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tochastic trees are extensions of decision trees that facilitate the modeling of temporal

uncertainties. Their primary application has been to medical treatment decisions. It is
often convenient to present stochastic trees in factored form, allowing loosely coupled pieces
of the model to be formulated and presented separately. In this paper, we show how the
notion of factoring can be extended as well to preference components of the stochastic model.
We examine updateable-state utility, a flexible class of expected utility models that permit
stochastic trees to be rolled back much in the manner of decision trees. We show that
preference summaries for updateable-state utility can be factored out of the stochastic tree. In
addition, we examine utility decompositions which can arise when factors in a stochastic tree
are treated as attributes in a multiattribute utility function.
(Expected Utility; Medical Decision Making; Stochastic Trees; Multiattribute Utility; Time Preference;

Quality-Adjusted Lifetime)

Stochastic trees are graphical modeling tools which
extend decision trees by allowing the explicit depic-
tion of temporal uncertainty. They are especially well
suited to modeling temporal issues in medical treat-
ment decision analyses (Hazen 1992). My colleagues
and I have constructed stochastic tree models for total
hip replacement and knee replacement decision anal-
yses (Chang et al. 1996, Pellissier et al. 1996, Gottlob et
al. 1996) and for breast cancer decision analysis (Ha-
zen et al. 1999). We have investigated risk-sensitive
utility rollback for stochastic trees (Hazen and Pellis-
sier 1996), and have explored preference assessment
techniques that are tailored to address risky temporal
tradeoffs (Hazen et al. 1991, Pellissier and Hazen
1994). We have found the notion of factoring a stochas-
tic tree (Hazen 1993) to be very useful for model
formulation and presentation, and have developed
software (available at (www.iems.nwu.edu/~hazen))
with a graphical interface for formulating and rolling
back factored stochastic trees. All stochastic tree illus-
trations in this article are screen captures from that
software.
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Formulating a stochastic tree in a factored fashion
can greatly simplify the model construction process.
For example, it is usually beneficial to factor out
background mortality and consider the rest of the
model separately (Hazen 1993, Hazen et al. 1998).
Further factoring is usually helpful as well, for
example, to separate essentially independent pro-
cesses such as drug side effects and disease progres-
sion. We give examples of stochastic tree factoring
below.

In this paper, we show how the notion of factoring
can be extended as well to preference components of
the stochastic model. When features involving patient
preference are factored out, the remaining stochastic
model is often significantly simpler. We take up
preference factoring in §2, where we examine update-
able-state utility models. These arise from the state-
trajectory preference summaries recently introduced
by Hazen and Sounderpandian (1999), and extend the
Markovian utility models introduced by Hazen and
Pellissier (1996). The major result presented in §2 is
that every updateable-state utility model is equivalent
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Figure 1 A Stochastic Tree Wodel

Note: Unlabeted shaded nodes represent death. A patient begins in the Well state
with mortality risk due to unreisted causes cccurring at average rate p, and
competing risk of stroke occurring at average rate A. Should death occur first, the
process terminates. Should siroke occur first, the patient moves to the state
Stroke, at which there is a chance p of immediate mortality. Should the patient
survive, he moves to the state Post Siroke, from which he is subject only to
mortality risk at rate u.

to a Markovian utility model in a stochastic tree
augmented by factors which record preference sum-
mary states. The latter are in this sense factored from
the model.

Of course, the factoring process establishes a natural
multiatiribute structure to any stochastic tree model,
and this suggests that preference decomposition is-
sues be investigated. In §3 we examine utility inde-
pendence and related conditions, and show how such
assumptions can be used to decompose updateable-
state utility models. We begin in the next section with
a review of factoring stochastic trees.

1. Factoring Stochastic Trees

Background

In its simplest form, a stochastic tree is merely a
continuous-time Markov chain unfolded into a tree
structure, with possible chance or decision nodes
added. Straight-line arcs emanate from chance or
decision nodes, and arcs from chance nodes have
attached probabilities, just as in a decision tree.
Wavy arcs emanate from stochastic nodes, and de-
note transitions which take time to occur. Wavy arcs
have transition rates attached. Figure 1 displays a
simplified stochastic tree model of transient isch-
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Using Roliback to Calculats Mean Survival Duration in a
Stochastic Tree

Figure 2

21.8

x= 0.25 /yr
u= 0.04 jyr
p= 15%

Note. Numerical values at nodes are mean survival durstions in years. For
example, mean survival time at Post Stroke is 1/u = 25 years, mean survival
time at Stroke is 25 X {1 — p = 21.2 years. Overali mean survival time
is 21.8 years using the roliback formuia (2).

emic attack adapted from Matchar and Pauker
(1986).

Stochastic trees can be rolled back much like deci-
sion trees. Figure 2 illustrates how rollback can be
used to calculate mean survival times. One may also
calculate mean quality-adjusted survival times, in
which time spent in a state is weighted by its relative
worth compared to an equal time in the well state.
This is illustrated in Figure 3.

The generic rollback formula is given by Hazen

Figure 3 sing Roliback o Calculate Mean Quality-Adjusted Lifstime

894 /[

a= 0.25 lyr
p= 0.04 fyr
p= 156%

wWostStroke = 0.3

Note: For example, mean quality-adjusted lifetime at Post Stroke is (1/u)
X vPostStroke = 7.5 years, and mean survival ime at Stroke is 7.5 X (%
— py = 8.37 years. Overall mean quality-adjusted lifetime is 8.94 years using
the roliback formula (2).
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(1992) or Hazen and Pellissier (1996). At an arbitrary
stochastic fork

¥

in which subtrees K, are reached from state ¥ at
competing rates A, the rollback equation for mean
discounted quality-adjusted lifetime L(-) takes the
simple form

oly) + Z; ML(K})
a(y) + Ei Ai ’ (2)

L{H) =

Here v(y) is the quality weight for state y, and a(y) is
the state-specific discount rate at state y. When a(y)
= 0 for all ¥, expected utility is mean quality-adjusted
duration, and when a{y} = « for all y, expected utility
is quality-adjusted duration discounted at rate a. At
chance forks, expected utility computation is identical
to the usual probability-weighted averaging done in
decision trees. For reasons which will become clear,
we call {2) the Markovian rollback formula.

Factoring
In the model of Figure 1, a background mortality rate
u is present for both the Well and Post Stroke states.

Figule 4  Factoring Backgreund Mortality Out of the Stroke Model of

Figure 1

Stroke

Background Moriality
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Figure & A Coxian Mortality Factor, in Which Mortality Rate depends on

the Stage of the Process

Background mortality is really a process operating in
parallel with the stroke process. It can therefore be
factored from the stroke model. The result appears in
Figure 4. We say that the transient ischemic attack
model of Figure 1 is the (Cartesian) product of the
Stroke and Background Mortality factors in Figure 4.
One advantage of this factoring is that it simplifies the
model construction process. The modeler may first
deal with issues involving stroke without having to
worry about background mortality.

Stmilarly, background mortality can be dealt with
independently. For example, the background mortal-
ity model in Figure 4 is too simple to be realistic
because actual human mortality rates are age depen-
dent, not constant. A more accurate model of human
mortality can be constructed by using the Coxian
model (Cox 1955, Hazen et al. 1998) depicted in Figure
5. The parameters and the number of stages in a
Coxian model can be arbitrarily chosen to well ap-
proximate human survival durations. The Coxian fac-
tor can be substituted for simple background mortal-
ity in Figure 4, resulting in an improved model. The
Cartesian product tree need never be explicitly con-
structed (but see Hazen et al. 1998 for a picture).
Hazen (1993) discusses a rollback procedure for fac-
tored stochastic trees.

Hazen (1993) constructs a six-factor stochastic tree
model of the use of an anticoagulant drug warfarin to
treat dilated cardiomyopathy. The model is based on
Tsevat et al. (1989). The Systemic Embolism factor for
this model appears in Figure 6, and the Anticoagulant
Status factor in Figure 7. Three useful modeling fea-
tures are illustrated: First, stochastic trees can have
transition cycles, which allow the possibility of re-
peated visits to a state. Second, rates or probabilities in
one factor can depend on the states of other factors.
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Figure 8 The Systemic Embolism Factor from a Six-Factor Mode! of the

Use of Warfarin in Dilated Cardiomyopathy

| Subsequent }
1 Embolism §——

SE Surv

Note: Nodes with dashed-ling borders refer to previous nodes in the tree. For
example, from the node Subseguent Embolism transition is possible (with
probability SE Surnv to the prior node Survive. So repeated visits to Survive,
Long-Term Morbidity and Mo Embotism are possible. Moreover, the rate of
systemic embolism (SE Rate) depends on the state of the Anticoagulant Status
factor {Figure 7).

Finally, transitions in one factor can trigger transitions
in other factors.

2.. Factoring Preference Components
from a Stochastic Tree

Updateable-State Preference Summaries

The Markovian rollback formula (2) for mean quality-
adjusted duration presupposes that every state y can
be assigned a quality weight v(y) as well as a discount
rate a(y). However, sometimes the quality weight ata
given state y should depend not only on y but also on
the process history prior to entering . For example, in
Figure 6 the process begins in the state No Embolism,
and may return there after visiting the state Long-Term
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Morbidity. Because the effects of long-term morbidity
are permanent, the quality weight assigned to No
Embolism should depend on whether Long-Term Mor-
bidity has been previously visited. This cannot be
accounted for in the Markovian rollback procedure
(2).

The dependence of quality weights (and discount
rates as well) on the prior history of the process can be
incorporated into an efficient rollback procedure by
introducing the notion of an updateable-state preference
summary (Hazen and Sounderpandian 1999, Hazen
and Pellissier 1996). Suppose that the quality weight at
state ¥ can depend on the entire sequence y = (x,,
Xy ..., Xy, ) of states visited up to and including y.
Suppose the same is true for the discount rate at y. A
state preference summary is a function e(-) which assigns
a preference summary r = e(y) to every sequence of
states y so that the quality weight and the discount
rate at y depends only on r = e(y). We say that e(") has
updateable states if there is a function 8(g, y) such that
ify = (x, y) and g = e(x), then e(y) = 6{q, y}. In other
words, the preference summary at y = (x, ¥} depends
only on the last state y and the preference summary at
x. When an updateable-state preference summary
exists, then rollback operations analogous to (2) may
be performed. The notion of preference summary was
introduced for discrete-time models by Meyer (1976),
who called it state descriptor.

Updateable-state preference summaries are plenti-
ful. If quality weights and discount rates depend only
on the current state, as we have been assuming, then
e((x, y)) = y is an updateable-state preference sum-

Figure 7 The Anticoagulant Status Factor in the Warfarin Model

Motz An embolism occurrence in the Systemic Embolism factor triggers a
transition from Mo Warfarin to Warfarin in this facter. A hemomhage in the
Systemic Hemorrhage factor {not shown here) triggers a fransition here from
Warfarin to Temperarify Discontinue.
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mary, which might aptly be called a Markovian pref-
erence summary (hence the terminology Markovian
rollback for (2)). The update function is 8(¢q, y)} = y.
Other examples of updateable-state summaries are the
count of visits to a particular state, whether (Yes or No)
a state has ever been visited, and which of a subset of
states has been most recently visited. If states are
ordered from best to worst in some fashion, then the
best state visited so far is an updateable-state sum-
mary, but the second-best state so far is not (if there are
more than two states).

Hazen and Sounderpandian (1999) derive the fol-
lowing roliback equation for mean discounted quality-
adjusted duration L{H|q) at the generic stochastic fork
H in (1) when there is an updateable-state preference
summary g prior to H:

v{r) + Z; AL(K|[7)

L{Hig) = alry +Z;h 7

r=60(q,y) (3

At the analogous chance fork in which branches are
labeled by probabilities p,, the rollback formula is

L(H|q) = > piL(Kir), r=26(qy). 4)

Note that these equations require the computation of
mean discounted quality-adjusted duration L(H|g) for
every possible preference summary g which could
occur prior to the initial node y of H.

Figure 8 shows an example rollback for the Systemic
Embolism stochastic tree introduced above. The state
preference summary is whether the state Long-Term
Morbidity has yet been visited, and consists of the two
possibilities {Well, LT_Morb). There are therefore two
rollback values at each node in Figure 8, except at
Long-Term Morbidity and Subsequent Embolism, where
the only possible value of the preference summary is
LT_Morb.

Factoring to Recover Markovian Rollback

One of the main results of this paper is that by suitably
factoring a stochastic tree, one may always transform
the updateable-state rollback (3) to Markovian roll-
back (2) on the factored tree. We formally derive this
result in the next subsection. Here we illustrate how it
may be done for the systemic embolism example of

Figure 8.
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Figure 8 Rofthack Using the Updateable-Stzte Preference Summary of

Whather the State Long-Term Morbidity Has Yet Been Visited

4.736 .
2.56 I Mo Embolism

| 2736
,,,,,,,,,,,,,,,, 1.92

SE Rate =
SE Surv=  75%
SE MobP = 50%

0.5 lyr

gl o) ag
Well| 1 i)
LT_Morb| 0.32 0

Note: There are two rofiback values at every state except Long-Term Morbidfty
and Subseguent Embolism, corresponding to the two possible values (Welf or
LT_Rort) of the preference summary.

Generally speaking, the idea is to factor all prefer-
ence summary information from the stochastic tree. In
the systemic embolism example, the preference sum-
mary is whether the state Long-Terim Morbidity has yet
been visited. Therefore, we create a new factor Mor-
bidity Status with possible states Well and Long-Term
Morbidity, and we remove Long-Term Morbidity from
the original systemic embolism tree. The result is
displayed as a two-factor stochastic tree in Figure 9.
We have in effect factored out the essential preference
information. Note that one of the transitions Survive —
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Figure ¢ Factoring Morbidity Status from the Systemic Embelism
Mode! of Figure &
Systemic Embolism

] SE MorbP
| (Trigger
V LT_Morb)

P s S L

e i
{ No &mm{nsnﬁ { Mo !::mb@stsrzlb

Morbidity Status

#ote: Transition from We! to LT _Morb in the Morbidily Status factor can ocour
only when triggered by the transition Survive — No Embolism in the Systemic
Emboiism factor. Mean quality-adjusted life years for the product of these twe
factors are shown next to the appropriate states. These quantities were
calculated using the Markovian rollback formuias and are identical to the results
in Figure 8 obtained using updateable-state roliback formulas.

No Embolism in the new Systemic Embolism factor now
triggers transition from Well to LT_Morb in the Mor-
bidity Status factor.

Recail that the overall stochastic tree is now the
Cartesian product of the Systemic Embolism factor and
the Morbidity Status factor in Figure 9, so has states of
the form (y, 9), where 4 is morbidity status. Therefore,
what was previously a preference summary g in the
criginal model of Figure 8 has become part of the state
information in the factored model of Figure 9. For this
reason, the preference summary for the factored
model is Markovian, and the Markovian rollback
formulas can be employed. The numerical results of
Markovian roliback are displayed in Figure 9, and are
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of course identical to the values in Figure 8. Compu-
tationally, the Markovian rollback is identical to the
previous updateable-state rollback. However, the fac-
tored form of the model in Figure 9 gives much greater
insight into model structure: The Systemic Embolism
factor in Figure 9 succinctly summarizes probabilistic
structure, and the Morbidity Status factor summarizes
preference structure.

Compared to the simple Markovian preference
summary, updateable-state preference summaries ap-
pear to allow much greater flexibility in preference
representation. However, this appearance is illusory
because the same flexibility can be acquired by includ-
ing the preference summary 4 in the state of the
stochastic tree and using a Markovian summary.

At first sight, this result appears to diminish the
significance of updateable-state utility. From a com-
putational standpoint one need never implement the
updateable-state rollback Equations (3) and (4) be-
cause Markovian roliback (2) over augmented-state
stochastic trees will do. However, from the viewpoint
of model construction and presentation, it is still
advantageous to think in terms of updateable-state
preference summaries because these may be factored
from the model in a way that eases model construction
and simplifies model presentation.

As promised, the preference factoring methodology
discussed here by example is presented in a general
setting in the following section. Readers not interested
in the mathematical details can skip the next section
without loss of continuity.

General Results on Preference Factoring

The Markovian rollback formulas (2} can be general-
ized to allow for tolls and discount multipliers, as I now
explain. Let EU(H|x) be the expected Markovian
utility of the stochastic tree H in (1) given that y is
reached from preceding state x. From Hazen and
Pellissier (1996), the rollback Formulas (2} generalize
to

EU(H|x)} = wly|x) + Aw(y|x)EU,(H), (5a)

ﬂ(y) + 2,‘ Ai

EU,(H) = (5b)
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Here w(y|x) is the negative of the toll from x to y, and
Aw(y|x) is the discount multiplier from x to y.

Updateable-state utility can be generalized to allow
for tolls and discount multipliers as well. From Hazen
and Sounderpandian (1999), one may derive the fol-
lowing generalization of the updateable-state rollback
formulas (3):

Eu(H|9) = w(ylg) + Aw{ylg)Eus(H|q), (6a)

v{r) + Z; LEu(K/r)
a(ry + 3, A g

Eug(Hig) = r=6(g,y). (6b)
Again, w{ylq) and Aw(y|g) are the negative toll and
the discount factor respectively at y given preference
summary 4. Both the Markovian rollback formulas (5)
and the updateable-state rollback formulas (6) are true
expected utility formulas, that is, each results from
taking the expectation of a utility function defined
over sample paths.

Consider the situation described in the systemic
embolism exampie of the previous section, in which
one or more states are present not for any stochastic
reason but only for their impact on preference. We
formalize this notion as follows. Given a stochastic
tree H with states in Y, we say that an equivalence
relation = over Y is a sfochastic equivalence relation if
whenever x = x’, then there is a one-to-one corre-
spondence between the arcs immediately succeeding x
and the arcs immediately succeeding x' such that

{(a) corresponding arcs have the same attached rate
(or probability),

(b) if ¥, is a node successor of x and y! is the
corresponding node successor of x' then y, = y;.
Note that if x = x’, then starting the process in state x
is stochastically identical to starting the process in
state x'.

Let x™ be the set of all nodes x’ stochastically
equivalent to x. By merging all stochastically equiva-
lent states, and identifying the corresponding succes-
sor arcs, one can form the stochastic tree H™ (some-
times denoted H/=), whose states and arcs are
equivalence classes module = of states and arcs in H.

For example, in the systemic embolism tree H of
Figure 6, notice that

No Embolism = Long-Term Morbidity, (7a)

MANAGEMENT SCIENCE/ Vol. 46, No. 3, March 2000

Subsequent Embolism = Embolism. (7b)

When these equivalent states and their corresponding
arcs are merged, the result is the Systemic Embolism
factor H™ of Figure 9.

If one’s only goal is to display probabilistic structure
or to compute probabilities, then it is better to use H™
because it has fewer nodes and arcs. However, if one
wishes to compute expected utilities under an update-
able-state preference structure, then one must revert to
H, because stochastically equivalent states need not
have the same preference summaries. For instance, in
the Systentic Embolism model H, the state Embolism has
possible preference summaries {Well, LT _Morb} but
the stochastically equivalent state Subsequent Embolism
has only LT_Morb as a possible preference summary.

Our main result of this section follows. We show
that the method of the previous section works in
general; that is, one may reduce an updateable-state
expected utility computation to a Markovian expected
utility computation by factoring out preference sum-
maries and identifying stochastically equivalent
states. Here are the details.

Construct a product tree H™ ® (J as follows: Let
H* ® (Q have states {x~, g), where ¢ is a possible
preference summary up to and including some x’ € x~.
For every arc x™ — ¥~ in H™, every x’ € x~, and
every preference summary ¢ which can occur at x’,
add in H™ ® Q the arc (x7, q) — (y~, #) where r
= (g, x'). This product tree can be visualized in
factored form: The transition x™ — ¥~ in H™ triggers
the transition g — v in Q.

Suppose w(ylq), Aw(y|g), v(g), and a(g) are the
component functions of the original updateable-state
utility function u(-). We make the assumption that tolls
and discount factors depend only on preference summaries,
that is, w(y|q) and Aw(ylq) are functions only of g and
r = 6{g, v). For convenience we write

Aw(ylg) = Aw(rig).

Define the components of a Markovian utility func-
tion U(") over product trees H™ ® Q as follows:

w(yiq) = w(rlg),

w((y=, Nl(x=, q)) = wiriq), (8a)
Aw((y=, n)i(x=, 9)) = Aw(rig), (8b)
395
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v(y~, r) = v(r), (8c)

a(y=, r) = a(r). (8d)

We have the following result.

TrEOREM 1. Suppose preference over stochastic trees
having possible states y € Y is represented by an update-
able-state utility function u(-) whose tolls and discount
factors depend only on preference summaries. Let H be an
arbitrary stochastic tree with states in Y, and let = be a
stochastic equivalence relation over H. Suppose the stochas-
tic tree H= ® Q and Markovian utility U(-) are con-
structed as described above. For any (y~, v} in H™ ® Q, let
H(y~, r) be the subtree with initial state (y~, r), and let
H(y) be the subtree of H with initial state y. Then

EU(H{y", n|(x~, 9)) = Eu(H(y)|g).

Arthritis Modeling with Updateable-State Utility
My colleagues and I (Chang et al. 1996) examined the
cost-effectiveness of total hip replacement surgery
(total hip arthroplasty, or THA). An estimated 120,600
hip replacements are performed per year in North
America (Harris and Sledge 1990). THA is an elective,
high cost procedure which reduces disability but does
not extend life, and which has less expensive short-
term alternatives. It is therefore particularly vulnera-
ble to questions of cost-effectiveness. Nevertheless, we
concluded that when quality of life is taken into ac-
count, THA is one of the most cost-effective of medical
procedures, comparable or superior to well-accepted
procedures such as cardiac bypass or renal dialysis.

Our cost-effectiveness analysis was performed us-
ing a stochastic tree model of hip surgery and its
consequences. Our model at that time did not exploit
updateable-state preference summaries. However, it is
easy to recast our efforts in those terms, and the
resulting formulation and presentation given below,
while equivalent, gives considerably greater insight
than the original. A summary of the model as origi-
nally conceived may be found in Hazen et al. (1998).

We chose to characterize the effectiveness of THA in
terms of functional outcome measured by the four-
state American College of Rheumatology (ACR) func-
tional status classification. The four classes on the
ACR scale are as follows:

396

L Complete ability to carry on all usual duties
without handicaps.

II. Adequate for normal activities despite handicap
of discomfort or limited motion in one or more joints.

IIf. Limited only to little or none of duties of usual
occupation or self-care.

IV. Incapacitated, largely or wholly bedridden or
confined to wheelchair; little or no self-care.

A candidate for THA is typically in functional class
II. The result of the THA procedure is usually an
immediate transition to functional class I or II. How-
ever, short- or long-term complications may arise. The
presence of infection might cause the prosthesis to fail
over time (septic failure). The prosthesis might fail for
a variety of other reasons such as mechanical loosen-
ing, prosthesis breakage, or dislocation (aseptic fail-
ure). Should any of these failures occur, revision
surgery is required which is often less successful than
the initial THA. A septic failure can cause permanent
degradation in functional status. Small mortality rates
accompany both initial THA and revision surgeries.

How can we construct an updateable-state prefer-
ence summary for this problem? Clearly the ACR
functional status measure should somehow be in-
volved. We made several relevant assumptions early
in the modeling effort. First, we assumed that all
revision surgeries which the patient survives would
either succeed or fail. Therefore, surviving patients
would have either successfully addressed or unsuccess-
fully addressed prosthesis failures. We secondly as-
sumed that in the absence of septic history, a success-
fully addressed aseptic failure would place the patient
into functional class II, whereas an unsuccessfully
addressed aseptic failure would result in functional
class III. In the presence of septic history, the respec-
tive outcomes would be classes III and IV. Finally, a
successfully addressed septic failure would place the
patient into functional class III, and an unsuccessfully
addressed septic failure would result in functional
class IV. Patients for whom revision fails may undergo
further revisions, but due to limitations in available
bone stock, we decided it was not realistic to allow in
the model more than three revision surgeries.

Based on these comunents, it is apparent that func-
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Figure 10 Factors of the THA Model Corresponding to the Bivariant

Preference Summary (Failure History, Septic History)

Most Recent Failure Septic History

No Septic
History

Septic
History

Addressed

Note: The initial state of the Most Recent Failure factor is determined by the
outcome of initial THA, as indicated, whereas the initial state of the Septic History
factor is No_Septic_History. Overall utility in the THA modei is a direct function
of time spent in the combined states of these two factors.

tional status depends on a bivariate preference sum-
mary

g = (Most Recent Failure, Septic History).

Summary states are listed in Figure 10, which depicts
the two stochastic factors arising from this updateable-
state preference summary. The exact dependence of
functional status on Most Recent Failure and Septic
History is given in Table 1.

We can now assign quality factors v(g) for Mark-
ovian utility by assessing patients” quality factors for

Table 1 Functional Status Depends on Failure History and Septic
History
Functional
Most Recent Failure Septic History Status
No Failures | - |
No Failures II - 1l
All Failures Addressed No Septic History 1l
Septic History t
Unaddressed Failures No Septic History l
Septic History v

MANAGEMENT SCIENCE/Vol. 46, No. 3, March 2000

Table 2 The Quality Factor for Markovian Utility Depends on
Functional Status

Functional Status | I 1l v

Quality factor 1.0 0.8 05 0.3

Note: These are approximate values based on empirical work by ourselves and
others.

functional classes I, II, III, IV. Based on empirical work
by ourselves and others, we assigned the approximate
values indicated in Table 2. Of course these values will
differ across individuals.

The primary stochastic factor for the THA model is
shown in Figure 11. Transitions in this factor affect
utility by triggering transitions in the Most Recent
Failure and Septic History factors.

Other factors were required in the model as well. A
revision count factor was necessary to limit the num-
ber of revisions to three. Factors which count aseptic
revisions and septic revisions separately and a factor
which counts the most recent revision type (aseptic or
septic) were needed because subsequent failure rates
and revision success probabilities depend on these.
Finally, the model includes an age- and gender-
specific Coxian mortality factor.

The results of rollback for this stochastic tree model
are shown in Table 3 for two individuals of differing
gender and age. For both, THA roughly doubles
discounted expected remaining quality-adjusted life-
time.

The purpose of preference factoring is to explicitly
present features of the model on which overall utility
most directly depends. As we hope this example
illustrates, an analyst who employs this technique can

Table 3 Comparison of THA Versus No THA for Two Different
Individuals
Discounted Quality-Adjusted Years
THA No THA
White female age 60 13.70 6.82
White male age 85 4.16 2.16

Note. An annual discount rate of 5% was used.
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clarify preference modeling assumptions and open the
model to inspection and critique by others.

3. Multiattribute Decomposition of
Markovian Utility

In this section we examine utility decompositions
which can arise when factors in a stochastic tree are

Figure 11 The Primary Stochastic Factor for the THA Model

Revision

Aseptic
Failure

rAseptic

Note: Transition to /nfection_Failure triggers a transition to Unaddressed in the
Most Recent Failure factor, and a transition to Septic_History in the Septic History
factor. Infection revision is performed if the total revision count (factor not shown)
is less than three. Subsequent successful revision triggers a transition to
Addressed in the Most Recent Failure factor. Similar triggers are invoked upon
transition to Aseptic_Failure. Al rates and probabilities in this factor depend on
other factors not shown (Aseptic Revision Count, Infection Revision Count, Last
Revision Type).
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treated as attributes in a multi-attribute utility func-
tion. We consider only Markovian utility functions,
noting that the results have implications for update-
able-state utility as well because of the connection
established by Theorem 1.

We consider the case of two-factor stochastic
trees, since the multifactor case follows naturally.
We denote states in the first factor by y, v', y,, v,
and so on; states in the second factor by z, z’, z,, z,
and so on; and states in the product tree by x = (y,
z), x' = (y’, z"), etc. Let y* and z* be distinguished
states (e.g., Well). We assume v(y*, z*) > 0, where
v(*) is the quality weight for Markovian utility.

We use the following graphical notation. The dis-

play
:) A

denotes the occupation of state y subject to mortality
rate A. For utility assessment purposes, it is often
convenient to let A be time dependent, so this
display denotes a duration T sojourn in y followed
by process termination (death, in the medical con-
text), where T is a continuous-valued nonnegative
random variable with hazard rate function A(t). The
display

denotes a two-factor scenario in which y is occupied with
mortality rate A in the first factor and z is occupied with
mortality rate u in the second factor. Because termina-
tion in either factor forces termination of the entire
process, this is equivalent to the product tree

3 Ap

The Risk-Neutral Preference Interpretation for
Markovian Utility

Given a hazard rate function A(t), let m(A) denote the
mean of the corresponding random variable. The
following elementary results are useful.
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ProrosiTiON 1. If T has hazard rate function A(t) then

(i) E[fore'”‘dt} = m(A + a),

(i) E[e™*T] = 1 — a-m(A + a).

Markovian utility over sample paths can be ex-
pressed recursively. Let x'h be a sample path begin-
ning with a duration-t sojourn in state y and followed
by some other sample path h. If U(x'h|x’) is the
Markovian utility of sample path x'h given preceding
state x', then

U(x'h|x") = wix|x’) + Aw(x|x")Uy(x'h),

t
Uy(xth) = [ v(x)e “%ds + e *®'U(h|x).

0

(See Hazen and Pellissier 1996.) As previously men-
tioned, v(x) is a quality weight at state x, a(x) is a
state-dependent discount rate, w(x|x') is the negative
of a toll in the transition from x’ to x, and Aw(x|x’) is
a discount multiplier for that transition.

Denote by x* a duration-T sojourn in state x,
where T has hazard rate function A. Note that for
Markovian utility without toll or discount multi-
plier, we have

U(x*) = E| v(x) J' e @t | = v(x)m(A + a(x)).

For constant hazard rate A, the result is

v(x)

U(x*) = A+a(x)’

One interpretation of this equation is that under
Markovian utility, a risk-sensitive sojourn with haz-
ard rate A in state x is equivalent to a risk-neutral
sojourn with hazard rate A + a(x) in state x. We call
this the risk-neutral interpretation of Markovian util-
ity.

A strategy we have used (Hazen et al. 1991) to
assess the risk-attitude parameter of Markovian utility
is to elicit from subjects an immediate mortality prob-
ability p such that the subject is indifferent between
the current mortality rate and a chance p of surviving
immediate death with an improved mortality rate,

MANAGEMENT ScIeNCE/Vol. 46, No. 3, March 2000

that is,

Then equating expected utilities yields
v(x)m(A + a(x)) = pv(x)m(p + a(x)).

This equation can be solved for a(x) in most situations
(e.g., when u = A + ¢ for some nonnegative constant c).

The Failure of Full Utility Independence

In any multiattribute context, it is natural to attempt to
invoke utility independence (Keeney and Raiffa 1976).
The naive extension of utility independence from
attributes to stochastic factors would run as follows:
Call factor A utility independent of factor B if prefer-
ence for stochastic trees in factor A do not depend on
the particular stochastic tree in factor B. This definition
must be amended to include the requirement that
there are no parameter dependencies or triggers link-
ing the two factors.! However, it is still not a useful
definition because despite appearances to the con-
trary, transition rates do not necessarily attach to
particular factors. For example, due to the way the
Cartesian product of stochastic trees is defined, we
have the equalities

holding because all three are equal to the product tree
3 A+

' This is an extension of a less familiar but equivalent form of utility
independence: Attribute X is utility independent of attribute Y if for
any lotteries x, x', y, y’ with x, x’ stochastically independent of y,
y' we have (x, y) preferred to (x', y) if and only if (x, y') preferred
to (x', ¥').
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Utility independence of factor 1 from factor 2 would
imply, for example, that the indifference

if holding for one z, u combination, must hold for all.
In product tree terms, this indifference translates to

( ) ~S _ p
A+u

1-

A+

The requirement that this indifference holds for all w if
it holds for one is almost always false. For Markovian
utility and constant mortality rates, the resulting ex-
pected utility equation is

1 14
a(y,z) +A+p aly, z) + A+’

If this equation holds for one value of u, it can hold for
no others. Therefore full utility independence cannot
hold.

Noninterfering Utility Independence

As a less restrictive assumption, it might be reasonable
to require that one factor be utility independent of
another factor as long as the other factor never
changes state, and therefore never interferes with the
first factor. Call this noninterfering utility independence.
It would imply, for example, that the indifference
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if holding for one nonfatal z, would hold for all
nonfatal z. In product form, this indifference is

Since this indifference determines the risk attitude pa-
rameter a(y, z), it would follow that a(y, z) is indepen-
dent of z. If each factor is noninterfering utility indepen-
dent of the other, then a(y, z) can depend on neither y nor
z, so is a constant a(y, z) = a*. This establishes the first
part of the following result.

THEOREM 2. Under Markovian utility each factor is
noninterfering utility independent of the other if and only if
there exist constants v* > 0 and a*, marginal quality-rate
functions v,(y), v,(y), marginal tolls w,(yly,), w,(z|z,),
and marginal discount multipliers Aw,(yly,) > 0,
Aw,(z|z,) > O such that

(i) a(y, z) = a* independent of y, z;

(i) o(y, 2)/v* = (v,(y)/0*) (v,(2)/v*) where v* =
o(y*, 2) = v(y") = vy(2Y);

(i) w(y, zlyo, 2) = w(Yly,) - vi(2) - 0¥,

w(y, ZI}/, ze) = vi(y) - w,(zlzo) - v¥;

(iv) Aw(y, zly, z) = Awi(yly,), Aw(y, zly, z,)

= Aw,(z|z,).

The proof is given in the appendix. Usually one
would rescale v so that v* =

The fact that noninterfering utility independence
forces risk attitude a(y, z) to be a constant indepen-
dent of y, z is disappointing because it reduces the
flexibility of the multiattribute Markovian utility
model. We have, for example, observed that subjects
engaged in immediate mortality scenarios of the type
described above have risk attitudes which can depend
on health state (Pellissier and Hazen 1994). However,
we are aware of no realistic Markovian utility decom-
position which allows nonconstant a(y, z).

4. Conclusions

We have shown that the useful notion of factoring a
stochastic tree model may be extended to the prefer-
ence domain as well, that is, one may represent

MANAGEMENT SciENCE/Vol. 46, No. 3, March 2000
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updateable-state preference components as one or
more factors in a multifactor decomposition of the
stochastic tree. Then one may compute expected up-
dateable-state utility by rolling back an equivalent
Markovian utility function over the product tree. The
Markovian rollback is computationally equivalent to
an updateable-state rollback without preference fac-
toring. However, the explicit factoring of preference
components from the stochastic tree eases model
formulation and presentation, and the resulting trans-
parent form opens the model to inspection and cri-
tique by others.

We have also explored multiattribute utility decom-
positions for Markovian utility. The usual notion of
utility independence fails for Markovian utility over
stochastic trees. However, the restricted notion of
noninterfering utility independence leads to a useful
utility decomposition.

Appendix. Proofs of Theorems

Proor oF THEOREM 1. Let H(y", r) be a stochastic fork at state
(y~, r) in H” ® Q. Suppose (y~, r) has successors (z7, s,), where
s, = 0(r, z,). For the Markovian utility U(-) defined in the theorem,
the rollback equations (5) become

EUH(y™, n|(x=, 9)) = w({y=, nl(x=, )
+ Aw((y=, n|(x=, PEUL(H(y =, r)),

o(y=, r) + 3, NEUH(zZT, s)|(y =, 1)

EU(H(y=, r)) = aly=, 1) + 2, A;

Apply the definitions (8) to obtain

EUH(y™, n)(x=, ¢))

v(r) + Z; NEU(H(ZT, s)l(y ™, )
a(r) + Z; A;

=w(r|q) + Aw(r|q)

By induction on the height of the tree, we can assume
EUH(z[, s)l(y™, r)) = Eu(H(z)r).
Then the prior equation becomes

EU(H(y=, n|(x=, 9))

o(r) + Z; MEu(H(z)|r)
a(r) + 2,‘ A;

1

w(rlg) + Aw(r|q)

= Eu(H,|q).

For chance forks H the proof is similar.
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Equivalence of Markovian Utility Functions

LEMMA 1. Two Markovian utility functions u and u' with uw(D)
= u'(&) = 0 are strategically equivalent if and only if there is a positive
constant ¢ such that

w'(x|xo) = cw(xlxg), Aw’(x|xe) = Aw(x|x,),
v'(x) = co(x), a'(x)=a(x).

Proor. Because u and u’ share a common zero point, strategic
equivalence forces u' = cu for some positive ¢. Consider a
stochastic tree x*K. Given Markovian preference state x,, expected
utilities are

Efu(x*K|xp)] = w(x|xe) + Aw(x|xy) - (v(x)m(a(x) + )
+ {1 — a(x)m(a(x) + M) E{u(K[x)]), M
E[u’(x*K[xo)] = w' (x|xg) + Aw’' (x|xo) (v’ (x)m(a’(x) + A)
+ (1 —a'(x)mla’(x) + A)E[u'(K[x)]). @
Set K = & in the above to get
E[u(x*|xg)] = wlx|xo) + Aw(x|xg) - v(x)m(a(x) + A),
E[u'(xYxo)] = w' (x|x0) + Aw’ (x|xo)v’ (x)m(a’(x) + A).
Then 1’ = cu implies
w'(x|xp) + Aw' (x|xo)v’ (X)m(a’(x) + A)
= c(w(x|xo) + Aw(x|xo) - v(x)m(a(x) + A)).
Set A = = to get
w' (x]x0) = cw(x|xy). ®3)
Substitute this back into its predecessor and cancel to get
Aw’ (x|xo)v" (x)m(a’ (x) + A) = cAw(x|x,) - v(x)m(alx) + A).
Let A(t) be a constant A to conclude
Aw' (x|xo)v’ (x)/ (@’ (x) + A) = cAw(x|xo) - v(x)/(a(x) + A).

The equality of two functions k' /(a’ + A) and k/(a + A) of A € [0,
o) forces k' = k and a’ = a. Therefore we conclude

Aw’ (x|xo)v' (x) = cAw(x|x,) * v(x), 4)
a'(x) = a(x). (5)

Substitute (3), (4), and (5) back into (2), then use u' = cu and
simplify to get

cE[u(x*K|x0)] = cw(x|xp) + cAw(x|xo)v(x)m(a(x) + A)
+ Aw'(x|xo)(1 — a(x)m(a(x) + A))cE[u(K|x)].

Substitute the right side of (1) for E[u(x*K|x,)] in the last equation
and simplify to get
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cAw(x|x) (1 — a(x)m(a(x) + A))E[u(K|x)])
= Aw’(x]xo)(1 — a(x)m(a(x) + A))cE[u(K|x)].

Cancel terms to conclude Aw(x|x,) = Aw’(x|x,). Therefore from (4)
we conclude v'(x) = cv(x). We have thus shown that strategic
equivalence of u and u’ imply the four equalities specified in
Lemma 1.

Conversely, if these four equalities hold, then from (2) we obtain

Elu’ (x*K|x0)] = cw(x|xo) + Aw(x|xo)(cv(x)m(a’(x) + A)
+(1 - a'(x)m(a’(x) + A))E[u’(K|x)]). (6)

Inducting on the height of the stochastic tree, if we have E[u’(K|x)]
= cE[u(K|x)], then from (6) we conclude Efu’(x"*K|x,)]
= cE[u(x*K|x,)]. Hence u' and u are strategically equivalent. o

Proor or THEOREM 2. Given Markovian utility over stochastic
trees with product states (y, z), define the following marginal
functions:

oy) =vly, z*), viz) = v(y*, z),
ay) = a(y, z*), ax(z) = a(y*, z),
wilyly’) = wly, z*|y’, z*),
wy(zlz') = wly*, zly*, 2°),
Aw(yly') = Aw(y, z*|y’, z*),
Aw,y(z|z') = Aw(y*, z|y*, z'),

and let v* = v(y*, z¥). Suppose noninterfering utility independence
holds. Consider a stochastic tree (y*K, z). Its Markovian expected
utility given preference summary (y,, z) is

E[u(y’K, zlyo, 2)]
= w(y, zly,, z) + Awly, zlyo, 2) - (vly, 2)maly, z) + A)
+ {1~ aly, 2)mlaly, z) + M)E[u(K, zly, 2)]). @)
Substitute z = z* to get
E[u(y*K, z*|yo, z%)]
= wiylyo) + Awi(ylyo) * (v:ay)m(ar(y) + A)
+ (1 — ay(y)mlay(y) + A)E[u(K, 2*|y, z*)]). ®

Noninterfering utility independence of factor 1 from factor 2 implies
the last two expressions are equivalent Markovian utility functions
over factor 1. Invoking Lemma 1, we conclude there is a positive
¢,(z) such that

v(y, z) = vi(y)cx(z), aly, z) = ay(y),
w(y, zlyo 2) = wiylyoca(z) Awly, zly, z) = Aw(ylye)-

Similarly, noninterfering utility independence of factor 2 from factor
1 implies there is a positive ¢,(y) such that
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o(y, z) = ai(Y)va(z), aly, z) = ay(z),

w(y, zly, zo) = ai(y)wi(zlze) Awly, zly, z0) = Awy(z|zy).

Repeatedly invoking these restrictions, we obtain condition (i) of the
theorem:

a(y, z) = a\(y) = aly, z*) = ay(z*) = a*.
In a similar way
o(y, z) = vi(y)ca(2)
=o(y, z*)cy(z)

= ¢1(y)v,(z*)cy(2)

= ¢y (y)cx(z)v*.

Set z = z* in the first equality of this sequence to get c,(z*) = 1.
Similarly, ¢,(y*) = 1. Substitute z = z* into the last equality of the
sequence to get v,(y) = c,(y)v*. Similarly, v,(z) = c,(z)v*.
Conditions (ii), (iii), (iv) of the theorem follow immediately.
Conversely, if conditions (i)-(iv) all hold, then (7) becomes

E[u(y’K, zly,, 2)]
= wi(ylyova(z)v* + Awi(ylyo) - (v:i(Y)va(2)v*m(a* + N)
+(1 - a*m(a* + A)E[u(K, zly, 2)])
= (w(ylyo) + dw(ylyo) (v:(y)m(a* + A))va(z)v*
+ Awy(ylyo)(1 — a*m(a* + M)E[u(K, zly, 2)],
and (8) becomes
Elu(y*K, z*|yo, z*)]
= wilylyo) + Awi(ylyo) - (vs(y)mia* + )
+ (1 —a*m(a* + N)E[u(K, z*|y, z9)])
= wi(ylyo) + Awy(ylyo)vi(y)m(a* + A)
+ Aw,(ylyo)(1 — a*m(a* + \)E[u(K, z*|y, z%)].
We induct on the height of the stochastic tree. If the induction hypothesis
E[u(K, zly, 2)] = E[u(K, z*|y, 2*)]o,(2)v*

holds for the subtree K following y then it follows from the last two
equations that

E[u(y*K, zlyo, 2)] = E[u(y*K, z*|y,, z*)Jv(z)v*.

Therefore, by induction, the last equation holds for all states y and
subsequent subtrees K. Therefore factor 1 is noninterfering utility
independent of factor 2, as claimed. Similarly, factor 2 is noninter-
fering utility independent of factor 1. o

MANAGEMENT ScCIENCE/Vol. 46, No. 3, March 2000

Copyright © 2000. All rights reserved.



HAZEN
Preference Factoring for Stochastic Trees

References

Chang, R. W., J. M. Pellissier, G. B. Hazen. 1996. A cost-effectiveness
analysis of total hip arthroplasty for osteoarthritis of the hip. J.
Amer. Medical Assoc. 275 858—865.

Cox, D. R. 1955. A use of complex probabilities in the theory of
stochastic processes. Proc. Cambridge Philos. Soc. 51 313-319.

Gottlob, C. A., J. M. Pellissier, R. L. Wixson, S. H. Stern, S. D.
Stulberg, R. W. Chang. 1996. The long-term cost-effectiveness of
total knee arthroplasty for osteoarthritis. Multipurpose Arthri-
tis Center, Northwestern University, Chicago, IL.

Harris, W. H., C. B. Sledge. 1990. Total hip and total knee replace-
ment. New England |. Medicine 323 725-731.

Hazen, G. B. 1992. Stochastic trees: A new technique for temporal
medical decision modeling. Medical Decision Making 12 163-178.

——. 1993. Factored stochastic trees: A tool for solving complex temporal
medical decision models. Medical Decision Making 13 227-236.

——, W. ]. Hopp, J. M. Pellissier. 1991. Continuous-risk utility
assessment Medical Decision Making 11 294~304.

—— M. Morrow, E. R. Venta. 1999. Patient values in the treatment
of ductal carcinoma in situ. Society for Medical Decisio
Making Annual Meeting, Reno, NV. :

——, J. M. Pellissier. 1996. Recursive utility for stochastic trees. Oper.
Res. 44 788-809.

——, ——, ]. Sounderpandian. 1998. Stochastic tree models in
medical decision making. Interfaces 48 64-80.

——, J. Sounderpandian. 1999. Preference summaries for stochastic
trees rollback. Mark J. Machina, Bertrand Munier, eds. Beliefs,
Interactions, and Preferences in Decision Making. Kluwer,
Dordrecht, The Netherlands 109-120.

Keeney, R. L., H. Raiffa. 1976. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. Wiley, New York.

Matchar, D. B, S. G. Pauker. 1986. Transient ischemic attacks in a
man with coronary artery disease: Two strategies neck and
neck. Medical Decision Making 6 239-249.

Meyer, R. F. 1976. Preferences over time. R. L. Keeney and H. Raiffa,
eds. Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. Wiley, New York.

Pellissier, J. M., G. B. Hazen. 1994. Implementation of continuous-
risk utility assessment: The total hip replacement decision.
Socio-Econom. Planning Sci. 28 251-276.

——, ——, R. W. Chang. 1996. A continuous-risk decision
analysis of total hip replacement. J. Oper. Res. Soc. 47
776-793.

Tsevat J., M. H. Eckman, R. A. McNutt, S. G. Pauker. 1989. Warfarin
for dilated cardiomyopathy: A bloody tough pill to swallow?
Medical Decision Making 9 162-169.

Accepted by Robert Nau; received May 2, 1998. This paper was with the author 1 month for 2 revisions.

MANAGEMENT SCIENCE/Vol. 46, No. 3, March 2000

403

Copyright © 2000. All rights reserved.



