will write U(y™h|x" ) to mean E_[U(y>h|x' )], where S has distribution m We will abbreviate

13



U(y™) by U(y™. We say that preference over stochastic treesis nontrivial if for every history x'
thereisasample path h such that x' h = x'f or x' h < x'f.

Theorem 2.1 Assume nontriviality holds and U(f [x' ) = O for al x' . Then there are functions
DU(y"|x" ) > 0 such that an affine restriction

DU(y"Ix" )U(hix' y™) = (5 DU(y*K" )U(hlx' y*)dn{(s) (2.5)
holds for all histories h, a concatenation restriction

DU(y™"x") = DU(y"|x" )DU(y"[x"y™) (2.6)
holds, and arecursive equation

U(y™hix") = U(y"x" ) +DU(y"|x" U (h[x"y™) (2.7)

holds for all sample paths h.

The recursive equation (2.7) allows stochastic tree rollback for an arbitrary utility function
U. To see how thisworks for acyclic trees G with a single root node, consider an arbitrary
stochastic nodey in G:

where we let H be the subtree of G with root nodey. Since G isacyclic with asingle root, there
isaunique path x.*...x!» =x' from the root node x; toy. Attach expected utility EH[U(H|xI )]

to nodey. We show below how this expected utility can be calculated as a function of the
expected utilities attached to the direct successors of y. At chance nodes z, cal cul ate expected
utility by averaging utilities at the direct successors of z, just asin adecision tree. These
calculations repeated recursively from right to left in the tree resultsin E[U(G)] at the root node
of G. Here arethe details:

We begin by converting the fork at y to the equivalent form

H = C<pi () m >

14



where the new states y; represent the information “state y is occupied and fork i istaken”. If T;
are the random durations corresponding to the distributions | ;, then p; = P(T; = min; T;) isthe
probability that the ith fork is taken, and m is the conditional distribution of T; given T; = min; T;.
Then H = Y®°K isastochastic tree in which:

(i) anuncertain state Y =y; isfirst visited with probability pi,

(i) an uncertain sojourn Sin'Y next occurs, where S has distribution m given 'Y =y,

(iii) stochastic tree K is entered, where K isidentical in distribution to the tree K; given Y

=i (so K isconditionally independent of S givenY).

This situation is depicted in Figure 4, along with a proposed rollback procedure.

H

Ki
f_/%

AN N
U, = E[U(Hlx' )] Ui = E[U(Kilx yM)]

[o] /
TAPY =gy + DUy ),

Figure4: Stochastic tree rollback for arbitrary U
Thisrollback procedure can be derived agebraicaly asfollows. We have
Eq[U(HIX')] = EY[ESYK[U(YSK|X' )|Y]]
= é P ES,K[U(yiSlel IY = Yi]
=a pE, [U(yim K. |x' )] (because K, S are independent given Y = y)
=8 PE[UYPIX') + DUy X )UK, X' yT")|  (recursive equation)
= &,p (U0 X' ) + DUy X )E [UCK X' yM)])
According to this last equation, the conditional expected utility EH[U(HlxI )] a nodey may be
calculated recursively from the conditional expected utilities E, [U(Ki|x' YAl )] . The latter are

precisely the utilities attached to the successors of y. A rollback procedure for single-root acyclic
trees G has therefore been demonstrated. For a single-root cyclic tree G, rollback may be
performed by the usual successive approximation of G by finitely deep acyclic trees G,. We
present an example at the end of this section.
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For the most general types of stochastic trees, this recursion may be intractable, because
the probabilities p; and distributions m must be calculated from the distributions| ; at each node.
However, for specia cases such as exponentia distributions or Weibull distributions with
common shape parameter, the calculation may be done in closed form. We assume that thel ;
have been chosen so asto facilitate this calculation.

The recursion will, however, till be intractable without further restrictions on the utility
structure. The reason is that the recursion requires the calculation at state y of a conditional
utility given every possible path through the stochastic tree leading to y, a computationally
intractable task for cyclic stochastic trees, which are, in effect, infinitely deep. For acyclic trees,
the recursion is equivalent to the direct calculation of the unconditional expected utility of the
entire tree by successively applying conditional expectation from right to left. Therefore, although
this calculation technically qualifies as arecursion, it carries with it none of the conceptua or
computational advantages usually associated with recursive calculation.

Therefore, in answer to the fundamental question raised in Section 1, stochastic tree
rollback may be performed with an arbitrary utility function. However, the rollback algorithmis
not a practical one for cyclic trees. Nevertheless, in specia cases the utility structure may allow
computational savings. We discuss how this may occur next.

Preference summaries

Potential computational simplifications are available in stochastic tree rollback if the
quantities U(x|x' ) and DU(x|x' ) depend on x' only through alow dimensional preference
summary q=e(x') of x' . To be useful in arecursion such as (2.7), the summary should be
updatable, that is, if g = e(x') then e(x' y™) should be obtainable as some function of g and y™.

We therefore make the following definitions. A preference summary is afunction which
assigns preference states ¢ to histories x' in such away that if e(x' ) = &(z") then conditional
preferences given x' and given z" areidentical. We say that e is an updatable preference
summary if there is a function g such that e(x' y™ = q(e(x' ),ym) :

When there is an updatable preference summary, the results of Theorem 2.1 take the
following form.

Theorem 2.2 Assume nontriviality holdsand U(f [x' ) = O for all x' . If U has an updatable
preference summary (e,q), then there is a summary utility function u(h|g) on sample paths h given
preference states q such that u(f |g) = 0 and

u(xjg) ~ U(x|x") whenever e(x') = q.

Moreover, there are summary discount factors Du(y™|q) > 0 satisfying the affine restriction
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¥
Du(y™|a)u(hla(g.y™) = @ Du(y®la)u(hla(g,y))dm(s)  (2.8)
for all sample paths h, the concatenation restriction

Du(y™ ") = Du(y"|a)Du(y"la(a,y™) (2.9)

and the recursive equation

u(y™hla) = u(y"|q) + Du(y"|a)u(hla(g,y™) (2.10)
for all sample paths h.

Figure 5 illustrates rollback when there is an updatable preference summary.
Computational savings can occur because conditional utilities need be calculated only for each of
the preference summaries that could occur at a given statey, rather than each of the histories that
could precedey. For cyclic trees the number of preceding histories can be arbitrarily large.
However, for properly chosen utility functions, the number of preceding preference summaries
may be small even for cyclic trees (see the computational example in the concluding subsection
below). We discuss such utility functions in the next three subsections.

H

—

Pewee oy om
I\summary a "7 \ ¥ /}i

u=EuHla)]  / u,, = E[u(K,|q")]

_ [o]
=apuy J/ q* =q(a,y™)
u; = u(y™g) + Du(y™|g) xu,,

Figure5: Stochastic tree rollback when there is an updatable preference summary q

Memoryless preference summaries

Stochastic tree rollback is particularly ssimple with quality-adjusted duration as the utility
measure, aswe saw in Section 1. What preference summary is associated with this utility
function? The quality-adjusted duration expected utility measure is

Ux')= U0t xqm) = @, vix)m,

17



where m; = (5t>fdl /(t) isthe mean of the distribution | ;. Then

Uy ')~ UGy ) = v(y)s+@ vix)m, ~ . v(y)s.

By inspection, we see that conditional utility given x' depends not at all on x' , that is, it is
memoryless. Therefore, the preference summary can be taken to be the constant function e(x' ) =
A This preference summary is (trivialy) updatable. The summary utility function u(x|q) of
Theorem 2.2 is

u(y®lA = u(y®) = v(y)>s.
By inspection, the summary discount factor Du(x|q) of Theorem 2.2 is Du(y®|4&) = Du(y®) = 1.

Are there other utility functions over stochastic trees having memoryless preference
summaries, and if so, what are they? In the following, we say that utility is continuousin its
duration argumentsiif for al n, U(x;...x!») is continuous as afunction of t; > 0, ..., t,> 0. We

also use the notation gg to represent the affine function with slope b and intercept a. In other

words
Al —
-1 =a+Dbt.
635() a+b

Moreover, if f and g are functions, let the symbol f o g denote functional composition of f and g,
so that (f - g)(t) = f(a(1)).

Theorem 2.3: Let U be a utility function over stochastic trees which is continuous in its duration
arguments, satisfies nontriviality and has U(f |x' ) = 0 for all x' . Then U is memorylessif and
only if there are functions v(¥ and a(¥ such that

G _GuG) B u(xt) b
0 e gux

where

u(x') = Qu(x)e s

Du(x') = e *",
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Theorem 2.4: Under the assumptions of the previous theorem, if U has a memoryless preference
summary, then its summary utility and discount factors are given for t 3 0 by

WY1 = uly") = QU(y)e s

Du(y'|4) = Du(y') = e *¥".

Moreover for adistribution mon [0,¥),

Du(y™ = ) Du(y®)d(9) = ) & “*dn() .

For utility functions with memoryless preference summaries, the recursive equations
(2.10) become

u(y'hiA = u(y'h) = Qu(y)e *ds+ e *"u(h).

Memoryless utility is therefore identical to quality-adjusted duration with the future discounted at
the state-dependent rate a(y) when state y is occupied. When a(y) = 0 for all y, we recover the
pure quality-adjusted duration form. When a(y) ¢ O we obtain

v(y) (1_ . a(y)t) .
a(y)
The summary u may therefore be regarded as a utility function having constant risk attitude a(y)

for durations spent in state y.
It isinteresting to calculate u(y' ) when| represents an exponential (I ) distribution

u(y") = Quiy)e s =

convenient for stochastic tree modeling. Herel isthe rate of departure from statey. We obtain

uy )= 3 A G e e =S (2.11)
provided a(y) +1 >0 (and equal to +¥ if aly) +| £ 0). Intherisk-neutra case a(y) =0, we
obtain the quality-adjusted duration u(y') = v(y)®{ . Whena(y)* 0, u(y' ) may till be
regarded as quality-adjusted duration, but with departure rate incremented by the subjective term
a(y). A risk averter in effect perceives the departure rate from y to be larger than its true value,
and arisk seeker perceivesit smaler.

One difficulty with the combination of memoryless utility and exponential durationsis that
u(y') divergesto +¥ whena(y) +1 £ 0. Therefore only moderately risk-seeking preference (-I

£ aly) £ 0) may be portrayed.
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Markovian preference summaries
The simplest preference summary which has some memory of its history remembers only
the most recent state visited:
e(xlll...xlnn ) =X,.

We cdll this the Markovian preference summary. For completeness, set e(/A) = £ Thisisan
updatable preference summary with

ax,y") =vy.

Call the utility functions having this preference summary the Markovian utility functions.
Memoryless utility is Markovian because preferences depending on the null portion of the
preceding history depend (vacuously) on the last state in the history. It follows that the class of
Markovian utility functions includes the memoryless utility functions and possibly more. We
describe exactly how much more in the following theorem.

Theorem 2.5: Let U be a utility function over stochastic trees which is continuous in its duration
arguments, satisfies nontriviality and has U(f [x' ) = 0 for al x' . Then U has aMarkovian
preference summary if and only if there are functions w(y|[x), Dw(y[x) > O, v(y) and a(y) such that

Su(xp|A) U €u(xz|x,) & éu(xylx,,) U

YOO~ e xtBE Bu(x [x ) &u(xs [x,, )

where

U(y'1X) = w(ylx) + Dw(y[x) Qu(y)e *"*ds

Du(y'[x) = Dw(y|x)e *
for some functions w(y|[x), Dw(y[x) > O, v(y), ay) with w(yly) = O, Dw(yly) = 1.

Theorem 2.6: Under the assumptions of the previous theorem, if U has a Markovian preference
summary, then its summary utility and discount factors are given for t 3 0 by

U(y'1X) = w(ylx) + Dw(y[x) Qu(y)e “"“ds

Du(y'[x) = Dw(y|x)e .

Moreover for adistribution mon [0,¥),
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Du(y"|x) = ) Du(y*|x)dn(9) = Dw(ylx) ) & “*dm(s).

Markovian utility extends memoryless utility by adding the functions w(y|x) and Dw(y|x).
The former may be interpreted as an instantaneous toll or bonus accrued in the transition from x
toy. Thelatter isadiscount factor, in that all utility subsequent to the transition fromxtoy is
increased or decreased by that factor. (Roach et al. (1988) use such transition-induced discount
factors to model morbidity effects.). The quantities v(y) and a(y) have the same interpretation as
under the memoryless preference summary. In particular, risk attitude for durations spent in state
y is constant as well under Markovian preference summaries.

Semi-Markovian preference summaries

One possible generalization of the Markovian preference summary would be a preference
summary which remembers not only the last state visited, but also the associated duration (or
distribution thereof). We call this the semi-Markov preference summary. It isformally defined as
follows: For nonzerol 4,1 5, ..., | 1

*|

e(x'll...x'nn): ka*"' n if Xeg b X, ==X

n

Note that the preference summary must keep track of whether previous states in the history are
identical to the last one, in which case the distribution of time spent in that state is the convolution
[ *..*I  of thedistributions | ;of the previous identical states. For completeness, set e(/E) = A&

Thisis aso an updatable preference summary, with

m

Im_‘l,y y
X,
q( Y): y

1 x
xtm X.

The corresponding class of semi-Markovian utility functions includes the Markovian utility
functions but is considerably broader than that class, as the next two results show.

Theorem 2.7: Assume nontriviality holdsand U(f [x' ) =0 for al x' . Then U has a semi-
Markovian preference summary if and only if there are functions Dw(x' ) >0, w(y™), and for x ¢
y, functions Dw(y|x' ) > 0, w(y|x" ) with

w(yl/ =0, Dw(y|BH=1
such that the affine restrictions

w(y™) = § w(y')dn(t) (212)
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Dw(x" )w(ylx') = (‘5 Dw(x")w(y|x")dl (t) (2.13)

Dw(x" )Dw(y|x' ) = (‘5 Dw(x")Dw(ylx")dl (t) (2.14)

hold, and for x, * x,*---1 X

n

o ) eW(x,|A) u_éw(x;) U ew(x,|xr1) U éw(x; )u

U(xllxzz.. AN A OSDN(X D0 B () (2.15)

Theorem 2.8: Under the assumptions of the previous theorem, if U has a semi-Markovian
preference summary, then its summary utility and discount factors are given by

Lw(ylx") + Dw(y]x" Jw(y") y* x
wy'ix' ) =p o wly) - weh) (2.16)
f Dw(y")

and

1Dw(ylx' )Dw(y") y* x
Duy')=p  Dwy'™) (217)
t Dw(y')

To gain some insight into the nature of semi-Markov utility, use the results of the last
theorem in the recursive equation (2.10) to obtain for y * x

u(y"hix') = u(y"|x" ) + Du(y"|x" u(hly")
=w(ylx" ) +Dw(ylx" )w(y") + Dw(y|x" )Dw(y")u(hly")
_éw(ylx') u_éw(y") ttu(hh/ ) (2.18)
)u

~ Sw(yx)d w(y"

From this we see that a single semi-Markov recursion consists of two stages. First the subsequent
utility u(h|y") is discounted by the factor Dw(y") and the result is incremented by the utility
w(y"). Second, this result isin turn discounted by the factor Dw(y|x' ), after which the
bonus/toll w(y|x' ) isadded. Thefirst stage uses the state y and its duration n, but not the
preference summary X' ; the second stage uses the state y without its duration n, and the
preference summary x' .

On the other hand, when y = x, the recursive equation (2.10) becomes
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u(y"hly' ) =u(y"ly" ) + Du(y"ly" Ju(hly' ™)

— W(yl*n)- W(yl ) + DN(yl*n) u(hlyl*n)
Dw(y') Dw(y')

Semi-Markovian utility must distinguish the casesy * x andy = x in order to keep utility recursion
consistent with concatenation. In essence, thisisthe price paid for departure from exponential
utility (the Markovian case), which is automatically consistent with concatenation.

A particularly convenient form of semi-Markov utility arises when it is assumed that the
tolls w(y|x' ) and discount factors Dw(y|x' ) are duration-independent, that is, w(y|x' ) =
w(y|x) and Dw(y|x' ) = Dw(y|x). In this case, these quantities cancel out of the affine restrictions
(2.13) and (2.14), which reduce to

Dw(x') = ) Dw(x')dl (). (2.19)

Semi-Markov utility isin this case completely determined by w(y|x), Dw(y|x), and the quantities
w(y"') and Dw(y"), for constant durationst.

Representations for semi-Markovian utility

The semi-Markovian class of utilities broadens the class of Markovian utilities by replacing
exponential utility and exponential discount factors with utilities w(y') and discount factors
Dw(y") of arbitrary forms. However, it is possible to represent semi-Markovian utility in a
generaized exponential form which clarifies some of its properties. If w(y") is positive and
strictly increasing (or negative and strictly decreasing) in t, and differentiable, it may aways be
represented as

w(y') = Qu(y)e " ds

for some functions v(y), A (t). Moreover, because Dw(y') > 0, it may always be represented as

Dw(y')=e >
for some function B, (t). When A (t) = B, (t) = a(y)t and duration independence holds, we
recover the Markovian case. In addition, the risk aversion function a, (t) associated with w(y")
isthe derivative (should it exist) of A (t):
Lw(y')
a,(t)=- —=
aw(y’)

Genera formulas for evaluating an exponential (m sojourn in astate y are readily devised.

By interchanging the order of integration one can show

= AK(t).
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wiy™ = 3 viy)e ™ asdre "t
= v(y)§ e ¥ s (2.20)

Moreover, in the duration-independent case

Dw(y™) = (‘5 e ¥Vme mdt = n‘(g e & Mt (2.21)
A convenient form for evaluating exponentia sojournsis the power form for semi-Markov
utility
w(y')= YY) ey (2.22)
1-a

y

defined for a, <Ll The associated risk-aversion function is

a

ay(t):Ty.

It is not difficult to show that for exponential () sojournsin statey

l-a

Wy = Ve oL a,) (229

The advantage hereis that in contrast to the case of exponentia utility, w(y™) isfinite for all
values of mand al permitted risk attitudes, bothrisk averse (O £ a, < 1) and risk seeking (a, £

0). The companion power form

Dw(y')=t"
islessredlistic as a discount factor since its values can exceed 1 for by 1 0. However for

exponentia sojourns, there is the convenient closed-form expression
Dw(y™) =nf'q1- b, ) (2.24)

the latter equation holding in the duration-independent case and for b, < 1.

Sochastic tree rollback
The results presented above may be used to derive special rollback formulas for stochastic
trees having only exponential durations. That is the purpose of this section. We begin by
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considering the case of semi-Markovian utility, since both Markovian and memoryless utility are
special cases.
Consider a schematic representation of a stochastic fork

formed by competing rates m > O at state y, where m= é’\im and p, =m/m. Here H. isitsdlf a
stochastic subtree for which the utility E|u(H, |y™)] has already been calculated. Supposing that
the preference summary at G is X', we wish to derive a useful recursive formulafor E[u(G|x')].

Because self-transitions may be eliminated when durations are exponential, we assume that x 1 .
Denote by H the stochastic subtree consisting of a chance p; of subtree H,. Then G = y™H, and

according to (2.18)

Es[u(GIx')] = E,Juy™HIX )]
ew(ylx') U éw(y")

my\U
" Sow(ylx )4 w(y" )E(”(H'y i

_éw(ylx') u ew(y")
~ Dw(yx' )i Dy )t{a P E[uH Iy"))

When the semi-Markov representations (2.20), (2.21) are substituted, the result in the duration-
independent case is

=E,

A(s)ms

éw(ylx) U S"(y)Q €

EG[U(G|XI )] ng(y|x)[;| e n‘Qe B,(9- sy

t{a p.E[u(H, y™)])

ew(ylx) u e\/(y)QG Ay(s)- msds

T EDW(YIE e Qe B, (9™ g a mE[u(H, y")])

In the specia case of the semi-Markov power forms (2.23), (2.24), we obtain
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A . 1-ay )
gv(y)ae%% G(l- ay)g

Eo[u(GIx )]=§§V§{y'|xx))go§ TN l;t{éiimE[u(Hilym)]) (229
g &mo 7

vaidfora, <landb, <1. Findly, inthe statewise exponential case giving rise to Markovian

utility, we obtain

_ew(yl) o, &v(y)/(aly) + miy

ew(ylx) O+ 8, mE[u(Hily)]g (2.26)
~ EDw(yIX§ a(y) +m 5

valid whenever a(y) + m> 0.

Cyclic stochastic tree rollback

The utility rollback algorithm for cyclic stochastic treesis an intuitive extension of the
acyclic rollback agorithm, and indeed is merely a version of the method of successive
approximations (value iteration) from infinite horizon dynamic programming (e.g., Bertsekas
1976, Ross 1983). We give here a ssmple example to illustrate the technique. The exampleis
also meant to concretely illustrate rollback using preference summaries, with its associated
computational ssimplifications.

Consider the hypothetical stochastic tree

my
m
I . /—/\/\I/]TO/\/%‘:\
(1) 0)
© ! \
2
m
o /—/\/\/\/\/%
\—/\/\I/%g\/é(/-\)

having three possible states which we label 0,1,2. Thetransitionrate fromxtoyisl, . A
transition with rate m, having no destination state indicates subsequent sample path f . The rates
are given by
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We evaluate the tree using the power form of semi-Markov utility with b, =0, a,, = 05 for all
statesy, and
v=(v(y)) = S%%E
€024
We set all bonuses w(y|x) to zero and all discount factors Dw(y|x) to one, with the exceptions
w(0|1) =-0.10 Dw(0|1) =0.90
w(0J]2) =-0.20 Dw(0]2) = 0.50.

In other words, atransition from 1 to O is accompanied by atoll of 0.10 and all subsequent utility
is discounted by afactor of 0.90; for the transition from 2 to O, the toll is 0.20 and subsequent
utility is discounted by a factor of 0.50.

We use the recursion formula (2.25) moving from right to left in the tree. We begin by
setting the utility of all terminal nodes in the tree to zero, then applying (2.25) from right to left
until all nodes are assigned utilities. These newly computed values are assigned to the terminal
nodes, and the process is repeated. Eventually the utilities converge to the true values for the

cyclictree. A numerica summary is presented in Table 1.
In Table 1, the expression Eu(G,,|x) denotes the expected utility, given preference

summary (that is, preceding state) X, of the stochastic subtree G, which begins at statey and is
truncated after n repeated levels. Notice that for eachy, Eu(G,, |x) must be calculated for each x

which could precedey, that is, for each preference summary which could occur aty. So state O is
tagged with three utility values (predecessors A 1,2), state 1 with one (predecessor 0), and state 2
by two (predecessors 0,1). Contrast this with the most general form of recursion (Theorem 2.1),
in which the preference summary at y isin effect the entire history precedingy. Inthat case
Eu(G,,|x" ) would be required for every possible history x' precedingy. The computational
simplification due to an available preference summary is dramatic.

We assert without proof that the expected utilities Eu(G,, [x) converge to the
corresponding infinite-horizon values Eu(G, |x) asn® ¥. Convergence questions will not be

treated here. The overall expected utility of the cyclic tree is therefore the approximate value
Eu(G,,) =0.508 with n = 10.
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Table 1: Recursive calculations for acyclic stochastic tree

>

Eu(G,J0) Eu(G,|0) EuG,|1) EuwG,) EuG,ll) EuwWG,|2)

0 0 0 0 0 0 0
1 0.15 0.053 0.053 0.425 0.283 0.013
2 0.285 0.064 0.064 0.481 0.333 0.041
3 0.309 0.089 0.089 0.496 0.346 0.048
4 0.325 0.095 0.095 0.503 0.353 0.052
5 0.33 0.099 0.099 0.506 0.356 0.053
6 0.332 01 01 0.507 0.357 0.054
7 0.333 0.101 0.101 0.508 0.357 0.054
8 0.333 0.101 0.101 0.508 0.357 0.054
9 0.334 0.101 0.101 0.508 0.357 0.054
10 0.334 0.101 0.101 0.508 0.357 0.054

3. Assessment and Application

Utility assessment procedures

Space does not permit a complete discussion of assessment procedures for the classes of
utility functions we have introduced here. We will confine the discussion to the assessment of the
risk attitude parameters for the exponential and power forms described above. A possible
assessment setting is a generaization of the vaccine scenario discussed in Section 1, which an
assessor might present as follows:

Y ou have been exposed to a virus which might reduce your life-span if left untreated. Y our untreated
lifetime is has distribution m with mean c% lower than before. There is a treatment which will restore
your life-span to its baseline distribution m but there is a probability p of fatal side effects. What isthe
largest value of p for which you would accept treatment?

Using stochastic tree notation, we require avalue p = p,.... Which produces the indifference

1-p : m

O (31)

A convenient aspect of this scenario is that the risk-neutral responseis p, .. = C, S0 that lower
values of p,.., correspond to risk aversion.
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Ideally, the distributions m, and m should be realistic lifetime distributions whose
expected utilities have convenient closed forms. A class of distributions compatible with
exponential utility isthe gamma (m, | ) family (the distribution of the sum of m independent
exponential (I ) durations). The gamma parameters can be chosen to reasonably approximate
human survival curves (Hazen 1992). If misgamma(m, | ) and utility has the exponential form of
Theorem 2.4, then

..M

viy )& @& | 6 ¢

5
1- s T,
a(y)é &l +a(y)o g

uy™ =

When m), isgamma(m,| ) and m isgamma(m, | /(1-c)), the indifference (3.1) forces the equality

m m

0 _e& I 0

5 & +(1- Oaly)s

e |
+(1-
p+( IO)gI raly)
which can be solved numericaly for a(y). When m =1 (exponentia lifetimes), the solution is
C_
a(y)=p 0
-C

A flexible class of distributions compatible with power utility isthe Weibull family with
parameters m and g, having hazard rate function

,.m-1
M et §

" = &ap

and mean qG(1 + 1/m). When semi-Markov utility takes on the power form (2.22), then

l-a -
my — q Y é'- ay(.)
w(y™) = v(y) o Gg p—

When m), is Weibull(m,q) and m is Weibull(m, (1-c)q), the indifference (3.2) forces an equality
which can be solved to yield

_In(1- p)
Y77 In(1- ©)

(independent of m and q).

We advocate the use of continuous-risk assessment scenarios such as (3.1) involving small
risks present in continuous time because such scenarios more closely approximate the decisions to
which the assessed utility functions will be applied. Although continuous-risk assessment
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scenarios are cognitively demanding, we have found that subjects can provide answers when
options are portrayed as survival curves using an interactive graphical computer interface. The
resulting utility functions seem to more accurately portray risk attitudes than do utilities assessed
with standard binary gamble/ sure thing lotteries (Hazen, Hopp and Pellissier 1990; Pellissier and
Hazen 1993).

An analysis of the decision to perform carotid endarterectomy

The material in this section is based on Matchar and Pauker (1986), who conduct a
decision analysis of whether to perform a carotid endarterectomy (a surgical clearing of the
carotid arteries) on a patient experiencing transient ischemic attacks (temporary symptoms such as
lightheadedness and garbled speech, due to impaired blood supply). Matchar and Pauker report
that "despite controversy regarding their value, approximately 85,000 carotid endarterectomies
are performed annualy.” Their analysis, which was based on a discrete-time Markov chain
model, found the decision to be atoss-up, that is, there was no clinically significant net benefit to
performing carotid endarterectomy. The evaluation criterion was mean quality-adjusted duration.
Here we present the equivalent stochastic tree model, but evaluate the alternatives using
Markovian and semi-Markovian utility functions. We can therefore examine the impact of patient
risk attitude on the preferred decision.

Henceforth let the surgical option be to perform endarterectomy, and the nonsurgical
option to forego it. The stochastic tree for the nonsurgical option has been presented in Figure 1
of Section 1. The complete stochastic tree for this decision is depicted in Figure 6, which shows
theinitial decision as to whether to perform surgery, as well as chances of mortality and stroke
following surgery, and the 30-day chance of stroke for transient ischemic patients in the absence
of surgery. Asan approximation, all states depicted in Figure 6 are assumed instantaneous. (The
true elapsed time of one month or less is small compared to other durations in the model.) This
portion of the stochastic tree is therefore identical in structure and function to a decision tree.
Patients foregoing surgery enter the stochastic tree of Figure 1 at the appropriate state (Well or
Stroke, depending on whether a stroke has occurred in the short term) with unreduced subsequent
stroke rate m,,. = .05/yr. Patients undergoing and surviving surgery enter the same tree at the
appropriate state with subsequent stroke rate m,.,. = .05/yr. reduced by the efficacy factor EFF.
Matchar and Pauker use EFF = .50. The values for the remaining parameters in the stochastic
tree are summarized in Table 2.
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|
) Myroke = EFF - .05/ yr.

Figure 6: The decision to perform carotid endarterectomy

We begin by evaluating the stochastic tree under Markovian utility. For simplicity and
consistency with Matchar and Pauker, we use no tolls or discount factors (that is, we assume
w(y|x) =0 and Dw(y|x) =1 for al x,y). We assign the same quality factors v(y) as Matchar and
Pauker, namely

y v(y)

Wl 1.0
Post Small Stroke | 0.8
Post Big Stroke 0.2
Dead 0
We suppose the risk aversion parameters ay) are determined using the vaccine scenario discussed
in the previous subsection. Specificaly, let a(y) be the parameter for which an immediate
mortality probability p, ... Would be just acceptable in order to eliminate ac = 10% reduction in
mean (exponentially distributed) lifetime. Recall that the risk neutral response would be p, .. =
c=10". For simplicity we assume that p,_,. (and therefore a(y)) is the same regardiess of the
statey.
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Table 2: Variables used in the Matchar-Pauker analysis

Description Varisble Vaue
Name

Operative mortality probability (30 days) Popdi e .06

Operative stroke probability Popstroke 08

(30 days)

30-day stroke probability for non- Pealystrk  -04

surgical patients

Annual stroke rate for non-surgical Myroke .05/ yr.

patients

First-month death probability for big- Pearlydie 0.38

stroke victims

Proportion of strokes having significant Pbig 2/3

mortality/morbidity

Excess risk of non-stroke death My cess .065 / yr.

Mortality due to other causes (58-yr-old ~ m .01106/ yr.

white male)

Stochastic tree rollback proceeds recursively by invoking the exponential utility formula
(2.26) at stochastic forks, and averaging utilities at chance forks. Rollback proceeds from right to
left in the stochastic tree, until utilities are calculated for the Surgery and No Surgery nodesin
Figure 6. Asan aid to interpreting the utility values, one may calculate certainty equivalent
lifetimes at each node, that is, constant durations t spent in the state Well such that u(Well") is
equal to the expected utility at the node in question.

These certainty equivalent lifetimes are given as a function of |0910(pmme) inFigure 7.
Valuesof p,,.. lessthan 10" yield risk aversion (a(y) > 0), and those exceeding 10" yield risk
seeking (a(y) < 0). Therisk-neutral certainty equivaent lifetimes are eCEg,, =9.705 yr.,
€CE ey = 9.093 yr., dlightly favoring surgery. Matchar and Pauker obtain the respective values

8.00 yr. and 7.76 yr. We attribute the discrepancy to continuous- versus discrete-time model
structure.

Matchar and Pauker do attempt to model risk aversion by including a discount rate for
future life-years. Because our risk attitude parameter a(y) may be regarded as a discount rate,
their approach would be the discrete-time equivalent of ours. They found that the surgical and
nonsurgical options become essentially equivalent as discount rate increases beyond 5%. Thisis
in agreement with the results of Figure 7 for 10g(P, e ) < -1.8, Or equivalently a(y) > 6%.
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Risk Averse Risk Seeking

11 | I

fEergOogJa vacci ne> ’

€CE hosurg <|09J3 Vacci ne>

-2 -15 -1 —05 0

109_P yaccine

Figure 7: Certainty equivalent lifetimes (in years) as afunction of p, .. for exponential
utility

For other utility functions, however, results can be quite different. Figure 8 shows
certainty equivalent lifetimes as a function of p, . When a particular version of the power form

of semi-Markov utility isused. Here we have assumed the same quality factors v(y) as above, but
have eliminated any discounting effects by setting b, = 0, and have let the remaining parameters

a, be determined by assessing the immediate mortality probability p,,.,. which would be just
acceptable in order to eliminate a c = 10% reduction in mean (Weibull distributed) lifetime, as
described in the previous section. Once again, p,.;,, = 10" isthe risk-neutral response. For
smplicity we suppose a,, isindependent of y. Rollback proceeds using (2.25) at stochastic forks,

and utility averaging at chance forks. As Figure 8 shows, the nonsurgical option isincreasingly
preferred asrisk aversion increases. Thisis not surprising, dueto theform a (t)=a,/t of the

coefficient of risk aversion for power utility, which becomes arbitrarily risk averse ast approaches
zero. Risks of immediate death are therefore increasingly undesirable, and options which avoid
such near-term risks are increasingly desirable as risk aversion increases.
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The lessons here are threefold: First, risk attitude as captured by utility functions over
stochastic trees can play an important role in medical treatment choice. Second, there are aspects
of risk aversion, such as aversion to near-term risks, which are not adequately modeled by time
discounting, but which can be captured by the semi-Markovian class of utility functions. Third, it
may be beneficial to portray risk attitude not just as an abstract parameter, but also as the
indifference level of aproxy quantity such as p, .. Which playsameaningful role in some smple
scenario resembling the decision problem of interest. The relation between treatment choice and a
meaningful proxy measure of risk attitude can provide a convincing argument for the optimality of
the option in question.

Risk Averse Risk Seeking

25 i T
20|~ n
CE Surg < log_p vacci ne> 15 // ]

CEnosurg <|°9J) vacci ne)
—
5 — 7]
l l
) 15 -1 -0.5 0
109_P y/accine

Figure 8: Certainty equivalent lifetimes (in years) as a function of p, . for power
utility

Conclusion
What utility functions over stochastic trees can be evaluated recursively? We have shown
that any utility function can be so evaluated, but that recursive evaluation is computationally
worthwhile only for utility functions having preference summaries of low dimension. For three
specific low-dimensional summaries, the memoryless, the Markovian, and the semi-Markovian,
we have identified the respective classes of utility functions having those summaries. We have
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illustrated how such utility functions may be used to model risk attitude in the medical decision of
whether to perform a carotid endarterectomy.
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Appendix

Proof of Theorem 2.1

For fixed x' and y™, the utility functions U(h|x' y™) and U(y™h|x' ) both represent the
same preference relation over stochastic trees of the form x' y™h. They must therefore be
strategically equivalent, that is, there must be constants DU (y™[x' ) > 0 and a(y™|x' ) such that

U(y™hix")=a(y"x' )+ DU(y"|x" )U(h|x'y™)
Set h=f to conclude that a(y™|x' ) = U(y™|x" ), from which the recursive equation (2.7)

follows.
To show the affine restriction (2.5), note that by definition we have

¥
\

U(y"hix' ) = (Uy®Ix' ) + DU(y°Ix' )U(hix' y*))dts)
= U(y"[x') + Q) DU(y*Ix' )U(hix' y*)dn(9).

The affine restriction (2.5) is an immediate consequence when the last equation is compared to
(2.7).
To show the concatenation restriction (2.6), note first that

x'y"y"h=x'y"" h.
The utility of the |eft side of this expression is, using the recursion (2.7),
U(y"y"hix") = U(y"x" ) + DU(y"Ix" )U(y"hix" y™)

= U(y"Ix') + DU(y™x" J(U(y"[x'y™) + DU(y" X' y")U(hlx' y™y")
and the utility of theright sideis

U(y™hix")=U(y™"[x" )+ DU(y"™"[x" )U(hlx"y™").
Set h=f in each of these last two equations and equate the results to obtain

U(y™Ix")=U(y"x" )+ DU(y"Ix" )U(y"[x' y").

Substitute this into the right side of the preceding equation, equate the result to the right side of
its precedecessor, and cancel termsto conclude

DU(y"x" )DU(y"x"y"U(hix' y™y") = DU(y™"[x" )U(hix' y™").

By nontrividity there is asample path h with U(h|x' y™y") = U(h|x' y™)* 0. Therefore this
utility term can be cancelled from the last equation, and (2.6) results. QED.
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Proof of Theorem 2.2

Given a sample path h and preference state g, we define u(h|g) by selecting an arbitrary z"
with e(z") = g, and letting u(h|g) = U(h|z"). If &(x') = q = e(z"), then because e is a preference
summary, conditional preferences given x' and given z" areidentical, so U(x|x') ~ U(x|z") = u(x
), asclaimed. In fact, because U(f [x' ) = O for all x', it follows that

U(x|x")=a(x" Ju(x[q)
for some function a(x' ) > 0. Substitute this equation into (2.1) and use preference updatability to
conclude

a(x" )u(y™lq) =a(x" )u(y™q) + DU(y"|x" )a(x' y")u(hla(q,y™)).
Then
DU(y"x" )a(x"y™) _ u(y™lq)- u(y"a) ,
a(x') u(hla(a,y™)
Equation (2.10) is an immediate consequence of this definition of Du(y™|q). To show (2.9), use
the definition of Du and (2.6) to write

Du(y™q).

a(x'y™ a(x'y™y")
ax') ax'ym

Du(y™a)Du(y"|a(a,y™) = DU(y"x" )DU(y"[x" y™)

a(x'y"y")

= DU nnpy |
(y™"Ix )—a(x')

=Du(y""|a)

which isthe desired result. Finally, equation (2.8) follows from (2.10) because

Du(y"la)u(hla(a.y™) = u(y"hla) - u(y"la)
= & (uy™hia) - u(ylap)s
= ) Du(y"la)u(hla(a,y)ds

QED

Proof of Theorems 2.3 and 2.4
We require the following lemma.

Lemma A.1: The only continuous functions g(t) satisfying

g(s+t) =g(s) +e *g(t)
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in someinterval of valuest are
o(t) = ke “du

for real k.
Proof: If a= 0, the functional equation becomes

g(s+1t) =9(s) +9(t)
whose only continuous solution is the linear function g(t) = kt = kébds: kée‘ *ds, as claimed.

Supposeal 0. Equate g(s+ t) with g(t + s) to obtain
9(9 +e *g(t) =g(t) +& *g(9
or equivaently

g(s _ 9
1-e® 1-e?

holding for all nonzero st. It follows that both sides must be constant, that is,

olt) _k

1-e® a
for al nonzero t (and by continuity, for t = 0 aswaell, if O isin the interval of interest). So
g(t) = E><(1- e‘a‘) = kye “ds
a Q '
The latter function has the property that
g(s+t) = k(z;+t e *du
S au \s+t au A
= k@e du+ @y e dug
S -au - as N - au o
= k% du+e Qe dug
=9g(9) +e (1)

asclamed. QED.

To begin the proof of Theorem 2.4, invoke the concatenation restriction (2.9) under
memoryless utility to obtain

Du(y™") = Du(y™)Du(y").
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Letting mand n be degenerate distributions at s and t, respectively, we conclude that the function
g(t) = Du(y") satisfies the functional equation g(s+t) = g(s)g(t) for all st > 0. Since Du may be
expressed in terms of U, which is continuous in its duration arguments, it follows that the function
g iscontinuous. Therefore g(t) = e " =Du(y") for some constant a(y) which may depend on the

statey (e.g., Section 1 in Aczel 1987).
Next, invoke the recursive equation (2.10) under memoryless utility to obtain

u(y™)=u(y™) +Du(y™)u(y").

Let mand n be degenerate respectively at sand t to obtain
u(y™"") = u(y®) +Du(y*)u(y') = u(y®) + & *u(y").
The function g(t) = u(y") therefore satisfies the functional equation of LemmaA.1 and is
continuousint. Therefore
u(y") = viy) e *""ds

as the theorem claims.
Finally, invoke the affine restriction (2.8) under memoryless utility to obtain

Du(y™)u(h) = (5 Du(y®)u(h)dnt(s)

Cancel u(h) to obtain the last claim of the theorem.
Next we turn to Theorem 2.3. By Theorem 2.2 under memoryless utility, U(% ~ u(}%E) =
u(®. To show necessity, invoke the recursive equation (2.10) for memoryless utility to obtain

u(x'y*) = u(x") + Du(x")u(y®)
_€éu(x") u

= gpupc) )

Now apply the same procedure to u(y®), and so on, to obtain the claim of the theorem.
To show sufficiency it must be demonstrated that U has a memoryless preference
summary. Asapreliminary step, note that

U(X'y®) = E[U(xTyS)]

Car LU U U o)l
a

%w(x“) “&u(x™ 4
u(x'l)u eu(x )

g REIES NWERCR)
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for some constants b > 0, a. In the same way

SUCL U Eu(x!)

Yy = asbsE u
s BT YRS
Then
U(ysx') =e{Ux'y?) - U(x'))  c>0
= cxb>Du(x;1)... Du(x! ) u(y®)

which is strategically equivalent (as afunction of y°) to u(y®). The associated preference
summary therefore does not depend on x' , henceis memoryless. QED.

Proof of Theorems 2.5 and 2.6
We require the following extension of LemmaA1l.
Lemma A.2: The only continuous functions g(t), f(t) satisfying

g(s+1) = g(s) + (1) (A.1)
forst>0are
ﬂn:kéeww
g(t) =c+ kée‘ *du
for real k,c.

Proof: Set s=1in(A.1) to get

g(1+t) =g(2) +e *(t)
f(t) = e*(g(t+1) - g(1)).

Resubstitute into (A.1) to get
g(s+t) =g(9 +e** (gt +1) - 9(D).
Replace sby s+ 1 and subtract g(1) to get
g(s+t+D)- g(@) =g(s+1- gD +e (gt +D) - g(1).
Now apply LemmaA.1 to the function g(t + 1) - g(1) to conclude

g(t+1) = g(D) +k, Qe

and
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f(t) = (gt +1) - g(B) = ke “du.
where k = k:€®. Replacet by t - 1 in the penultimate equation to get
o(t) =g() +k,Q) & du=g(@) +k, e v = k,e" ) dv
=g() +ke'§ ée' v + ée‘ a“’dvg
=c+ kée‘ dv
asclamed. Thispair g(t), f(t) does satisfy A.1:
g(s+t)=c+ k(:s+t e *du
= o+ kEp “du+ ) e ¥aud
=c+ k%?' Ydu+e asée‘ audug
=9(9 +e (1)

asdesired. QED

We now turn to Theorem 2.6. From the concatenation restriction (2.9) we get

Du(y*"[x) = Du(y*|x)Du(y'ly).
Take natural logs and apply LemmaA.2 with a= 0 to get
Du(y®|x) = exp(kxys+ cxy)
Du(y'ly) = exp(k,,t).

The last equation forces k,, to be independent of x. So let ky, = - a(y), Dw(y|x) = exp(cy,) for x *
y and Dw(yly) = 1 to get

Du(y'[x) = Dw(y|x)e *"

for al x,y, as desired.
According to the recursive equation (2.10) we have

u(y*"[x) = u(y®Ix) + Du(y*[x)u(y'ly)
= u(y®|x) + Dw(y|x)e *Pu(yly).

Invoking LemmaA.2 we obtain
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Dw(ylX)u(y'ly) = k,, ) s (A2)

u(y'x) = c,, +k, ée‘ a)sds (A3)
for new constants k,y and c,y. Set x =y in (A.2) and define v(y) = kyy to get

u(y'ly) = v(y) e *ds.
Resubstitute into (A.2) to get
Dw(y|x)v(y) = k
Letting w(y|x) = c.y, we have according to (A.3)
U(y'[x) = W(ylX) + Dw(yIX)v(y) e **ds.

Substitute x = y here and compare to the equation for u(y'ly) to conclude that w(yly) = 0.
This establishes al but the last claim of Theorem 2.6. To derive that, substitute the
Markovian summary into the affine restriction (2.8) to get

Du(y™x)u(hly) = (5 Du(y°x)u(hly)dm(s)

and cancel the factor u(hly).
To show necessity in Theorem 2.5, invoke the recursive equation (2.10) to obtain

u(x'|4) = u(xy |A) + Du(xy [ u(X3... X [X,)
_éu(xy]

gju( tllﬁaju(x X |Xl)
Apply (2.10) again to obtain

UX' 1) = g;f(xxlﬂfgttu(x 1X,) + DU(XE [ ) UK. X2 [x,))

_éu(x;|A u eéu(xz|x,)
= &pu(x: Y &ou (xt2|xl)tt“(X

X31%,)).

Repeat until one obtains

é u(x;'|A) U eu(xt2|xl) u eu(x X, 1)

HOHD = e 1 Eui 1x,) BDu(x Ix, JE(

Because U(x') ~ u(x'[f ), the conclusion of the theorem follows.



To show sufficiency in Theorem 2.5, we must show that the given U has a Markovian
preference summary. We have

U(X'y*) = HU(XTy?)]
eeu(xT1 1) U éu(xz|x) o eu(xy|x,,) oo \YU
= By 1" Bu( k) "8t Ix, ott”(y )G

_éu(x'|/A u eu(x'2|xl) u eu(x 1X,.,)

83U(X|1|A3u 8)J(XI 2|X1)u 8DU(X |Xn l)tXU(y |Xn))

and smilarly

U') = eu(x 1| u eu(x S2|%;) U eu(x [X.,. l)tl(
DU 1B U0 x) 8K Ix,. )b

Therefore
U(y*Ix') = U(x'y®) - U(x")
= DU [AB) DU(XZ [X, ). .. Du(xyy X, ) u(y®|X,,).

from which it may be seen that U(y®|x" ) is strategically equivalent (as a function of y°) to
u(y®|x,). ThusU hasaMarkovian preference summary. QED.

Proof of Theorems 2.7 and 2.8
Invoke the concatenation equations (2.9) under the semi-Markov preference summary to
obtain
Du(y™"ly" ) =Du(y"ly" )Du(y"ly' ™) (A.4)
andfory?® x
Du(y™"|x") = Du(y"|x" )Du(y"ly™). (A.5)

The last equation when x' isthe null preference summary is
Du(y™" |45 = Du(y"|A)Du(y"ly") .
Define Dw(y") = Du(y")&), and solve the last equation for Du(y"ly"™) to get

rTT"n)

Dw(y™")

Du(y"ly™) = Wiy (A.6)

Substitute this back into (A.5) to get
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Du(y™"[x') _ Du(y"|x')
Dw(y™") Dw(y™)

xty.

Replace m* n and mby constant durations s> 0, t > 0 to conclude that the ratio Du(ySx' )/Dw(y®)
does not depend on's. Let Dw(y|x') be thisratio. We therefore have

Du(y’ix') = Dw(yjx' ) Dw(y). (A.7)

Note that

Du(y’lA) _ DUyl _

Dw(y®)  Du(y’|/
We show that (A.7) remains valid when a distribution mreplaces s. Invoke the affine restriction
(2.8) under the semi-Markov preference summary to get for x t y

Du(y"|x" Ju(hly™) = G Du(y*|x" u(hly*)dm(s).

Dw(y|A) =

When X' isthe null summary this becomes
Dw(y™)u(hly™) = @ Dw(y®)u(hly®)dnt(s) .
Use (A.7) in the penultimate equation to get
Du(y™|x" Ju(hly™) = (5 Dw(y|x' )Dw(y®)u(hly®)dm(s)

= Dw(ylx' ) §) DW(y?)u(hly)d(9

= Dw(y|x")Dw(y™u(hly™)
Cancel the factor u(hly™, which by nontriviality can be considered nonzero, to obtain

Du(y"Ix') = Dw(ylx )Dw(y") (A.8)

the desired analog of (A.7). (A.6) and (A.8) together establish the second equation (2.17) of
Theorem 2.8.

Now consider the recursive equation (2.10), which becomes under a semi-Markov
preference summary:

u(y™hly' ) = u(y™y" ) +Du(y™y' Ju(hly'™)

DN(yl *m) u(hlyl *m)

=u(y"ly )+ w(y)

andfory? x,
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u(y™hix") =u(y"x" )+ Du(y"Ix" Ju(hly™
=u(y"|x" )+ Dw(ylx' )Dw(y™)u(hly™).

Set h=y" inthelast two equations, where T has distribution n, and then take expectations to get

mny,,l - my, | D\N(yl*m) n I *m A9
u(y™"ly ) =u(y"ly )+—Dw(y') uy'ly ™) (A.9)
andfory?® x
u(y™Ix" ) = u(y™|x" ) + Dw(y|x" )Dw(y™)u(y"ly™). (A.10)

When X' isthe null summary, the last equation becomes
w(y™") =w(y™) + Dw(y")u(y"ly")
where we define w(y™) = u(y")4&). Thenw is affine in mbecause u(x|y®) is a utility function, so

the first affine restriction (2.12) holds. Solve to obtain

w(y™) - w(y")
Dw(y™)

u(y"ly™) =

and substitute back into (A.10) to get
u(y™"x") = u(y"lx' ) + Dw(ylx )(w(y™") - w(y™).
The constant-duration version of thislast equation
u(y™'x") - u(y'[x") = Dw(ylx" )(w(y*™) - w(y"))

implies that u(y'[x') and w(y") are related by an affine transformation with slope Dw(y|x' ). Letting
w(y|x') be the intercept, we have

u(y'|x") = w(ylx") + Dw(y|x )w(y").
Let t have distribution n and take expectations to get

u(y"|x") = w(ylx") + Dw(y|x" )w(y").

This establishes (2.16) and therefore compl etes the proof of Theorem 2.8.
Turning to the remaining necessary conditions in Theorem 2.7, note first that the affine
restriction (2.8) requires that Du(y™|q)u(h|g(qg,y™)) be an affine function of the measure m For

the semi-Markov preference summary, this restriction forces

Du(y™|x" )u(hly™ affinein m
Du(y™y" Ju(hly'™) affinein m
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Using (A.8) we conclude
Dw(y™u(h]y™) affinein m
Forz! y, set h=z"f and then h = 2"k, where (by nontriviality) w(z") * w(z"k), to conclude using
Theorem 2.8
Dw(y™)(w(zly™) + Dw(zly")w(z")) affineinm;
Dw(y™)(w(zly™) + Dw(zly™)w(z'k)) affinein m.

The difference of these two expressions

Dw(y™)Dw(zly")(w(z"k) - w(z"))

isaffinein m and is proportional to Dw(y")Dw(zly™, so the latter is affinein mas well. Subtract
the affine Dw(y™Dw(zly™w(z") from the first affine expression to conclude that the result
Dw(yMw(zly™ isdso affineinm This establishes the affine restrictions (2.13), (2.14).

Finally, to establish (2.15), suppose X, * X, *--- x, and let X, = (X,,....X,),
t, =(t.....,t,). According to Theorem 2.8 and the recursive equations (2.10), we have

u(x'|A) = u(x;|A) = u(xy|A) + Du(x; | AB)u(xz |Xy).

eW(XllﬁE) U eW(Xl) u

= (D" Dwxi§ 0
In the same way,
Gyl eW(lexl) u eW(XtZ) U Ly to
O XD = g ey Sowort U065 1X9)
and so on until

_ew(x, X )u ew(xy )u
M) = G ) Gk
_éw(x, X )u ew(x )u

= i (0).
Dw(x, )i Bwix)l
Combine these to obtain u(x'|4A) . Then (2.15) follows because U(x') ~ u(x'|&) . This
completes the proof of necessity in Theorem 2.7.
To show sufficiency, suppose U is specified by (2.15), where the affine restrictions (2.12)

through (2.14) hold. To show U has a semi-Markov preference summary, we examine
conditional preference over sample paths h given x¢ ¢, where x¢= (xg...,x¢), | '= (I §...,1 ¢). If

U(f i)
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X' has adjacent states x¢, = x4 which are the same, then we can concatenate x¢ *x¢* into x¢ *'
and we may continue concatenation until all adjacent states are distinct. Let x' denote the result
of this concatenation process, in which x; * x, *---1 x_ . Note that the semi-Markov preference
summary e(x¢°) of x¢‘ise(x¢) = x\». Weintend to show that under the utility function U of
(2.15), conditional preference given x¢ ¢ depends only on the semi-Markov summary x!».

Let h be a sample path which after concatenation of successive identical states, becomes
y*, wherey =(yy,..,¥), S=(S,,---,S, ), ad y, * y, t---1 y . Consider first the case in which
X, ty,. According to (2.15),if T = (T,,...,T,) areindependent durations with distributions|
then

U(X'y®) = E[U(XTy?)]

&w(x,|A u_éw(x;) u CEW(X,[xr) U ew(xy) U u
_ G@JN(xllﬁE)El Dwix)i T wix xrol wixl b
eew(y1|x U Ew(yr) U éw(y,lyn) U éw(yd )u()lj
8 Dw(y,xE Swiynd” T ow(y,lyx i wy)d
_éw(x,|A) VS ew(x yu c)(;ew(x X! )u ew(x )u
" EDw(x,|BH° SDW(le)u &Dw(x, X, ) SDW(X )d
CEw(yx) U éw(yy) U éw(y,lymi) U eW(ym)u(o)_ (A.11)

" Ew(y, X' wyn)d” T Ew(y,lyrdE Swiyn)d

The last equality results from n applications of the affine restrictions (2.12) - (2.14), which at the
ith application looks like

e EW(X) U €w(X;,|x )u U

w(x! )Y w(x,,x)

=E, [ W(xT) + Dw(x )(w(xi+l|xii) + DW(X,,, X" )()))]

=

(B [woh)] + (B [DWOT ) Wi, lx?)] + B [DWxT )OO, X7 (-]
(W) + (Dw(x )Wl ) + D (x| ) DW(x, X! )(...))

ew(x )u ew(x,+l|x )u

Eow(x ) Ew(x,,, X )

The case where x, =y, issimilar. In x'y®, concatenate x»y2 into x'»"*. The analog of (A.11)
isthen
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U y) = EW(X,|A) b ew(x;) U w(x,[x ) U éw(x;y3) U
EDw(x, 1A () T Bwx Ix)l Sw(xyy:)l
CEW(y,|x;y3) U éw(yg) U u L JEw(y,lymy) U éw(yr) “(0). (A.12)
“w(y, Xyl wynll T Wy, lyr i wyn
Now consider U(x'y®) asa utility function over y° with x' fixed. Thenin (A.11) and (A.12) all
terms not involving y® are effectively constants. By removing dl initial additive constant terms
and initial positive constant factors, we see that as a function of y*®

ux'y®) ~

Foéw(xy) U éw(y|x;") U éw(yp)u  éw(y,lymi) U GW(ym)u(o) ity 1 x
'; &ow(xi) 4 Bw(y,Ix) Dwy:)E T wly,lysHE w(y)d Lo
FEW(Xys) U ew(y, Xy ys) U éw(yy) U éw(y,lyiri) U éw(ys )V iy, =x,.

TSDW(X v wiy, Xyl wy)d T wly. vyl Swiy)d

It follows that conditional preference given x' depends only on the semi-Markov summary e(x')
=x'", asclaimed. QED.
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Fragments deleted from the paper

For example, consider the stochastic tree H = y'ty'2y's = y'«'2"s | The utility u(y'™" 2" ¢) may
be calculated directly, and the utility u(y'+y'2y'#) can be calculated by recursion. The results
should be identical, and it is not difficult to see that they are: The direct calculation is

U( %1y I3) u(yl * |3|f)
ek
(yIf) (y''7he)
= w(y[f )+ Dw(y[f )w(y' ' "=).
The recursive calculation is

u(y'ty'zy's) = u(y'ty'2y'e|f)

@ity Ry By,
‘@(ylf)@(y“)@“ yrym e

@ |f) @ |1) . l\f D’V(yll) |3|y|1*|2)m
(VIf ) R (y') D (y 2
By ) - wiy') Bl ) - wiy' ")
@ |f)@ y') S Dw(y) oy )
(YIf ) R (y' ) B Dw(y' ')
\ Dw(y'*"?)
|y|1*|z*|3)_ W(yI 1*|2)
@ yIf) @ vt K
(ylf) (yl IZ) \/2 D\N(yl 2 z*ls)
Dw(y'+"?)
= w(y|f )+ Dw(y|f )w(y''"2)
The recursive and the direct calculations therefore give the same results. However, the direct
calculation is obviously more economical. Whenever possible, it is preferable to concatenate

0 Dw(y'eTe)
o Dw(y's'?)
@ |f) @ I |2*|3) @
(ylf) (y''7'e)
rather than use the recursion.

A parameterized family of semi-Markovian utility functions
Consider the family of semi-Markovian utility functions for which w(y") hasrisk aversion

function
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a,(t)=b,ge®
where b, isunrestricted in sign and g, > 0. members of this family are, for each'y, either
decreasingly risk averse (b, > 0), increasingly risk prone (b, < 0) or risk neutral (b, =0). Then
A, (t)=-be*.
One could also postulate asimilar form for B, (t). An advantage of these formsisthat in the

stochastic tree rollback formula (3.Error! Bookmark not defined.), the integrals converge for all
vauesof b, g,, m Although thereis no closed form expression for these integrals, if one

expands e ™" into its Taylor series and integrates the resulting expression term by term, one
obtains

¥ by
86@‘”‘ "dt=§ -~ % kg, >‘< (3.2)

k=0 K!
which may be used to approximate the integrals to any desired degree of accuracy.
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