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Abstract 

In order to demonstrate post-hoc robustness of decision problems to parameter estimates, 

analysts may conduct a probabilistic sensitivity analysis, assigning distributions to uncertain 

parameters and computing the probability of decision change.  In contrast to classical threshold 

proximity methods of sensitivity analysis, no appealing graphical methods are available to 

present the results of a probabilistic sensitivity analysis.  Here we introduce an analog of tornado 

diagrams for probabilistic sensitivity analysis, which we call javelin diagrams.  Javelin diagrams 

are graphical augmentations of tornado diagrams displaying both the probability of decision 

change and the information value associated with individual parameters or parameter sets.  We 

construct javelin diagrams for simple problems, discuss their properties, and illustrate their 

realistic application via a probabilistic sensitivity analysis of a seven-parameter decision analysis 

from the medical literature. 
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Introduction 

Sensitivity analysis is today a crucial element in any practical decision analysis, and can play 

any of several roles in the decision analysis process.  In the basis development phase of modeling 

(Howard 1983, 1988), sensitivity analysis can be used to guide model development: If decisions 

are insensitive to changes in some aspect of the model, then there is no need to model that 

particular aspect in more detail (Howard 1983, Watson and Buede 1987, Ch. 7).  For instance, 

Clemen (1996, Ch.5) illustrates how tornado diagrams (e.g., Howard 1988) can be used to 

determine which deterministic variables have sufficient impact to be worth modeling 

probabilistically.  Sensitivity analysis can also be used to give analysts insight into decision 

problems by identifying key variables (von Winterfeldt and Edwards 1986, Ch. 11; French 1986, 

pp. 342, 346).  Sensitivity analysis may also be used to reduce the burden of assessing 

probabilities or utilities.  For example, if a strategy-region diagram (e.g., Clemen 1996, Ch. 5) 

shows that the optimal decision remains so in a wide region of probabilities or utilities, then no 

detailed assessment is required.  Examples are given by Clemen (1996, Ch. 5), Keeney and 

Raiffa (1976, pp. 100, 203), Watson and Buede (1987 p. 270) and von Winterfeldt and Edwards 

(1986, Ch. 11).  Finally, in what Howard (1983) calls the defensible stage, sensitivity analysis 

may be used in a post hoc fashion (that is, after the analysis is complete) to demonstrate to 

supportive or skeptical audiences the robustness of the analysis, or to point out that a decision is 

a close call (von Winterfeldt and Edwards 1986, p. 401; French 1986, p. 252; Keeney and Raiffa 

1976, p. 460). 

Analysts have long recognized the dimensionality limitations of graphically based sensitivity 

analysis in portraying the robustness of a decision analysis to variations in underlying parameter 
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estimates.  If graphical methods allow at most 2- or 3-way sensitivity analyses, how can one be 

sure that a decision analysis is robust to the simultaneous variation of 20 to 30 parameters?  

Probabilistic sensitivity analysis was introduced to address this issue.  In a probabilistic 

sensitivity analysis, the analyst assigns distributions to uncertain parameters and can thereby 

compute as a measure of robustness the probability of a change in the optimal alternative due to 

variation in arbitrarily many parameters.   

In contrast to conventional methods of sensitivity analysis, which emphasize intuitively 

appealing graphical displays, the probabilistic sensitivity analysis approach is relatively devoid 

of graphical features.  In this paper we introduce what might be termed the analog of tornado 

diagrams for probabilistic sensitivity analysis, which we call javelin diagrams.  In a graphical 

display much like a tornado diagram, a javelin diagram displays not only the range of potential 

improvement offered by competing alternatives, but also the probability of decision change due 

to parametric variation and the information value associated with that variation.  Although 

probabilistic analogues of tornado diagrams, javelin diagrams are intended to address post-hoc 

robustness issues, whereas tornado diagrams were designed for use in the basis formulation stage 

of a decision analysis.  

Probabilistic sensitivity analysis was first adopted in medical decision analyses (Doubilet et 

al. 1985, Critchfield and Willard 1986, Critchfield, Willard and Connelly 1986).  It has remained 

popular in medicine and health economics (Manning, Fryback and Weinstein 1996, Sisk et al. 

1997, Goodman et al. 1999, Lord and Asante 1999, Ng et al. 1999, Pasta et al. 1999, Murakami 

and Ohashi 2001, Williams et al. 2001), and has seen application in civil and environmental 

engineering (Cawlfield and Wu 1993, Piggott and Cawlfield 1996, Lin et al. 1999).  Because 

probabilistic sensitivity analysis requires that distributions be assigned to all parameters, there 
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may be an additional assessment burden imposed; however, for conventional sensitivity analysis 

purposes, a responsible analysis will already have specified a best estimate and plausible range 

for each parameter.  From there it is a mechanical procedure to fit an appropriately chosen 

distribution with, say, 95% of its probability mass in the plausible range and mean or mode equal 

to the best estimate, in which case no additional probability assessment is needed. 

Conventional methods for sensitivity analysis, such as strategy-region diagrams or tornado 

diagrams, all rely implicitly on a threshold proximity view of sensitivity in which the analyst 

forms an intuitive judgment of sensitivity by examining the proximity of a parameter’s base 

value to the nearest threshold of decision change.  A similar viewpoint is prevalent in 

probabilistic sensitivity analysis, where the analyst computes the probability of a threshold 

crossing.  In recent work (Felli and Hazen 1998, 1999), we have advocated what might be 

termed a value-focused view (Keeney 1992) for probabilistic sensitivity analysis, in which the 

analyst assesses sensitivity by computing the value of information for a parameter or parameter 

set.  Empirical results indicate that in comparison with information value, threshold proximity 

approaches tend to significantly overestimate problem sensitivity (Felli and Hazen 1998, 1999). 

All measures of post-hoc robustness attempt to quantify the degree to which parameter 

uncertainty may produce a change in the optimal choice.  That is the point of view we adopt in 

this paper.  Under this perspective, the sensitivity of the optimal payoff to parameter variation is 

unimportant unless it produces a change in the optimal choice.  For example, if parameter 

variation cannot produce a change in optimal choice, then threshold proximity is nonexistent, the 

probability of decision change is zero, and the information value is also zero, regardless of how 

much the optimal payoff changes with parameter variation. 
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The paper is organized as follows.  In section 1 we review tornado diagrams and introduce 

necessary terminology.  In section 2, we move to probabilistic sensitivity analysis and introduce 

javelin diagrams.  Section 3 addresses the general multi-parameter, multiple-alternative version 

of javelin diagrams and extends the discussion to incorporate non-neutral risk attitudes.  In 

section 4, we apply the tool to a previously published medical decision analysis.  We then close 

with a discussion of the relative advantages of javelin diagrams. 

1. Tornado Diagrams 

Consider the decision problem in figure 1, in which the probability p and the payoffs X, Y, Z are 

parameters, and the decision maker wishes to maximize expected payoff.  Let ( )p X Y Z, , ,Π =  

be the set of problem parameters, and let Π0 = (p0, X0, Y0, Z0) be the set of base parameter 

values, the estimated values of those parameters.  We will denote the expected payoff of an 

alternative a as a function of its parameters Π by E[Va | Π].  In this case, we have 

0
E V X Π = a  

( )
1

E V pY 1 p Z Π = + − a . 

The alternative that maximizes expected payoff is a function a0(Π) of problem parameters.  We 

let a0 = a0(Π0) be the optimal alternative given Π = Π0 and will refer to a0 as the base optimal 

alternative (BOA). 
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Figure 1.  A simple decision problem with parameters p, X, Y and Z. 
 

Base values and plausible ranges for the four parameters in this problem are shown in table 1.  

Using these data, we see that 
0 0E V $25 Π = a  and 

1 0E V $20 Π = − a , so a0 is the BOA. 

Parameter Base Minimum Maximum
p 0.667 0 1
X $25 -$200 $250
Y -$133.33 -$400 $0
Z $206.67 $0 $620  

Table 1.  Base parameter values and ranges for the decision problem in figure 1. 
 

For the purposes of this illustration, we assume that successive cycles of model refinement 

are complete, and the analyst wishes to conduct a post-hoc robustness analysis on the parameters 

p, X, Y, and Z.  A tornado diagram that accomplishes this is given in figure 2.  The tornado 

diagram depicts the range of possible payoff gains 

1 0 0E V \  ∆ ξ Π ξ a ,  = 
1 0 0E V \  ξ Π ξ a ,  − 

0 0 0E V \  ξ Π ξ a ,  

obtainable by varying the parameter ξ over its plausible range, for each of the four parameters ξ 

∈ Π.  Here, 
1 1 0

V V Va a a∆ = − , and the notation Π0 \ ξ0 indicates the set Π0 of base-value 

parameters with ξ0 excluded.  For example, when ξ = p, we have 

1 0 0E V p \ p ∆ Π a ,  = 
1 0 0E V p \ p Π a ,  − 

0 0 0E V p \ p Π a ,  
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= (pY0 + (1 − p)Z0) − X0 

= p(−133.33) + (1 − p)(206.67) − 25. 

= 181.67 − 340 p 

The range of this function of p is depicted as the p-bar in figure 2.  The other three payoff gain 

functions are 

1 0 0E V X \ X ∆ Π a ,  = (p0Y0 + (1 − p0)Z0) − X = −20 − X 

1 0 0E V Y \ Y ∆ Π a ,  = (p0Y + (1 − p0)Z0) − X0 = 43.82 + 0.667Y 

1 0 0E V Z \ Z ∆ Π a ,  = (p0Y0 + (1 − p0)Z) − X0 = −113.93 + 0.333Z 

-$300 -$200 -$100 $0 $100 $200

p

Y

Z

X

 

Figure 2.  A tornado diagram in which deviations to the right of zero indicate 
potential gains over the payoff of the base optimal alternative a0. 

 

The quantity 
1 0 0E V \  ∆ ξ Π ξ a ,  is the payoff gain the decision maker could expect from a1 

over a0 as a function of ξ.  Using this formulation, zero becomes the natural reference point: the 

positive portion of a tornado bar for ξ corresponds to values of ξ for which the competing 
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alternative is superior to the BOA.   It is also possible to produce a tornado diagram that depicts 

the range of the alternative-a1 payoffs 
1 0 0E V \  ξ Π ξ a ,  as a function of ξ, with reference point 

the alternative-a0 payoff 
0 0E V Π a  (e.g., see the Eagle Airlines example in Chapter 5 of 

Clemen 1996).  This format has the disadvantage that sensitivity to ξ is not properly depicted 

when 
0

E V Π a  is also a function of ξ.  For our example, either version of the tornado diagram 

would be adequate. 

2. Javelin Diagrams 

An alternate method of checking post-hoc robustness is to perform a probabilistic sensitivity 

analysis.  It is easy to illustrate probabilistic sensitivity analysis using tornado diagrams.  

Suppose, for example, that the parameters ( )p X Y Z, , ,Π =  from our previous example are 

assigned beta densities as described in table 2.  These densities are depicted graphically in figure 

3.  We assume no probabilistic dependence between the parameters. 

 

Beta(α,β) densities
Parameter Base Minimum Maximum α β

p 0.667 0 1 9 4.5
X $25 -$200 $250 7 7
Y -$133.33 -$400 $0 3.15 1.575
Z $206.67 $0 $620 2.475 4.95  

Table 2.  Base values, ranges and distributions for the parameters of the decision 
problem in figure 1.  All parameters are distributed as scaled beta densities with base 
values equal to expected values. 
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Figure 3.  Parameter densities for the decision problem of figure 1. 
 

Using these parameter densities, we can determine the distribution of each of the payoff 

gains 
1 0E V \  ∆ ξ Π ξ a ,  in the tornado diagram we created in figure 2.  In simple cases, these 

distributions may be determined algebraically; in more complex cases, numerical methods such 

as Monte Carlo simulation may be required.  We used Monte Carlo simulation to generate the 

payoff-gain densities for the decision problem of figure 1.  These are presented in figure 4. 

 

-$650 -$400 -$150 $100 $350 $600 $850

p

Y

Z

Π

X

 

Figure 4.  Payoff-gain densities for the decision problem of figure 1, imposed over 
the tornado bars of Figure 2.  We also depict the payoff-gain density for the entire 
parameter set Π. 
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Another indicator of sensitivity in tornado diagrams is the absolute length of the tornado bar 

to the right of zero, which equals the maximum payoff gain due to variation in the corresponding 

parameter.  For example, in figure 4, the maximum payoff gain due to variation in X is $179.89.  

The maximum payoff gain for Y is $43.82.  (In line with our discussion in the introduction, it is 

important to notice we should not be interested in the minimum payoff gain because the BOA 

remains optimal in the region to the left of zero.) 

A more revealing sensitivity indicator would be the average positive payoff gain, equal to 

1 0E E V \ 
+  ∆ ξ Π ξ   a , , 

and formed by using the parameter distribution to average the positive parts of the payoff gains.  

We do not average the payoff gain itself because parameter variation producing a negative 

payoff gain does not result in suboptimality for the base-optimal alternative, and therefore 

produces no decision change.  We will use the more succinct term expected improvement to refer 

to average positive payoff gain.  For many common decision problems (including the decision 

problem of figure 1), the expected improvement for a parameter ξ is equal (see Appendix) to the 

expected value of perfect information on ξ, which we denote EVPIξ. 

As we have noted, in the decision problem of figure 1, we have 

( )
1

E V pY 1 p Z X ∆ Π = + − − a . 

Therefore, the expected improvement for p, for example, is given by 

( )( )
1 0 0 0 0 0E E V p \ p E pY 1 p Z X

+ +    ∆ Π = + − −     a , . 

Expected improvement is not available directly in the payoff-gain density diagrams of figure 4, 

although it may be calculated by multiplying the probability of decision change by the 
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conditional expected payoff given a decision change (i.e., the center of gravity of the portion of 

the payoff-gain density to the right of zero). 

For javelin diagrams as we now define them, both the expected improvement and likelihood 

of improvement may be viewed graphically.  In a javelin diagram, instead of the density of each 

payoff gain 
1 0E V \  ∆ ξ Π ξ a , , we graph the complementary cumulative distribution of this 

quantity;  That is, we graph the function 

Gξ(∆v) = P(
1 0E V \  ∆ ξ Π ξ a ,  > ∆v) 

for ∆v ≥ 0.  The javelin diagram consequent to figure 4 is shown in figure 5.  The diagram gets 

its name from the graphical shaft formed by plotting the range of payoff gain and the head 

formed by the graph of Gξ(∆v) to the right of ∆v = 0.  The likelihood of improvement Gξ(0) is 

the height of the javelin head and the expected improvement is the area to the right of zero under 

the curve Gξ(∆v).  In figure 5, the number to the left of the vertical line at zero for each ξ-bar is 

the probability Gξ(0) that the BOA loses optimality due to variation in ξ.  The number to the 

right of the zero line is the expected improvement, equal to EVPIξ in this case.   
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0.11

0.32

0.23

$3.68

$4.19

$1.89

$19.83

$7.41

 

Figure 5.  A javelin diagram for the decision problem of figure 1.  The javelin curves 
indicate the probability that parametric variation yields payoff gain at least as great 
as that noted on the horizontal axis.  Probabilities displayed to the left of each javelin 
head are the javelin height, equal to the probability of decision change.  The values 
displayed to the right of each javelin are the areas under the javelin curves, equal to 
the expected value of perfect information of that parameter or parameter set. 

 

The simultaneous display of expected improvement and likelihood of improvement is a key 

feature of javelin diagrams.  The javelin diagram in figure 5 shows, for example, that: 1) there is 

a 32% chance that the competing alternative will outperform the BOA due to simultaneous 

variation in all parameters, and 2) by observing all parameters and adapting his choice as 

necessary, the decision maker could increase his payoff by an average of $19.83 over what he 

would expect from the BOA (i.e., EVPIΠ = $19.83).  We contend that expected improvement is a 

better sensitivity indicator than probability of decision change because it measures the degree of 

impact of a decision change rather than merely indicating its likelihood, and measures this 

impact in units the decision maker cares about – payoff gains.  The javelin diagram provides 

intuitive support for this point of view.  Compare the javelin for X in figure 5 with the javelin for 

Y: the larger javelin head for X gives the intuitive – and we argue, correct − impression that the 
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problem is more sensitive to X than to Y, even though both parameters produce the same 23% 

likelihood of decision change.   

How should one use the information provided in a javelin diagram?  In this situation, the 

decision maker might reason as follows:  In a problem in which the base optimal payoff is $25, 

an expected improvement of $19.83 = EVPIΠ seems substantial.  Therefore, the problem seems 

jointly sensitive to all its parameters.  Payoff gains of $3 or greater seem significant, so the 

problem appears sensitive to the individual parameters p, X, Y as each has an EVPI value in 

excess of $3.  However, the problem may not be sensitive to the parameter Z individually, as its 

EVPI is only $1.89.  We state these assertions tentatively because they depend on a subjective 

declaration by the decision maker as to what constitutes a significant improvement in payoff.  

3. Multiple Alternatives and Non-Neutral Risk Attitude 

Multiple Alternatives 

Both tornado diagrams and javelin diagrams may be readily adapted to the case of multiple 

alternatives.  Suppose a0 is the BOA and let 
0

V V Va a a∆ = −  be the difference between the payoff 

Va under a and the payoff 
0

Va  under a0.  If ξ is a parameter or set of parameters, let a0(ξ) be the 

optimal alternative as a function of ξ when all other parameters  \ Π ξ  lie at their base values.  

Here alternatives are chosen from a set A of feasible actions.  Then the range of the payoff-gain 

function ξ → ( )0 0 0E V \ ξ
 ∆ ξ Π ξ a ,  may be graphed in a tornado diagram.  Here the payoff gain 

( ) ( ) 00 0
V V Vaa aξ ξ∆ = − is always nonnegative, so this tornado diagram would be truncated to the left 

at zero.  To obtain an untruncated version let ( )0a′ ξ  be the optimal alternative as a function of ξ 
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in the reduced feasible set 0A \ a .  The payoff gain ( )0 0 0E V \ ′ ξ
 ∆ ξ Π ξ a ,  may be positive or 

negative.  The graph of the range of the function ξ → ( )0 0 0E V \ ′ ξ
 ∆ ξ Π ξ a ,  will yield an 

untruncated tornado diagram for payoff gains.  Because ( )0 0 0E V \ ξ
 ∆ ξ Π ξ a ,  is equal to 

( )0 0 0E V \ ′ ξ
 ∆ ξ Π ξ a ,  when the latter is nonnegative, the truncated and untruncated tornado 

diagrams will be identical to the right of zero. 

Given a probability distribution for the parameter ξ, one can form a javelin diagram by first 

calculating the complementary cumulative distribution Gξ(∆v) = ( )( )0 0 0P E V \ vξ
 ∆ ξ Π ξ > ∆
 a ,  

and then placing the graph of Gξ(∆v) for ∆v ≥ 0 over the corresponding untruncated tornado bar 

for the parameter ξ.  The expected improvement ( )0 0 0E E V \ ξ ξ
  ∆ ξ Π ξ   a ,  is the area to the 

right of zero under Gξ(∆v).  The probability of decision change due to uncertainty in ξ is Gξ(0).  

As before, the expected improvement will often be equal to the information value of ξ (see 

Appendix). 

Example: The non-equivalence of javelin and tornado diagrams 

The javelin diagram is the natural extension of the tornado diagram for the purpose of 

incorporating prior probability distributions over parameters.  Consequently, one might 

conjecture that when all parameters are uniformly distributed over their ranges, the javelin 

diagram conveys the same information and leads to the same sensitivity conclusions as the 

tornado diagram.  The following example shows that this conjecture is false for three or more 

alternatives. 
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Consider the three-alternative example in figure 6.  There are two parameters p, q with base 

values p0, q0 and ranges given in table 3.  At the base values, the alternatives a = 0, 1, 2 have 

expected payoffs: 0 0 0E V p q $1948, .  =  , 1 0 0E V p q $1908, .  =  , 2 0 0E V p q $548, .  =  .  

Therefore the BOA is a0  = 0. 

 

q
1-q

a = 0

a = 1

q
1-q

$100

q
1-q

q
1-q

p

1-p

p

1-p

p

1-p

$73.34

$0

$44.94

-$6.60

$11.06

$689.88

$99.52

$485.18

-$73.52

a = 2

 

Figure 6.  A hypothetical three-alternative decision problem with two probability 
parameters p and q. 

 

Using the ranges and base values for p and q in table 3, we can construct the untruncated 

tornado diagram for payoff gains in figure 7a.  If we assign distributions to p and q that are 

uniform over the ranges given in table 3, we can construct the javelin diagram in figure 7b. 

Parameter Base Minimum Maximum
p 0.26 0.01 0.51
q 0.06 0.005 0.115  

Table 3.  Parameter base values and ranges for the decision problem in figure 6. 
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Figure 7a.  Tornado diagram for the decision 
problem in figure 6.  The bars represent the 
payoff gains over the BOA as p and q vary 
independently over their ranges. 

Figure 7b.  Javelin diagram for the decision 
problem in figure 6.  Numbers to the left 
denote the probability that a0 loses optimality 
due to parametric variation; numbers to the 
right, the expected value of perfect parameter 
information for the parameter.  The javelin 
curves indicate the probability that 
parametric variation yields payoff gain at 
least as great as on the horizontal axis. 

 

The tornado diagram indicates that the problem is sensitive to both parameters, but more so 

to q than to p.  The javelin diagram, on the other hand, indicates unambiguously that the problem 

is more sensitive to parameter p than to parameter q, exactly the reverse of the conclusion from 

the tornado diagram.  Variation in p has a 70% chance of changing the optimal decision, with 

corresponding information value pEVPI $351.= .  The problem is also sensitive to q but less so, 

with the probability of decision change equal to 54% and information value qEVPI $240.= .  

The range information in the tornado diagram does not adequately account for sensitivity in this 

case, even though both parameters were assigned uniform distributions.  Even with all 

parameters distributed uniformly, a javelin diagram need not convey the same sensitivity 

conclusions as a tornado diagram.1 
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The reader may get some feeling for how this happens by examining figure 8, in which 

graphs of the functions ξ → 0 0E V \ ∆ ξ Π ξ  a ,  appear for ξ = p, q and a = 0, 1, 2 in the decision 

problem of figure 6.  The upper envelope in these graphs is the payoff-gain function ξ → 

( )0 0 0E V \ ξ
 ∆ ξ Π ξ a , .  The projection of each upper envelope onto the vertical axis (the vertical 

range) constitutes the nonnegative portion of the corresponding tornado bar.  On the other hand, 

the average height of the upper envelope is ( )0 0 0E E V \ ξ ξ
  ∆ ξ Π ξ   a ,  and is equal to the 

information value EVPIξ.  This quantity is larger for ξ = p than for ξ = q, even though the 

vertical range is greater for ξ = q. 
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Figure 8.  One-way sensitivity analysis graphs of the functions ξ →  

0 0E V \ a ,∆ ξ Π ξ    for ξ = p, ξ = q and a = 0, 1, 2 in the decision problem of figure 

6.  A tornado diagram depicts the vertical range of the upper envelope, which is 
larger for q than for p.  However, because the parameters are distributed uniformly, 
information value is equal to the average height of the upper envelope and the 
probability of decision change is the proportion of the horizontal axis where the 
upper envelope exceeds zero. Both are greater for p than for q. 
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Non-Neutral Risk Attitude 

We have introduced the javelin diagram as a sensitivity analysis tool for the cases in which 

payoff is monetary and the decision maker is risk-neutral.  In fact no such restrictions are 

necessary: The notion of information value as expected improvement and the corresponding 

javelin display can be extended to the case of non-neutral risk attitude and even to the case in 

which there is no underlying monetary attribute.  Because the approach we take is unorthodox – 

perhaps even heterodox to some –we present it here in detail. 

Suppose a utility function u(x) has been assessed over problem outcomes x, and let Ua be a 

random variable equal to the utility achieved under alternative a.  Let a* be the alternative 

maximizing expected utility E[Ua], and let a*(ξ) be the alternative a maximizing the conditional 

expected utility E[Ua | ξ] given the value of parameter ξ.  Define  

EUξ = Eξ[E[ ( )U ξa* | ξ]], 

the expected utility of learning the value of ξ.  Similarly, let EU∅ = E[ Ua* ] be the optimal 

expected utility under no further information.   

Larger values of EUξ indicate greater problem sensitivity to ξ, so the quantities EUξ may be 

used to rank problem sensitivity to different parameter sets ξ.  This is the first role of any 

sensitivity measure.  The analyst may find it helpful to form the expected improvement in utility, 

EUIξ = EUξ − EU∅. 

However, this measure is merely for convenience.  Although it is possible (see below) and even 

desirable to assign an information theoretic meaning to EUIξ, there is no need to do so for the 

purposes of sensitivity analysis. 

We require a second role of any sensitivity measure, namely the declaration (yes/no) of 

problem sensitivity to a set ξ of parameters.  To this end, let x∗%  be the random outcome 
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corresponding to the optimal alternative a*.  We require the decision maker or analyst to declare 

an outcome having minimum significant improvement, that is, a (possibly random) outcome x+%  

having the properties that: 1) x+%  is preferred to x∗% , 2) x+%  is significantly preferred to x∗% , and 3) 

no other random or nonrandom outcome x%  that is less preferred than x+%  can be significantly 

preferred to x∗% .  Declaring an outcome x+%  having minimum significant improvement over x∗%  is 

a completely subjective judgment by the analyst or decision maker, and is not a property of the 

assessed utility function u.  Nevertheless, the outcome x+%  having minimum significant 

improvement over x∗%  induces a minimum significant increase ∆u+ in utility, given by 

∆u+ = E[u( x+% )] − E[u( x∗% )]. 

The value ∆u+ of the minimum significant increase in utility is intrinsic to the particular decision 

problem at hand, as it depends on how the utility function is scaled and the optimal random 

outcome x∗% .  It is not possible to declare a minimum significant improvement in utility valid 

across all decision problems.  Nevertheless, for the problem at hand, no outcome x%  whose 

improvement in utility is less than ∆u+ will constitute a significant improvement over x∗% . 

We propose to extend the notion of significant improvement to information sources, and say 

that perfect information about a parameter set ξ constitutes a significant improvement if the 

expected utility EUξ of learning ξ exceeds the expected utility E[u( x+% )] of x+% , or equivalently, if 

the expected improvement in utility EUIξ by learning ξ exceeds the minimum significant utility 

improvement ∆u+.  We propose to declare a decision problem sensitive to a parameter set ξ if 

learning the value of ξ constitutes a significant improvement. 

Although this approach to probabilistic sens itivity analysis has an information-theoretic 

basis, there is no requirement that the expected improvement in utility EUIξ itself have an 
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information theoretic meaning.  Nevertheless, EUIξ can in fact be interpreted as a form of 

information value, as we shall now explain.  Suppose we let x− be an outcome (call it the 

negative outcome) having utility u(x−) strictly smaller than optimal expected utility EU∅.  Define 

the probability price PPξ of the parameter set ξ to be the largest probability of the negative  

outcome x− one is willing to accept in order to obtain perfect information about ξ.  The 

probability price of ξ is a measure of information value, and satisfies 

PPξu(x−) +(1 − PPξ)EUξ = EU∅. 

Rearranging and using EUIξ = EUξ  − EU∅, we have 

PP
1 PP

ξ

ξ−
 = 

EUI

EU u(x )
ξ

−
∅ −

, 

We see therefore that the expected improvement in utility EUIξ is proportional to the odds price 

PP
1 PP

ξ

ξ−
, that is, EUIξ is proportional to the largest odds of the negative outcome x− one would 

accept to learn ξ.  Rescaling utility if necessary, we can choose x− so that EU∅ − u(x−) = 1, in 

which case EUIξ is the largest odds of a unit reduction of utility from EU∅ that one would accept 

to learn ξ. 

Probability price and its relationship to expected improvement in utility were discussed by 

Hazen and Sounderpandian (1999).  When outcomes are monetary and risk attitude is not 

neutral, the conventional definition is that information value EVPIξ is the most one would be 

willing to pay to learn ξ, that is, EVPIξ satisfies 

E[u(x EVPI ) | ] EU∗
ξ ∅− ξ = . 

Hazen and Sounderpandian show that when risk attitude is constant (i.e., a linear or exponential 

utility function), then expected improvement in utility EUIξ and conventionally defined 
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information value EVPIξ rank information sources identically, but otherwise, they may differ.  

The advantage to using EUIξ is that it is computationally and analytically simpler when risk 

attitude is not constant, and it generalizes to situations in which outcomes are not monetary. 

In the preceding discussion we have glossed over a practical detail involving base estimates 

for parameters.  The optimal expected utility may be written 

EU∅ = E[Ua*] = EΠ[E[Ua* | Π]]. 

In the common special case in which E[Ua* | Π] is a multilinear function of the parameters Π 

(i.e., linear in each component of Π) and parameters are independent, then we have 

EU∅ = E[Ua* | Π ] 

where Π  = E[Π] is the mean of Π.  If the analyst has taken the base optimal level Π0 of 

parameters Π to be the mean Π , then it follows that a* is the base optimal alternative a0 

obtained by maximizing E[Ua | Π0].  Similarly, for any parameter set ξ, a*(ξ) will equal a0(ξ).  

(See the Appendix for details.)  However, if these conditions fail, that is, if parameters are not 

independent, if multilinearity does not hold, or if base parameter levels are not equal to their 

mean values, then a* may differ from a0, and a*(ξ) may differ from a0(ξ).  When this occurs, 

and the analyst computes expected improvements based on a0 and a0(ξ) instead of a* and a*(ξ), 

then the information-theoretic basis for the procedure is only approximately maintained. 

4. A Realistic Example 

As an example of constructing and interpreting a javelin diagram, we will revisit the problem of 

management of suspected giant cell arteritis posed by Buchbinder and Detsky (1992), hereafter 

referred to as B&D.  This problem illustrates the use of javelin diagrams on a realistic-size 
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problem, and the use of expected improvement in utility as a sensitivity measure, as discussed in 

the previous section.  

B&D considered four alternatives in this problem: (A) Treat None, (B) Biopsy & Treat 

Positive, (C) Biopsy & Treat All, (D) Treat All.  The structure we provide below is the same as 

B&D with the exception of the notation we adopted for ease of exposition.  The four alternatives 

are presented in figures 9a-d. 

GCA Complication
gc

No Complication
1-gc

GCA
g

No GCA
1-g

A

1-dus-dugc-dudx

1-dus-dudx

1-dudx  

Figure 9a.  The decision tree for the Treat None alternative. 
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GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gpos

No GCA
1-gpos

Prednisone
Complication

No Prednisone
Complication

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gpos

No GCA
1-gpos

Test Positive
sens × g

Test Negative
1-sens × g

GCA Compl
gc

No Compl
1-gc

GCA
gneg

No GCA
1-gneg

1-dus-dup-dupc-dugc-dub

1-dus-dup-dupc-dub

1-dup-dupc-dub

1-dus-dup-dugc-dub

1-dus-dup-dub

1-dup-dub

1-dus-dugc-dub

1-dus-dub

1-dub

B

pc

1-pc

 

Figure 9b.  The decision tree for the Biopsy & Treat Positive alternative.    The 
probability of a positive test is equal to sens g× .  The terms gpos and gneg refer to the 
probability of having GCA given a positive or negative test result.  Because the 
specificity of the test is 1, posg 1=  and ( ) ( )negg 1 sens g 1 sens g= − − × . 
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GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gpos

No GCA
1-gpos

Prednisone
Complication

No Prednisone
Complication

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gpos

No GCA
1-gpos

Test Positive
sens × g

Test Negative
1-sens × g

1-dus-dup-dupc-dugc-dub

1-dus-dup-dupc-dub

1-dup-dupc-dub

1-dus-dup-dugc-dub

1-dus-dup-dub

1-dup-dub

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gneg

No GCA
1-gneg

Prednisone
Complication

No Prednisone
Complication

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
gneg

No GCA
1-gneg

1-dus-dup-dupc-dugc-dub

1-dus-dup-dupc-dub

1-dup-dupc-dub

1-dus-dup-dugc-dub

1-dus-dup-dub

1-dup-dub

C

pc

1-pc

pc

1-pc

 

Figure 9c.  The decision tree for the Biopsy & Treat All alternative.  The probability 
of a positive test is equal to sens g× .  The terms gpos and gneg refer to the probability 
of having GCA given a positive or negative test result.  Because the specificity of the 
test is 1, posg 1=  and ( ) ( )negg 1 sens g 1 sens g= − − × . 

 



 

 24 

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
g

No GCA
1-g

Prednisone
Complication

No Prednisone
Complication

GCA Compl
gc(1-e)

No Compl
1-gc(1-e)

GCA
g

No GCA
1-g

1-dus-dup-dupc-dugc-dudx

1-dus-dup-dupc-dudx

1-dup-dupc-dudx

1-dus-dup-dugc-dudx

1-dus-dup-dudx

1-dup-dudx

D
pc

1-pc
 

Figure 9d.  The decision tree for the Treat All alternative. 
 

Table 4 provides a summary of the parameter values used by B&D in their analysis and the 

range of values they used for a sensitivity analysis with the probability of having giant cell 

arteritis (GCA) set at 0.8.  The reader may note that the expected utilities E[Ua | Π] are all 

multilinear in the parameters Π.  With all parameters held at base value, Biopsy & Treat Positive 

was optimal with an expected payoff 0.837 on a utility scale from -0.325 (all disutilities present) 

to 1 (perfect health).  The expected utilities of the four treatment alternatives at base parameter 

values are provided in table 5.  Note that all utilities in this analysis were physician assessed.  

The analysis therefore takes they perspective of the “benevolent physician”. 

The threshold column in table 4 notes the value of the parameter required to cause the BOA 

(Biopsy & Treat Positive) to lose optimality when all other parameters remain fixed at their base 

values.  Except for the beta density parameters, B&D provided the data in table 4.  We assumed 

parameters to be probabilistically independent and determined the beta density parameters by 

fitting beta distributions to B&D data, using the base values as mean values and capturing 95% 

of the probability mass in the range defined by the parameter’s minimum and maximum 

plausible values.  We let the remaining 5% spill equally to either side of this range if possible 
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(that is, if the upper plausible limit was less than one and the lower limit greater than zero – 

otherwise we filled the plausible range with 97.5 or 100% probability mass, as appropriate). 

 

Beta (α,β)
Parameters Symbol Base Minimum Maximum Threshold α β
P[having GCA] g 0.8 - - - - -
P[developing severe complications of GCA] gc 0.3 0.05 0.5 0.31 4.719 11.011
P[developing severe iatrogenic side effects] pc 0.2 0.05 0.5 0.19 2.647 10.589
Efficacy of high dose prednisone e 0.9 0.8 1 0.94 27.787 3.087
Sensitivity of temporal arterty biopsy sens 0.83 0.6 1 0.82 7.554 1.547
Specificity of temporal arterty biopsy spec 1 - - - - -
D(major complication from GCA) dugc 0.8 0.3 0.9 0.84 27.454 6.864
D(Prednisone therapy) dup 0.08 0.03 0.2 0.08 4.555 52.380
D(major iatrogenic side effect) dupc 0.3 0.2 0.9 0.28 15.291 35.680

D(having symptoms of GCA) dus 0.12 - - - - -
D(having a temporal artery biopsy) dub 0.005 - - - - -
D(not knowing the true diagnosis) dudx 0.025 - - - - -  

Table 4.  The data used by B&D in their analysis.  The minimum and maximum values 
depict each parameter’s range for sensitivity analysis.  The threshold value indicates the 
parameter value at which the BOA lost optimality to another alternative.  The values [ ]P ⋅  

and ( )D ⋅  designate the probability of an event and the disutility associated with an event.  

B&D assigned Sdu 0=  when treatment was given because the effectiveness of therapy 
completely alleviated the patient’s symptoms.  

 

Treatment Alternative EU at Base Values
Treat None 0.687
Biopsy & Treat Positive 0.837
Biopsy & Treat All 0.836
Treat All 0.816  

Table 5.  The expected utilities of the four alternative treatments for suspected giant cell 
arteritis when all parameters are set to their base values in table 4.  With all parameters at 
their base values, the B&D utility scale ranged from -0.325 (all disutilities present) to 1 
(perfect health). 

 

The close proximity of threshold values to parameter base values implies that a small 

parameter value deviation away from base value could cause the BOA to lose optimality.  Based 
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on this, B&D, in their post-hoc robustness analysis, declared the BOA sensitive to the seven non-

constant parameters in table 4 when g = 0.8.   

To check these sensitivity conclusions, we constructed a tornado diagram and javelin 

diagram.  Our tornado diagram depicting utility improvements is provided in figure 10.  The 

optimality of the BOA not only appears to be clearly sensitive to variation in the sens parameter, 

but extremely susceptible to variation in dup.  The javelin diagram corresponding to the beta 

densities in table 4 is provided in figure 11a.  The javelin heads were determined via Monte 

Carlo simulation.  Figure 11b is a rescaled version of figure 11a that gives a better view of the 

javelin heads.   

Areas under the javelin heads are expected improvement in utility, discussed in the previous 

section.  For this analysis, an expected improvement in utility of ∆u for parameter ξ indicates 

that the possibility of learning ξ is worth a 
u

1 u
∆
+ ∆

 chance of falling one unit in utility from the 

base optimal level 0.837.  A drop of one unit in utility from 0.837, that is, from 0.837 to −0.163, 

amounts to a total utility decrement of 1 − (−0.163) = 1.163 from the well state, approximately 

equivalent here to the simultaneous occurrence of major complications from GCA and major 

iatrogenic side effects. 
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dup
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pc

gc
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sens

 

Figure 10.  The payoff-gain tornado diagram for the giant cell arteritis problem. 
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Figure 11a.  A javelin diagram for the giant 
cell arteritis problem. 

Figure 11b.  Figure 11a enlarged to better show 
the javelin heads. 

 

Figures 11a and b substantiate the results of the B&D threshold analyses in that the 

probability of another alternative yielding a higher expected utility than the BOA is high.  

However, the all-parameter information value is a utility improvement of merely 0.0104, 
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indicating that learning the true values of all parameters is worth taking at most a 0.0104
1 0.0104+  = 1.03% 

chance at the simultaneous occurrence of major complications from GCA and major iatrogenic 

side effects.  The significance of a utility improvement of 0.0104 over the base-optimal utility 

0.837 is a subjective judgment.  However, it is worth noting that the smallest utility decrement 

noted by B&D in their analysis was the disutility for having a temporal artery biopsy, equal to 

0.005.  If one could eliminate the disutility of temporal artery biopsy from the optimal policy 

biopsy and treat positive, its expected utility would increase from 0.837 to 0.842.  Presumably 

this constitutes a significant increase, as otherwise it is unlikely B&D would have included this 

disutility in their model.  Moreover, because this was included and no smaller values were 

considered, we may be justified in assuming that 0.005 is the smallest utility increment B&D 

considered significant.  By this light, the utility improvement 0.0104 for Π would be considered 

significant, as would the utility increment for sens, but no other individual parameter would 

possess significant information value.  Note in particular that while variation in gc was likely to 

undermine the optimality of the BOA 43% of the time, its information value was only 0.0039.  

Where the tornado diagram of figure 10 illustrates that the BOA is sensitive to variation in gc, 

the small information value suggests otherwise.  Moreover, although the BOA appears vastly 

more sensitive to dup than sens based on the potential payoff gains mapped out in figure 10, the 

opposite is actually the case as EUIsens > 
pduEUI  (0.0068 versus 0.0040), and the problem does 

not appear sensitive to dup in information value terms.  This is typical of what we have found in 

our reexamination of many published sensitivity analyses (Felli and Hazen 1998, 1999), namely 

that threshold proximity and probability of decision change frequently overestimate problem 

sensitivity compared to information value. 



 

 29 

As in any probabilistic sensitivity analysis, the sensitivity conclusions obtained depend to 

some degree on the selected parameter distributions.  However, in our experience, the shape of 

the distribution has only a small effect on probability or information-value conclusions.  For 

example, in our re-analysis of 25 published decision analyses (Felli and Hazen 1999), there was 

little qualitative difference in probability or information-value conclusions when we replaced all 

parameter distributions by uniform distributions over the plausible parameter range.  The 

changes in expected improvement consequent to using uniform rather than beta densities in the 

B&D problem are provided in table 6. 

Parameters
Density Type  e sens gc pc dugc dup dupc Π

Beta  0.0001 0.0068 0.0039 0.0035 0.0004 0.0040 0.0011 0.0104
Uniform  0.0003 0.0096 0.0038 0.0021 0.0001 0.0021 0.0003 0.0267  

 
Table 6.  Information values are noted for parameters in the B&D problem using two 
different distribution assumptions.  The beta values were obtained using the beta(α,β) 
densities noted in table 4.  The uniform values resulted from using uniform(A,B) densities, 
where A and B were the minimum and maximum parameter values listed in table 4.  Bold-
faced values exceed 0.005. 

 

 Although there is deviation in information va lues depending on the choice of parameter 

density, the optimality of the BOA in the B&D problem appears sensitive only to variation in 

sens and Π (based on the assumed demarcation point of 0.005 discussed earlier).  The sensitivity 

conclusions the problem remain the same regardless of whether parameter values are distributed 

according the beta densities noted in table 4 or uniformly distributed over their plausible ranges.  
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5. Summary 

We have introduced javelin diagrams as a graphical aid for displaying results from a 

probabilistic sensitivity analysis.  Like tornado diagrams, javelin diagrams provide the analyst 

with a compact display of payoff range information as a parameter or set of parameters are 

allowed to vary.  In addition, javelin diagrams also provide the analyst with probabilistic and 

information value-based indicators of decision sensitivity. 

For ease of exposition, we assumed parametric independence in our examples.  As it 

happens, correlations between parameters are rarely accounted for in conventional sensitivity 

analyses, even when they are well understood.  For example, sensitivity and specificity of 

diagnostic tests are often treated as independent parameters for sensitivity analysis purposes 

despite their correlation through the thresholds used to declare positive test outcomes (Littenberg 

and Moses 1993).  Some analysts build correlation directly into the model structure by 

specifying functional relationships between parameters.  The Buchbinder and Detsky example 

we cite in section 4 illustrates one such method common in the medical literature: employment 

of an efficacy parameter when drug and/or treatment choice can affect the likelihood of specific, 

downstream events.  Dependencies built into model structure are accounted for by all 

conventional sensitivity analysis tools, as well as javelin diagrams.  This may well be the best 

way to account for probabilistic dependencies, as more explicit information on the joint densities 

of parameters is rarely available. 

As is well known (e.g., Howard 1983), value-of- information computations can serve to guide 

the analyst’s model refinement and information acquisition choices in the decision-analysis 

modeling cycle.  There is no reason why a javelin diagram could not be used at these earlier 

stages as well as the post-hoc robustness stage we discuss in this paper.  A small qualitative 
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difference would occur for discrete variables, for which the javelin heads appear as step 

functions, but otherwise the same formulas and interpretations apply. 
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Appendix: Computing for javelin diagrams and information value 

Let a0(ξ) be the optimal alternative as a function of ξ when all other parameters  \ Π ξ  are held 

fixed at their base values 0 0 \ Π ξ .  Computation of the expected improvement quantity 

( )0

0
0 0EVPI E E V \ ξ ξ ξ

  = ∆ ξ Π ξ  a | ,  

and the javelin curve 

( ) ( )( )0 0 0G v P E V \ vξ ξ
 ∆ = ∆ ξ Π ξ > ∆ a | ,   ∆v ≥ 0 

is a straightforward exercise in Monte Carlo simulation, since the quantity ( )0 0 0E V \ ξ
 ∆ ξ Π ξ a | ,  

as a function of the random variable ξ is readily available from the decision problem 

formulation.  The simulation can handle arbitrary parameter subsets ξ ⊂ Π, and if desired, Monte 

Carlo approximations for Π and multiple subsets ξ of Π can be calculated in a single simulation 

run. 

As is well known, the mean of the non-negative random variable ( )0 0 0E V \ ξ
 ∆ ξ Π ξ a | ,  is the 

area under its complementary cumulative distribution Gξ(∆v).  Therefore, the area under the 

javelin curve is 0EVPI ξ .   

If the regions {ξ | a0(ξ) = a} for each alternative a can be expressed as simple inequalities in 

ξ (as is often possible for single parameters ξ), then it may be possible to obtain closed-form 

expressions for 0EVPI ξ  and the javelin curve Gξ(∆v).  We have 

( ) [ ] ( )
( )

0

0

0
0 0 0 0EVPI E E V \ E V \ dFξ ξ ξ

ξ ξ =

  = ∆ ξ Π ξ = ∆ ξ Π ξ ξ   ∑ ∫ aa
a :a a

| , | ,  
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( ) ( )( ) [ ] ( )( )
0 0 0 0 0 0G v P E V \ v P E V \ vξ ξ

 ∆ = ∆ ξ Π ξ > ∆ = ∆ ξ Π ξ > ∆ ξ =  ∑ aa
a

| , | , ,a a . 

For single parameters ξ and familiar distributions F(ξ), terms in these expressions may often be 

evaluated in closed form. 

For many decision problems, the expected improvement 0EVPI ξ  is equal to the information 

value EVPIξ for the parameter ξ.  Here 

EVPIξ = ( )E E Vξ ξ
  ∆ ξ  a* |  

where a*(ξ) is the alternative a maximizing E[Va | ξ]; V V Va a a*∆ = − ; and a* = a*(∅)  is the 

overall optimal solution.  Suppose, for example, that the function [ ]E Va |∆ Π  is multilinear in 

individual parameters ξ ∈ Π, that base values ξ0 are equal to the means E[ξ] = ξ , and 

parameters are probabilistically independent.  Then because a*(ξ) maximizes E[Va | ξ], and 

E[Va | ξ] = EΠ\ξ[E[Va | ξ, Π \ ξ] | ξ] = E[Va |ξ,  \ Π ξ ] = E[Va | ξ, Π0 \ ξ0] 

it follows that a*(ξ) = a0(ξ).  Here we have used independence and multilinearity.  Again 

invoking independence and multilinearity, we obtain 

( ) ( )

( )

( )

0

0

0

0

\

0
0 0

EVPI E E V E E V

E E E V  \ 

E E V  \ 

E E V \ EVPI

a* a

a

a

a

| |

| , |

| ,

| ,

ξ ξ ξξ ξ

Π ξ ξ ξ

ξ

ξ ξξ

      = ∆ ξ = ∆ ξ      
   = ∆ ξ Π ξ ξ    

  = ∆ ξ Π ξ  
  = ∆ ξ Π ξ =  

 

as claimed. 
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Endnotes 

1. The exception is when there are only two alternatives.  When there are only two 

alternatives and payoffs are multilinear in parameters ξ, we can show that sensitivity 

conclusions using a tornado diagram will always match those using a javelin diagram 

with independent uniformly distributed parameters having means equal to base values.  

This is beyond the scope of the present paper. 


