Large-Sample Bayesian Posterior Distributions
for Probabilistic Sensitivity Analysis

Gordon B. Hazen, PhD, Min Huang, MS

In probabilistic sensitivity analyses, analysts assign
probability distributions to uncertain model parame-
ters and use Monte Carlo simulation to estimate the
sensitivilty of model results to parameter uncertainty.
The authors present Bayesian methods for construct-
ing large-sample approximate posterior distributions
for probabilities, rates, and relative effect parameters,
for both controlled and uncontrolled studies, and dis-
cuss how to use these posterior distributions in a prob-
abilistic sensitivity analysis. These results draw on
and extend procedures from the literature on large-
sample Bayesian posterior distributions and Bayesian
random effects meta-analysis. They improve on stan-
dard approaches to probabilistic sensitivilty analysis

Sensitivity analysis is today a crucial element in
any practical decision analysis. Analysts have
long recognized the dimensionality limitations of
graphically based sensitivity analysis in portraying
the robustness of a decision analysis to variations in
underlying parameter estimates: If graphical methods
allow at most 2- or 3-way sensitivity analyses, how
can one be sure that a decision analysis is robust to
the simultaneous variation of 10 to 20 parameters?
Probabilistic sensitivity analysis was introduced to
address this issue."? In a probabilistic sensitivity
analysis, the analyst assigns distributions to uncertain
parameters and can thereby compute as a measure of
robustness the probability of a change in the optimal
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by allowing a proper accounting for heterogene-
ity across studies as well as dependence between con-
trol and treatment parameters, while still being simple
enough to be carried out on a spreadsheet. The
authors apply these methods to conduct a probabilis-
tic sensitivity analysis for a recently published analy-
sis of zidovudine prophylaxis following rapid HIV
testing in labor to prevent vertical HIV transmission in
pregnant women. Key words: decision analysis; cost-
effectiveness analysis; probabilistic sensitivity analy-
sis; Bayesian methods; random effects meta-analysis;
expected value of perfect information; HIV transmis-
sion; zidovudine prophylaxis. (Med Decis Making
2006;26:512-534)

alternative due to variation in an arbitrary set of para-
meters, or alternately,’* the expected value of perfect
information regarding any set of parameters. This
computation is most frequently done via Monte Carlo
simulation.

The task of fitting distributions to uncertain para-
meters prior to a probabilistic sensitivity analysis
has been approached in several standard ways.
Traditionally, distributions of unobservable parame-
ters (such as probabilities or rates) are fitted with a
combination of mean and confidence interval esti-
mated from data. Distributions typically used are the
beta distribution®**® the logistic-normal distribu-
tion,"”* the uniform distribution, and the normal dis-
tribution.'” Analysts also use bootstrap methods to
obtain sampling distributions.”"' For observable para-
meters (such as costs), these methods are also applic-
able. However, in this case, it may be more
convenient to simply fit a theoretical distribution to
the empirical distribution of observations. For
example, in Goodman and colleagues,' observations
showed a peaked distribution, and a triangular distri-
bution was used. Lord and Asante'' used a piecewise
linear approximation to the empirical distribution.
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Data relevant for estimating parameters or parame-
ter distributions typically come from one or more
studies, so it is natural to attempt to use techniques of
meta-analysis to combine evidence from relevant stud-
ies. However, none of the standard approaches to distri-
bution fitting just mentioned can address issues—
such as heterogeneity across studies and correlations
between control and treatment parameters—that arise
in a meta-analytic setting. Techniques of Bayvesian
meta-analysis'*'* can address these issues and pro-
vide as well posterior distributions for parameters,
exactly what is needed for a probabilistic sensitivity
analysis. However, among complex cost-effectiveness
models that draw on several studies to estimate
parameters, we are aware of only a few'*" that use
Bayesian meta-analytic posteriors in this way. No
doubt the barrier to bridging these 2 areas is compu-
tational and theoretical complexity: Meta-analytic
posterior distributions typically have no closed form
and must be estimated via Markov-chain Monte Carlo
(MCMC) methods, hardly worth the effort from the
modeler’s perspective.

Fortunately, for large study sizes, meta-analytic
Bayesian posteriors do have closed forms not requir-
ing MCMC estimation. The contribution of this article
is to provide a summary of meta-analytic large-sam-
ple posterior distributions for probabilities, rates, and
relative effect parameters that can easily be used to
feed probabilistic sensitivity analyses. These tech-
niques are simple enough to be carried out on a
spreadsheet, but they still allow data from multiple
studies to be combined responsibly, properly accounting
for study heterogeneity as well as correlation between
control and treatment parameters. As an example, we
apply these methods to conduct a probabilistic sensi-
tivity analysis for a recently published analysis by
Mrus and Tsevat of zidovudine prophylaxis following
rapid HIV testing in labor to prevent vertical HIV
transmission in pregnant women.'*

The methods we present for obtaining approximate
normal posteriors for (possibly transformed) parame-
ters (Table 1 through Table 4) are standard in the
Bayesian literature and have been summarized in
many texts.'”'* One exception is our normal posterior
results for heterogeneous controlled studies, where we
have not been able to find literature precedents and
have derived the results ourselves (see Appendix B).
We have also derived the material presented here on
estimating the cross-study covariance matrix and
sample size requirements for logit and log transfor-
mation accuracy.

Ades, Lu, and Claxton' have drawn on like results
for computing approximate expected values of sample

METHODOLOGY

information, a topic we do not address here. The
methods we discuss overlap with Ades and colleagues
in part, but differ in the use of random effects models
for combining heterogeneous studies; where Ades and
colleagues calculate a point estimate for the overall
population mean, but we obtain an approximate
normal posterior distribution. The latter more accu-
rately reflects population-wide parameter variation.
Our material also augments Ades and colleagues by
addressing the issue of combining data from controlled
and uncontrolled studies, and accounting for correla-
tion between baseline and treatment parameters.

OVERVIEW OF MODEL TYPES

The influence diagram Figure 1(a) shows the
common situation in which observed data y, from
each of n studies i = 1,..., n are influenced by an
unknown parameter & Typically, & is a probability or
rate, and y. is a count of observed critical events in
some subject population i. The observations y,, ..., vy,
inform the choice of a decision or policy whose cost
or utility for an individual or group is influenced by
the not-yet-observed count y of critical events for that
patient or group. The not-yet-observed count y is also
influenced by the unknown & Analysts can use the
observations y,, ..., v, to make statistical inferences
about the unknown £ and can use these inferences to
make predictions about the critical count y and to
make recommendations concerning the optimal deci-
sion or policy. We will be interested in Bayesian pro-
cedures in which the analyst calculates a posterior
probability distribution for § and uses it to form a
predictive distribution for y, from which an expected-
utility maximizing decision or policy can be computed.

Many studies compare a treatment with a control,
and for these, the underlying parameter { must be
taken to be a vector & = (£%¢), where &? is the
unknown probability or rate for the control group and
¢ is the unknown efficacy, some measure of the effec-
tiveness of the treatment. The unknown probability or
rate for the treatment group may be {' =&+ ¢, or &' =
&Y% g, or some other function of £’ and ¢, depending on
model specifics. In this situation, the observations y,
are also vectors v, = (y?,y/), or perhaps y, = (v{,y/ - v},
one component for control and one for treatment or
treatment effect, and the decision or policy in ques-
tion might be whether the treatment is cost-effective
or beneficial in terms of expected utility.

Figure 1(a) assumes that the unknown parameter &
has the same value for each population i, as well as
for the population from which future observations are
to arise—that is, the populations are homogenous.

o213
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Figure 1 (a) An influence diagram depicting the cost-effectiveness
or decision-analytic setting when data from homogenous studies is
available to estimate a parameter &. In a Bayesian approach, the
posterior distribution on & given y,, . . ., v, can be used to determine
the optimal decision or policy given the observations y,, . . ., y,. In
this situation, observations are typically pooled as if they come from
a single study, as shown in (b].

One may test this assumption statistically, or alter-
nately, estimate the degree of heterogeneity, as we dis-
cuss below. If homogeneity is confirmed, it is
common to proceed with analyses that effectively
pool the data as though they are from the same source,
as shown in Figure 1(b).

If homogeneity fails, then the populations are het-
erogeneous, with a different value &, of the unknown
parameter for each population i and the population
of future observations. This situation is depicted in
Figure 2, which shows a random effects model of
heterogeneity, in which it is assumed that the values &,
are independent draws from a population of £ values
with mean u. Once again the observations y,, ..., v,
inform the choice of a decision or policy whose cost
or utility is influenced by the not-yet-observed count
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Figure 2 An influence diagram depicting the cost-effectiveness or
decision-analytic setting when data from heterogeneous studies is
available to estimate a parameter §. Past studies aimed at estimat-
ing & are portrayed using a random effects model in which the cor-
responding parameter & for the ith study is sampled from a
population with mean p. In a Bayesian approach, the posterior dis-
tribution on u given v,, . . ., v, is used to infer a predictive distribu-
tion on & This predictive distribution can be used to determine the
optimal decision or policy given the observations y,, . . ., ¥,

v of critical events for a patient or group. However,
now y is influenced by an unknown & drawn from
the same population of & values with mean u. The
analyst aims to use the observations y, ..., y, to
make inferences about g and in turn about &, from
which predictions of the critical count y can be made.
A Bayesian analyst would seek a posterior distribu-
tion on y, from which could be inferred a predictive
distribution on &. This in turn would allow the com-
putation of a utility-maximizing decision or policy
given the observations y,, ..., y,.

This situation also allows for controlled studies.
Again the observations v, = (v?.y/) or perhaps y, = (y!,
y!—yY) would be for control and treatment groups, the
unknown &, = (£/,¢) would consist of a component &/
for the ith control group, and an efficacy parameter
¢. for the ith group, and u = (u°,u4°) would also have
components for control and efficacy.

In the sequel, we examine in turn each combination
of these 2 dichotomies (homogenous/heterogeneous,
uncontrolled/controlled), summarizing how to obtain
large-sample approximate Bayesian posterior distrib-
utions for & (in the homogeneous case) or u (in the
heterogeneous case), and how to use these posterior
distributions to conduct a probabilistic sensitivity
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Table 1.1 Homogeneous-Study Models Using Conjugate Prior Distributions
Parameters Observations Prior Distributions Posterior Distribution
Probability p k events in n p ~ beta(a ) p ~beta(a+ k, B+n —k)
independent trials;
k ~ binomial(n, p) Noninformative uniform p ~beta(k+1, n =k + 1)
prior on p
(z=1,8=1)
Rate A k events in duration At; A ~ gammal(r,0) A ~ gammal(r + k, 6 + Af)
k ~ Poisson(AAf) Noninformative prior on A A ~ gammalk, At)
(r=0, 6=0)
Mean & y ~ normal(é, o”) & ~normal(&,,07 & ~ normal(§,, o;)

g° known or
estimated

z 4
a ‘E,+acy :
i i . =3 -3 7
Ey = - — T = + o
i P -|--I‘]' -

noninformative uniform

prior on & (0,7 =0)

& ~ normal(v, o)

analysis using Monte Carlo simulation. In each situa-
tion, we illustrate our results with data cited by
Mrus and Tsevat'® in their analysis of zidovudine
prophylaxis following rapid HIV testing in labor. We
conclude, as mentioned above, with a complete prob-
abilistic sensitivity analysis of all probability and effi-
cacy parameters in the Mrus and Tsevat model.

OBSERVATIONS FROM
HOMOGENEOUS STUDIES

If homogeneity holds, as in Figure 1, then the pos-
terior distribution of the unknown parameter £ can
be calculated exactly using standard conjugate
Bayesian methods, for example, DeGroot.*” These
are summarized in Table 1.1. Exact posterior distrib-
utions may be obtained when ¢ is a probability p, a
rate A, or a mean. The beta, gamma, and normal dis-
tributions mentioned may be found in standard
probability texts. The table also illustrates how poste-
rior distributions simplify when the prior is noninfor-
mative, reflecting the paucity of prior information
relative to the available data.

If sample size is large, then standard normal
approximations to the binomial and Poisson distribu-
tions may be invoked. This in combination with the
normal conjugate results in Table 1.1 gives the “no
transformation™ results in Table 1.2, Large sample
size implies that ¢, is so small relative to o~ that it
may be effectively assumed zero, so the noninforma-
tive case from Table 1.1 applies.

METHODOLOGY

A one-to-one transformation of probability or rate
parameters may, however, be desirable to maintain
logical correctness or consistency with statistical analy-
ses. For instance, without transformation, a normal
posterior distribution on a probability parameter p is
logically incorrect, as it allows an infinite range of
values for a variable that is restricted to the interval
[0,1]. If a normal posterior is used in a Monte Carlo
simulation, randomly generated values for p falling
outside the interval [0,1] may lead to misleading
results. Truncating or rounding the normal approxi-
mation to avoid this results in biased estimates.

These difficulties are negligible for normal posteri-
ors tightly focused within [0,1], but they may be
avoided altogether by transforming p to a parameter &
having infinite or semi-infinite range. Common trans-
formations for probability parameters p are the log
transformation & = In p, or the logit transformation & =
logit(p) = In (p/(1-p)), and for rate parameters A, the
log transformation & =In A. The observations k can be
transformed similarly to observations y, and the well-
known Delta method (see Lemma 2 in Appendix D)
then implies that for large samples, approximate nor-
mality is retained. The conjugate normal posterior
from Table 1.1 can then be invoked, and this yields
the transformed entries in Table 1.2.

The final column of Table 1.2 indicates how a ran-
dom parameter value may be generated for Monte
Carlo simulation: First generate a random & from its
approximate posterior normal(y, ¢*) distribution,
then transform & back to obtain a random value of the
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Table 1.2 Large-Sample Approximate Homogeneous-Study Models for Probabilities and Rates
Transformation to an Generating New Parameter Values
Approximate Normal for MC Simulation: First
Parameters Observations Model (Table 1.1) Generate £ ~ normal(y, ¢?), Then:
Probability p k events in n independent trials E=p Set p =&,
k ~ binomial(n, p) (no transformation)
v =k/n
o =(k/n)(1 - k/n)/n
& = logit(p) &t
y = logit(k/n) Calculate p = L

o =1/k+1/(n-Kk)

& = log(p)
v = log(k/n)
o =1/k - 1/n

Calculate p = &~

Rate A

k events in duration At E=4

k ~ Poisson(AAt) (no transformation)
y = k/At
o® = k/At?

Set A=C¢.

& =In(A)
v = In(k/At)
o =1/k

Calculate A = e~

MC = Monte Carlo.

original parameter p or A. For pooled observations
from homogeneous studies, these large-sample
approximate normal posteriors are unnecessary, as
the conjugate beta or gamma posteriors from Table 1.1
are exactly correct and easily computed. However,
the large-sample approximations generalize to more
complicated situations that we will discuss below,
where conjugate prior models are no longer tractable.
We present them here to illustrate our general
approach in a simple situation.

Homogeneity of Past and Future Observations

Calculation of the posterior distributions above
relies on the assumption of homogeneity of past stud-
ies. But one cannot use the posterior on ¢ as the prior
on the parameter &, for future observations unless one
has established some statistical relationship between
¢ and &, If we assume homogeneity of past studies
and future observations (Figure 1), then we have
& = & and the posterior on § applies to & as well.
However, if future observations do not sample the
same population as past studies, then the random
effects model we discuss below may be more realistic.

Sample Size and Model Choice

The models in Table 1.2 and below require large
samples, but how large is large? These models are
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built on 2 layers of approximations: First, the fact
that large-sample binomial and Poisson distribu-
tions are approximately normal, and second, the fact
that normality is maintained for large samples by the
logit and log transformations (a result known as the
Delta method—see Appendix D).

Consider first the binomial case. Widespread
advice*"* indicates that a binomial distribution with
parameters n and p may be accurately approximated
by a normal distribution with the same mean and
variance as long as that variance o= np(1 — p) is at
least 10, or alternately, as long as np and n(1 - p) are
both at least 10. We are aware of one respected
source? that claims that np(1 — p) need only exceed 3.
Thus, values of np(1 — p) between 3 and 10 constitute
a “gray area” where normal approximation begins to
break down but may still be adequate.

For a Poisson distribution with parameter v (equal
to AAt in Table 1.2), the normal approximation
becomes adequate when the standard deviation Vv is
small compared to the mean v.** As in the binomial
case, v= 10 gives good approximations, and 3 < v<10
1S a gray area.

The fact that logit and log transformations main-
tain normality for large samples depends on the fact
that linear transformations of normally distributed
variables are normally distributed and that any dif-
ferentiable transformation is approximately linear
over a small range. With p = k/n in Table 1.2, a rule



BAYESIAN POSTERIORS FOR PROBABILISTIC SENSITIVITY ANALYSIS

of thumb is that approximate normality is maintained
for the logit transform as long as np(1-p) = 10, if by
approximate we mean cumulative probability errors
of at most 0.05. This bound is a relaxation of the
tighter approximate bound

(b-1)
medt (1)

np(l—p) = 2

As long as (1) holds, the dominant term in the
expression for error in cumulative probabilities
will be at most 6. Here e = 2.718 is the base of the
natural logarithm. Inequality (1) is only an approxi-
mate guarantee based on second-order Taylor series
expansions (see Appendix D). Nevertheless, this
approximation seems to work well numerically.

For the log transform in either the binomial or
Poison case, a rule of thumb is that one needs k > 10
to achieve error of at most 0.05 in the cumulative
probabilities. In the binomial case, this is a relax-
ation of the tighter bound

k> ——F
= 2nes

(2)

guaranteeing the dominant error term for cumulative
probabilities is at most é. For the Poisson case, the
tighter bound is

1
k> ;
= 2methst

Again, these are approximate bounds based on sec-
ond-order Taylor series expansions. When these
bounds fail for the logit or log transform, it may make
sense to use the untransformed normal approximation
in Table 1.2—see the examples immediately following.
But of course one should check whether the resulting
posterior on p lies substantially within the interval
[0,1]. or whether the posterior on A is substantially in
the nonnegative region—if not, then these posteriors
will not be useful for Monte Carlo simulation.

Example 1: Acceptance Rate for
Rapid HIV Testing and Treatment

Mrus and Tsevat cite Rajegowda and colleagues,*
who observed that in n = 539 patients, k= 462 (85.7%)
were willing to accept rapid HIV test and treatment. To
obtain a Bayesian posterior on the acceptance rate p, we
may use the conjugate beta posterior in Table 1.1 or any
of the large-sample approximate posteriors for binomial
data in Table 1.2. The former yields a beta(k + 1,

METHODOLOGY

n— k+1)=beta(463, 78) posterior. For the latter, we note
that for the estimate p= k/n =0.857, we have np(1-p) =
66, substantially exceeding 10. An untransformed
approximate normal posterior has mean y = k/n=0.857
and standard deviation o = /(k/n)(1 —k/n)/n = 0.015.

If we consider using the logit transform, our rule
of thumb np(1-p) = 10 tells us immediately that
we can easily maintain errors of 0.05 or less. The
tighter bound (1) is satisfied by a maximum error of
d = 0.013. So the logit maintains normality very
accurately. Similarly, for the log transform, our rule
of thumb k > 10 is easily satisfied, so accuracy is
0.05 or less. The tighter bound (2) is satisfied by
maximum error of = 0.0026. The beta posterior, the
untransformed normal posterior, and the implied
normal logit and lognormal posteriors on p are
graphed in Figure 3a and are virtually identical,
reflecting the fidelity of the large-sample normal
approximation expected with np(1-p) substantially
exceeding 10.

Example 2: Specificity of Rapid HIV Testing

One of the 3 studies Mrus and Tsevat cite (see
Example 5 below) on the specificity of rapid HIV
testing revealed k = 446 negative test results among
n = 451 subjects not HIV infected, a specificity of
p =446/451 = 0.989. We have np(1-p) = 4.945, so we
are in the gray area with respect to the normal
approximation to the binomial.

Consider using the logit transformation. Our rule
of thumb np(1-p) = 10 for 0.05 accuracy fails, and
the tighter bound (1) is satisfied by maximum error
& = 0.065. So the logit transformation may be poor.
For the log transformation, on the other hand, our
rule of thumb k > 10 easily holds, and the bound (2)
is satisfied by maximum error 6 = 0.00073, so the log
transform is very accurate.

These assertions are confirmed by the graphs in
Figure 3b. The true maximum error in cumulative
probabilities between the logit and the untransformed
normal is 0.071 (versus the & = 0.065 estimate from
(1)). We can also see that the normal approximation is
only roughly adequate, as expected in that we are in
the gray area. It has a roughly 1% chance of generat-
ing infeasible values p > 1 in a Monte Carlo simula-
tion, a not unacceptable figure.

Example 3: Mother-to-Infant HIV
Transmission Risk

One of the 7 studies Mrus and Tsevat cite (see
Example 4 below) regarding mother-to-infant HIV
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(a) p = proportion willing to accept rapid
HIV testing and treatment.

p=0.857, n= 539, np(1-p) = 66

0.8 0.85 0.9
P

— Beta — Normal

----- Logit +++ Lognormal

(c) p = probability of vertical HIV transmission
(no zidovudine)

p=0.375, n =16, np(1-p) = 3.75

— Beta —  Normal
«++ Lognormal

(b) p = specificity of rapid HIV testing

p=0.989, n= 451, np(1-p) = 4.95

[ I |

0.9/ 0.98 0.99

Normal
----- Logit <+« Lognormal

(d) p = probability of vertical HIV transmission
(with zidovudine)

p=0.138, n=29, np(1-p) =3.45

| | I |

—— Beta — Nomal

+++ |Lognormal

Figure 3 Beta posterior distribution for a probability p of a critical event, along with normal, normal log-odds, and lognormal approx-

imate posterior distributions. In (a), np(1-p)

is much greater than 10 and the approximate normal, normal log-odds and lognormal

posteriors are so close to the true beta posterior that it is difficult to distinguish them. In (b), (¢), and (d}, np( 1—p) lies in a “gray area”
below 10 where approximate normal posteriors begin to lose their accuracy.

transmission risk gives 6 instances in 16 of mother-to-
infant HIV transmission without zidovudine and 4
instances in 29 with zidovudine. We have p,=6/16 =
0.375, np,(1-p,) = 3.75, and also p, = 4/29 = 0.138,
np,(1-p,) = 3.45, so with respect to the normal
approximations to the binomial from Table 1.2, we are
in the gray area for both samples.

Consider using the logit transform. Our rule of
thumb np(1-p) = 10 for 0.05 accuracy fails for both
samples, but the bound (1) yields achievable accuracy
&= 0.019 for the no zidovudine sample and 6 = 0.057
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for the zidovudine sample. So the logit transform is
accurate for the first sample and marginally accurate
for the second. Regarding the log transform, our rule
of thumb k > 10 for 0.05 accuracy fails for both
samples, but the tighter bound (2) is satisfied by
d=0.047 for the no zidovudine sample and 6= 0.068
for the zidovudine sample. So the log transform is not
as accurate as the logit for the first sample and is com-
parable to the logit for the second sample. These asser-
tions are confirmed by Figure 3c and d, where the true
maximum errors in cumulative probabilities between
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Table 2.1

Normally Distributed Observations from a Controlled Study

Generating New
Parameter Values

Prior Posterior &, &, for Monte
Parameters Observations Distributions Distribution Carlo Simulation
A v, ~ normal(&,, o) &, € are independent, &, ~ normal(y,, o;) Generate
e=§ - &, v, ~ normal(, o;) each with a &, ~ normal(y,, 6;) ¢, ~ normal(y,, o)

o,, o) known or
estimated from data

noninformative prior

S0 &1 iIldEpEIIdEI]t C] ~normal(y,, ¢;)

the logit and the untransformed normal are 0.029 and
0.068 (v. the estimates 6 = 0.019 and 0.057 from (1)),
and between the log and the untransformed normal
are 0.051 and 0.075 (v. the estimates ¢ = 0.047 and
0.068). The untransformed normal approximation has
for the no zidvudine sample about a 1/1000 chance of
generating an infeasible negative random variate p in
a Monte Carlo simulation, and for the zidovudine
sample, the chance is 1.6%.

OBSERVATIONS FROM HOMOGENEQOUS
CONTROLLED STUDIES

We consider now the case of observations from
homogeneous controlled studies that have been
pooled. Table 2.1 shows the situation in which the
observations y,yv, from the control and treatment
groups are normally distributed and the prior distrib-
ution is noninformative. Here the parameter vector
(¢,,€) consists of the unknown mean &, in the control
group and the unknown efficacy &. The mean in the
treatment group is then &, = & + & Table 2.1 gives the
posterior distribution of (¢,,£,) under a noninformative
prior when all likelihoods are normal. This result is a
consequence of Theorem 2 in Appendix B. Generating
parameter values &, and &, for Monte Carlo simula-
tion is done in the obvious way, as summarized in
the table.

[t may seem strange that £,., are a posteriori inde-
pendent even though they are dependent a priori
(because &, = &, + €). The reason for this is that the
noninformative priors on £, and € are too weak to
maintain this dependence in the face of independent
data y,.y,.

For the situation in which control group and
treatment effect are independent parameters (as
assumed in Table 2.1), studies involving binomial or
Poisson observations do not have tractable conjugate
Bayesian updates. However, when large-sample
normal approximations are valid, then results from
Table 2.1 may be applied. Table 2.2 gives the resulting

METHODOLOGY

approximate normal posterior distributions for the
binomial case, and Table 2.3 for the Poisson case. To
generate random variates for a probabilistic sensitiv-
ity analysis, one should use the procedure from
Table 2.1 and then transform back as indicated in
Table 2.2 or Table 2.3 to obtain the desired probabil-
ity or rate random variates.

Example 4: The Effect of Zidovudine
Prophylaxis on HIV Transmission

Mrus and Tsevat cite 7 controlled studies®™* giving
data for estimating the effect of zidovudine prophylaxis
on mother-to-infant HIV transmission risk. Observed
data are listed as tollows,

Without Zidovudine With Zidovudine

Group i k! n ki/nf k! n; ki/m}
1 47 152 0.309 19 416 0.0457
2 a1 216 0.236 16 204 0.0784
3 30 95 0.316 21 336  0.0625
4 6 16 0.375 4 29 0.1379
9 30 115 0.261 19 115 0.1652
6 37 198 0.187 18 194 0.0928
7 1019 5571 0.18291 223 2269 0.09828

where k! of n? infants in the control group i are HIV
infected, and k! of n} infants in the prophylaxis group
i are HIV infected, i=1,2,...7.

Assuming homogeneity tests are passed (we will
discuss this further below), we can pool the 7 study
groups into one as follows.

Without Zidovudine With Zidovudine

k, 1220 k, 320
n, 6363 n, 3563
k/n, 0.191733  k,/n, 0.089812
v, = In(k,/n,) -1.65165 y, =In(k,/n,) -2.41004
oZ=1/k,~1/n, 0.000663 o.=1/k,—1/n, 0.002844
519
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Table 2.2 Controlled Studies Involving Binomial Observations and
Their Large-Sample Normal Approximation

Parameters

Observations

Transformation to an
Approximate Normal
Model (Table 2.1)

Generating a New
Parameter Value for MC
Simulation: Generate &, &,
as in Table 2.1. Then

Probabilities p,, p,

k, events in n, independent
trials without intervention

k, events in n, independent
trials with intervention
k, ~ binomial(n,, p,)

k, ~ binomial(n,, p,)

‘:.r; = Py

‘:1 = Py

(no transformation)
Yo=K/,

¥y = k:h?i

J:f = [ku";”u][ T_k”‘,.-'””]f””
o7 = (k,/n,)(1-k,/n,)/n,

Set Ps= ér;ﬂ P = gr

g, = logit(p,) Calculate
&, = logit(p,) "
v, = logit(k,/n,) Po= T
v, = logit(k,/n,)
o?=1/k,+ 1/(n,- k) i ¢
62=1/k,+1/(n,-k,) 1+e"
&= In(p,) Calculate
S, =1In(p,)
v,= Inlk,/n,) B, = e
v, = In(k,/n,)
Gj: I"fku_ I"'fnrj Przﬂl;-r
o2=1/k,- 1/n, RR=p,/p, = €
MC = Monte Carlo.
According to Table 2.1, the .transfnrme'd log-risk Q= z ™ (y, — e 3)
parameter &, = In p, has a posterior approximate nor- i
mal distribution with mean -1.65 and standard devia- i 3
tion 0.000663"* = 0.0257, and &, is approximately (P
normal with mean -2.41 and standard deviation o, = 5
0.002844"" = 0.0533. = S

OBSERVATIONS FROM
HETEROGENEOUS STUDIES

Consider now the random effects situation depicted
in Figure 2, in which observations relevant to a para-
meter & arise from n heterogeneous studies randomly
drawn from an overall population with mean p. Let 6
be the variance of this overall population. If 6¢ is posi-
tive, then the studies are heterogeneous, whereas if
6:=0, then all &, are equal and the homogenous case of
Figure 1 obtains. A popular test* of the null hypothesis
o2 =0 uses the statistic Q given by
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where 6. is the known or estimated standard deviation
from the i"" study. Q has a large-sample approximate y*
distribution with n — 1 degrees of freedom under the
null hypothesis, so one would reject this hypothesis if
Q > %% (n — 1) for some appropriate test level a.
However, it is known that this test has low power, so
failure to reject may not be adequate reason for assum-
ing 6= 0 (see the example below), and anyway the
large sample requirement is usually not met in this
context, as often only a few studies are available. In
fact, one can argue, with Dumouchel,”p. 511 that this
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Table 2.3 Controlled Studies Involving Poisson Observations and Their

Large-Sample Normal Approximation

Transformation to an

Generating a New Parameter

Approximate Normal Value for MC Simulation:
Parameters Observations Model (Table 2.1) Generate &, &, as in Table 2.1. Then
Rates 4,, 4, k, events in duration Af, £ S Set A, =&, A, =&
without intervention &=
k, events in duration At, (no transformation)
with intervention
k, ~ Poisson(A,At,) y' = k,/AL,
k, ~ Poisson(4,At,) yt=k /At
o=k, J/At;
of=k/At}
&, = 1n(4) Calculate
;i.l — I-n[}"'].] A‘[] = E‘:il
Vo = In(k,/At) A, = e
v, = In(k,/At,)
ol =1/k, RR=A/A,=¢
ol =1/k,

MC = Monte Carlo.

method “ignores the distinction between failing to
reject interstudy homogeneity and proving it is pre-
sent.” Some study heterogeneity is inevitable, even if
undetected by a hypothesis test, so why not simply esti-
mate it? It can be shown that any estimate of the form

v, (Vi — V) =3 (1 —aj)of ;
£ I - i — E V.

is unbiased as long as }_ & = 1. Choosing o, = 6;* /
> 0% yields the moment estimator™
3 Z,‘ ['-I'..J':m” L {Z, I:w:I“H]E/'E,' m:m”) E [4}

Unfortunately, for a small number of studies, these
estimates are highly variable and can even be negative.
A sampling distribution would therefore be desirable, but
no simple one is available except in the equal-variance

case 0/=...=07=0% when ¢,=1/nand
; 1 < "
ﬂl‘f: n_lzi{y"_yﬁhﬁz' y:Z‘_}f,-/'ﬂ

in which case 6 is equal in distribution to 6 + (0° + 67)
x2_,/(n = 1), which has upper-o percentile

2
6, (e) = (0" + H:]X;; fj} -0’ (5)

METHODOLOGY

Following Larsen and colleagues,” Spiegelhalter
and colleagues™ point out that because & is normal(y,
o), the 95% range of sampled & values is 3.920;, and
median absolute difference between 2 randomly sam-
pled values of § is 1.090; ; these facts can be used to
aid in a rough subpectwe estimate of o, when (4) is
inadequate due to a small number of studies (see
Example 5 below). This includes the case of only a
single study, where (4) is not even defined.

When there is only one past study, one must be
particularly careful not to unthinkingly fall back on
the homogeneous model (Figure 1 and Table 1.1),
which assumes ¢.” = 0, unless future observations of
interest arise only from the same population sam-
pled by the study. The proper procedure is to sub-
jectively estimate o7, admittedly prone to error but
certainly more accurate than taking ¢; = 0. Concern
about the reliability of subjective estimates should
be addressed by a sensitivity analysis.

Table 3.1 gives the posterior distribution for u for
heterogeneous studies when all likelihoods are
normal (see Theorem 2 in Appendix B). The normal
(v, [Z ] ') posterior on u combines with the
nﬂrmal[p, o) prior on § given u to produce a normal
(v, 07 + [Z,m,] ') posterior on &, and this may be used
to generate values for a Monte Carlo prubablllstlc
sensitivity analysis, as indicated. Table 3.2 gives
large-sample approximate posterior distributions for
transformed probabilities and rates under binomial
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Table 3.1 Normally Distributed Observations from Heterogeneous Groups (Random Effects Model)

Generating a New

Parameter  Observations y, Prior Posterior Parameter Value &
for Studyi for Study i Distributions Distribution for Monte Carlo Simulation
E y; ~ normal(&, o3) u has a u ~normal(V, (C.@)"')  Generate & ~ normal

noninformative prior

o? known or estimated ;| ~ normal(y, o;)

D'; known or estimated

(¥, o2 + (Z,0))

where @, = (07 + ﬂ'f}"

v = (Z0) Loy,

Table 3.2 Binomial and Poisson Observations from Heterogeneous Groups and
Their Large-Sample Normal Approximation

Parameter for Study i Observations for Study i

Transformation to an
Approximate Normal
Random Effects
Model (Table 3.1)

Generating New Parameter
Value for MC
Simulation: Generate §
as in Table 3.1. Then

Probability p, k. events in n,
independent trials.

k.1 p; ~ binomial(n, p;)

;""_: pr SEt P = é

(no transformation)

v, = k/n,

o= (k/n)(1-k/n)/n,

& = logit(p) et

v, = logit(k./n) Calculate p = e

2= 1/k; + 1/[n~k)

S =In(p) Calculate p = e~
v;=In(k/n))
of=1/k,—1/n,

Rate 4, k. events in duration At E=A Set A=¢

k1 A, ~ Poisson(4,At) (no transformation)

y; = k/At,
of = k/At}
§.— = IHH,-L Calculate A = ¢°
y; = In(k/At,)
o2 =1/k

MC = Monlte Carlo.

and Poisson sampling, drawing on the results in
Table 3.1.

Example 5: Specificity of Rapid HIV Testing

Mrus and Tsevat cite 3 studies™* providing data on
the specificity of rapid HIV testing, observing that in n,
people who were not HIV-infected, there were k; having
negative test results, i = 1,2,3. The data are as follows.

Group i k, n, pi=k/n, o=+ p-p)in,
1 446 451 0.988914 0.00493
2 783 790 0.991139 0.00333
3 486 496 0.979839 0.00631
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We use Table 3.1 and Table 3.2 without transfor-
mation, as the variances np (1-p.) do not exceed 10
(see Example 2 above), and the between-study vari-
ance o is not large. In fact, the test statistic (3) for
the null hypothesis ¢ = 0 of homogeneity yields
Q=X 0™ (y, -y ""?=2.508, with P-value = 0.285,
insufficient to reject o = 0. However, this test has low
power, and anyway, we consider it a better strategy to
estimate heterogeneity rather than test for it. The
moment estimator (4) yields 6.= 0.00238. The upper-
0.10 percentile (5) for the equal-variance estimate 6, =
4.078 x 107 is 6.172 x 107%, taking o* in (5) to be the
o-weighted average over i of the o values given here.
So it appears that o, could be 6.172/4.078 = 1.5 times
as large as its estimate 6, = 0.00238, that is, o, could
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200 | | | |
100
D |
0.96 0.97
p
Unpooled —— - Pooled
Figure 4 Normal posterior distributions on the specificity p of

rapid HIV test, one based on pooling 3 studies under the assump-
tion they are homogeneous, and the other unpooled result based
on combining studies using the random effects model. The ran-
dom effects model gives a wider posterior distribution, reflecting
residual uncertainty regarding whether the studies are really
homogeneous.

be as much as 1.5 x 0.00238 = 0.00361. In this light,
0. = 0.00238 seems not an unreasonable estimate.

Using this estimate, we obtain (@,,0,,0,) = (3.335,
5.954, 2.197) x 10%, (X.@)" = 8.706 x 10, ¥ = 0.988.
Hence the approximate posterior distribution of
parameter p is normal with mean 0.988 and standard
deviation (8.706 x 107%)'* = 0.00295.

To generate a random & = p, we sample from a nor-
mal distribution with mean 0.988 and standard devi-
ation (8.706 x 107% + ¢.2)*2 = 0.00379. This has a 95%
range 0.981-0.996 and a 0.10% chance of generating
an infeasible p > 1, certainly acceptable.

Had we accepted homogeneity as indicated by the
() statistic, we would have pooled the 3 studies to
obtain k = 1715 negative test results in n = 1737 HIV-
negative individuals. This yields an approximate pre-
dictive distribution on p that is normal with mean
0.987 and standard deviation 0.00268. The mean is
virtually the same as the unpooled case, but the stan-
dard deviation is only 2/3 as large.

The pooled and unpooled posterior distributions
for the specificity p are graphed in Figure 4. Even
though homogeneity is not rejected and pooling might
therefore be defended by some, the pooled posterior is
narrower than the unpooled posterior. Were the
homogeneity hypothesis correct and ¢.” really equal to

METHODOLOGY

zero, the 2 posteriors would be identical>—here the
wider posterior for the unpooled case reflects residual
uncertainty about homogeneity. So in this light (and in
general, we believe), the decision to retain heterogene-
ity as a possibility seems prudent.

Example 6: Sensitivity of Rapid HIV Testing

Mrus and Tsevat cite 3 studies®™® providing data
on rapid HIV test sensitivity. These studies observe
k = 262 positive test results out of n = 262 HIV-
infected individuals (100% sample sensitivity). The
data, which we pool, provides no information on
study heterogeneity, which must be subjectively esti-
mated. Ideally the estimate o should be informed by
some knowledge of how or WB}T sensitivity might vary
across studies. In the absence of such information
here, we take an estimated range 0.95-0.999 on study
mean sensitivity. This translates into a range of
logit(0.999)-logit(0.95) = 3.962 on logit sensitivity,
vielding a standard deviation o. = 3.962/3.92 = 1.011
in the logit model. Applying Table 3.1 to the logit por-
tion of Table 3.2 with half-integer corrections k =
262.5, n = 263 yields a normal posterior on u with
mean 6.26 and standard deviation 1.74. The predictive
distribution on & = logit(p) is normal with the same
mean and standard deviation (o} + 1.74%)"* = 2.012.
This translates into a median sensitivity p = 0.998 and
95% range 0.911-0.99996.

Example 7 (continuation of Example 1):
Acceptance Rates for Rapid HIV Testing
and Treatment

We have mentioned the single Rajegowda study,”
observing that k = 462 of n = 539 patients (85.7%)
were willing to accept rapid HIV test and treatment.
To generalize beyond the population from which
this study sampled, one must estimate the cross-
study variance o:. As there is only one study, there
is no data to inform this estimate. In the absence of
any information on acceptance rates, we estimate a
range of 0.70-0.95 on study mean sensitivity. This
translates into a range of logit(0.95)-logit(0.70) =
2.097 on logit acceptance rate, yielding a standard
deviation o, = 2.097/3.92 = 0.535 in the logit model.
Applying Table 3.1 to the logit portion of Table 3.2
yields a normal posterior on g with mean 1.792 and
standard deviation 0.549. The predictive distribution

"The statement remains true when a transformation has been
applied if the transformed data (not the original data) are pooled.
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Table 4.1

Normally Distributed Observations from Heterogeneous

Controlled Studies (Random Effects Model)

Parameters
for Study i

Observations y,

for Study i Prior Distributions

Generating New
Parameter Values
£%&" for Monte

Posterior Distribution Carlo Simulation

i yv! ~ normal(£?,02) uw=(u’ p*) has a
g = E1-£Y yv!~normal(¢), 62) noninformative prior.
& = (&) €) 6,0’ known or (&Y, €,) bivariate normal
estimated with mean p = (u", pf),

and covariance matrix

4
{'T._ n ”t"l.l !
— q .
EEU I ,_J g
L ST o>

“a

P 2
Ug"‘”j GI-' ¥ G*:.:[]nf

known or estimated.

Step 1. Generate (£ €) ~
normal(y, .+ (£,Q)7).
Step 2. Calculate

SCIEE Rt b

u=(p’ p? ~
normal(y, (£,Q)")
where Q.= (£, + )™

z 2
¥, 'j:::] :gin E
— Ty T + o

1

7=(22) (X25).

yi
Yi== (y] ’ u)
i TN

on & = logit(p) is normal with the same mean, and
standard deviation (o7 + 0.549%)"? = 0.767. This
translates into a 95% range 0.572-0.964 on future
observed acceptance rates.

OBSERVATIONS FROM HETEROGENEOUS
CONTROLLED STUDIES

For heterogeneous controlled studies, each ele-
ment in Figure 2 is a 2-dimensional vector consisting
of baseline and efficacy components: u = (p°, p), §; =
(&7, ). It y!, y/ are the (possibly transformed) control
and treatment observations in study i, we adopt, for
consistency, the notation y. = (y{, y/ — ¥/), which
records the control observation and the treatment
effect y' — y?. The parameter & is assumed to have a
bivariate normal distribution with mean g and 2 x 2

o S s T )
covariance matrix Z, = ( ) Z) Note that this
{FI-F.E” ﬂ-e.-

allows the baseline and efficacy components £/, €
of study i to be correlated.

Table 4.1 gives the posterior distribution for the pop-
ulation mean u (see Theorem 2 in Appendix B) and a
Monte Carlo procedure for probabilistic sensitivity
analysis. This posterior distribution is bivariate normal
with covariance matrix equal to the matrix inverse
of the sum 2_.Q;, where each €, is itself the matrix

g 7 7
Tin Oy T 0

. a; —~r
inverse of the sum X, + X, and %, = ( ’ ! )
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is the covariance matrix for v, = (v!, v/ — v{). The
unknown population mean u has posterior mean vector
v given by the product of the covariance matrix (2-€Q.)"
with the sum of matrix products Q..

The Monte Carlo procedure described in the table
requires the generation of a bivariate normal vector £ =
(&%,¢). We discuss how to accomplish this in Appendix
A. The posterior distribution on &= (&’,¢) is bivariate nor-
mal with mean ¥ and covariance matrix (2,)™" + 2.

These methods require estimates of the prior
covariance matrix X, It can be shown that any esti-
mate of the form

2 3 - Z,- o (1 —a)L;

E:-n —
Z,i ﬂ._l'j[]_ _ ﬂrij {H]
? — Eiﬂf‘}':' E‘. — Ei&j {F} — ? ]{}T! . ? ]T.
is unbiased as long as >_o, = 1. A natural choice is
e fil o o
I:EJ- — 1l _;'I —.
Tin Ty

[ Rl 11

Unfortunately, for a small number of studies
this estimate is highly variable and may give an esti-
mate X, that is not a legitimate covariance matrix.

I:".I';, (T e

The covariance matrix Z,, = ( ) is legitimate

2
Ue g0 (F,

provided that both o0 and the conditional vari-

2

+..EI'I

2
"T':T 1]

4

ance o, =0, —

of effect € given baseline " are
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Table 4.2 Binomial Observations from Heterogeneous Controlled Studies,
and Their Large-Sample Normal Approximation

Parameters for Study i

Observations for Study i

Transformation to an
Approximate Normal Random

Effects Model (Table 4.1)

Generating New
Parameter Values: Do Steps 1
and 2 in Table 4.1. Then

Probabilities p!, p/

k! events in n! independent trials

without intervention

k! events in n; independent trials

with intervention
k!~ binomial(n?, p!)
k!~ binomial(n/, p})

[ il
2o
(no transformation)
v? = k0 /nt
y! = ki/n}
o:=(kY/n!)(1-k!/n)/n!
o= (k!/n})(1-k]/n})/n]

Set p.r; = &, pz P

&; = logit(p;) Calculate
El=logit(p)) o’

v = logit(k"/n?) Po= T o

y; = logit(k//n})

62 = 1/k® + 1/(n° - k9) e

6= 1/k!+ 1/(n' - k1) b= T re

&; = In(p}) Calculate

E! = In(p)) -
y!=In(k?/n?) p'= et orRR=¢

y! =In(k}/n})
oz =1/k?-1/n?
of =1/k}—1/n}

Table 4.3 Poisson Observations from Heterogeneous Controlled Studies, and
Their Large-Sample Normal Approximation

Parameters for Study i

Observations for Study i

Transformation to an Approximate

Normal Random Effects

Generating New

Parameter Values: Do Steps 1

Rates A!, A!

k? events in duration At}
without intervention
k! events in duration At}

with intervention
k" ~ Poisson(A}At])
k: ~ Poisson(A At} )

Model (Tahle 4.1) and 2 in Table 4.1. Then
El=A! St A=FL 1 =1F1
o
(no transformation)
yi= KAt
y! = KUAR
o, = ki/At)?
o2 =kl/At}®
= In{A}) Calculate
) j
El=1n(A})
20 Ein,

yi = In(kY/At)
y! = In(k!/At})
o, = 1/k}
0 =1k

=1
Al=e", or RR =¢f

non-negative. (Note it is not enough that o and
o’ both be nonnegative.) In the case where one or
both of 6%, 6.0 are negative, one must revise these

estimates subjectively.

METHODOLOGY

Table 4.2 and Table 4.3 summarize the correspond-
ing large-sample normal approximations for binomial
and Poisson observations in heterogeneous controlled
studies.
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Example 8: The Effect of Zidovudine Prophylaxis
on HIV Transmission (continuation of Example 4)

In Example 4, we pooled the 7 studies estimating
HIV transmission risk with and without zidovudine
prophylaxis. In fact, if we calculate the test statistic (3)
with the control observations y¥, we obtain Q,= 39.83

with P-value 4.9 x 107". The corresponding statistic Q.
using the treatment effects y; — y? gives Q_ = 38.6 with
P value 8.7 x 107. The null hypothesis of homoge-
neous studies is therefore untenable (and is better not
entertained anyway, as we have argued above).

A random effects analysis using the log transfor-
mation from Table 4.2 may be performed as follows,

Group i yvi=log (k/n%) o, =1/k]—-1/n] yi=log(k;/n}) o, =1/k;—1/n;] yi-y!
1 -1.174 0.0147 -3.086 0.05 -1.913
2 -1.443 0.015 —-2.546 0.058 -1.102
3 -1.153 0.0228 -2.773 0.045 -1.62
4 —0.9808 0.10417 -1.981 0.216 —-0.94
5 -1.344 0.0246 1.8 0.044 —0.457
5 =167 7 0.022 —2.377 0.05 =7

z —-1.6988 0.0008 -2.3199 0.004 -0.621

The matrix estimate (6) of £, yields 6.0=0.267 and
6,=0.541, 6, ;0 =—0.134. The corresponding estimated
conditional variance is 6,7,0=0.040 20, so X, is a legit-

imate covariance matrix. Results from Table 4.1 are
—1.41 1 0.013
y (_1_05) (Z ) (—{LDZE

and we conclude that p = (p°, p*) has approximate
bivariate normal posterior distribution with this mean
and this covariance matrix. The predictive distribu-
tion of & = (£,, €) is normal with the same mean and
covariance matrix

—ELIDZS)
0.053/

0.0847

T+ (Z Q,-)_l - (_u;_[ﬁﬂ

We may compare the implied joint posterior dis-
tribution on p, p, with the implied posterior
obtained by (incorrectly) pooling the 7 studies as we
did in Example 4, and the result is in Figure 5. The
posterior distributions are quite ditferent, which is
consistent with the strong rejection of the hypothe-
sis of homogeneity that we noted above.

The reader may recall (Example 3 and Figure 3)
that the lognormal and logit-normal approximations
for study 6 were less than exact, suggesting the use of
the untransformed option in Table 4.2. Unfortunately,
the resulting bivariate posterior substantially overlaps
p, < 0 and is therefore not logically feasible. Because
the remaining 6 studies all have values of np(1-p)
safely exceeding 10, we felt comfortable in using the
log transform for this analysis.

—0.1571
0.3451)‘
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Example 9: Relative Risk of No
Prenatal Care on HIV Prevalence

Mrus and Tsevat cite studies by Lindsay and col-
leagues® and Donegan and colleagues® on the relative
risk of no prenatal care on HIV infection. We analyze
these studies using Table 4.1 and the log transformation
in Table 4.2. The relevant observations are as follows.

With Prenatal Care Without Prenatal Care

Study i kP n'! ki/nt k3 n; ki—1/n;
1 26 7356 0.0035 12 834 0.0144
2 82 3391 0.0211 11 254 0.0433

With only 2 studies, there is very little informa-
tion on study heterogeneity and we may expect dif-
ficulty in estimating Z,,. Indeed, the estimate (6) is

) 6L G 1.569
E&.” — . . —
.50 [']'2 _D;EEE

not a legitimate covariance matrix, because

—0.585
n.124) ’

2
P, Z ETF'.-E':I
00 =0, — = —0.148 < 0.
g F x
ET'E”

We therefore subjectively revise ;... Based on
the data above, it seems reasonable to follow Mrus
and Tsevat and assign a mean relative risk (RR) in
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Figure 5 Joint log-normal approximate posterior distributions of HIV vertical transmission risk (p,) without intervention and vertical
transmission risk (p,) with zidovudine prophylaxis based on data from 7 studies. In (a), the studies are treated as heterogeneous and not
pooled. In (b) the studies are (incorrectly) pooled. The posterior in (b) is a tight spike centered near (0.2, 0.1) that does not adequately

account for study heterogeneity.

the range 2-4 to the lack of prenatal care. With € =
In(RR), this corresponds to a range of In(4)-In(2) =
0.69 on € and a standard deviation 0.69/3.92=0.177.
The conditional standard deviation o, 0 is likely to
be smaller. Nevertheless, we err on the conservative
side and take 6,0 = 0.177. This gives

and a revised, legitimate estimate

z 1.569
L =
—0.585

Given the data, the approximate posterior distribu-
tion of parameter p = (1,1) is then multivariate normal

—0.585
0.250/

—4.745

with mean vector (
1.055

0.797
¥ =
H —0.305

) and covariance matrix

—0.305

) . The predictive distribution
0.179

of £=(&%¢) has the same mean and covariance matrix

2.365 —0.890

¥ M=
Ll (—u.agu 0.429

). The resulting 95%

METHODOLOGY

prediction interval on £ is 1.055 + (1.96)(0.429)"* =
1.055 + 1.284. This translates to a 95% interval (0.795,
10.364) on RR = ¢, much wider than the Mrus and
Tsevat range 2—4, which does not account for study
heterogeneity.

Combining Heterogeneous Controlled
and Uncontrolled Studies

It may happen that in addition to controlled stud-
ies, there may be studies that have no treatment arm.
The methods from Table 4.1 and Table 4.2 still apply
in this case if they are modified as follows. For stud-
ies ] without treatment arm, in Table 4.2 set the miss-
ing observation y/ to an arbitrary value and omit the
calculation of 6;;. Then in Table 4.1 set

1
2 2 ﬂ
ﬂ" —— I!:'-.‘Illjl_l + Uel]
0 0

(which is the form taken by Q; when o}, is infinitely
large). Then apply the procedures in Table 4.1 and
Table 4.2 as before. The zero entries in €, ensure that
the arbitrary value of y; does not affect the computation
of ¥ given in Table 4.1.
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Figure 6 The decision to offer rapid testing in labor followed by zidovudine prophylaxis, based on Mrus and Tsevat."® Figures adjacent to
nodes are expected cost and quality-adjusted life years ((QALYs)—for instance, Offer Rapid Testing has an expected cost of $1105 and expected
QALY of 52.2 years. In (a), a mother who accepts rapid HIV testing receives zidovudine upon a positive test, unless delivery occurs before treat-
ment can take effect. The probability pPos of a positive test depends on sensitivity, specificity, and HIV prevalence. The subtree (b}, in which
mother and infant HIV status is revealed, follows each of the terminal nodes in (a). Branch probabilities in (b) depend on the path taken in {a).

AN ILLUSTRATIVE PROBABILISTIC
SENSITIVITY ANALYSIS

We now apply these methods to conduct a proba-
bilistic sensitivity analysis for all probability and effi-
cacy parameters in Mrus and Tsevat’s recently
published analysis of zidovudine prophylaxis follow-
ing rapid HIV testing in labor to prevent vertical HIV
transmission in pregnant women.'® Figure 6 shows a
decision tree depicting this problem, and in Table 5
we list all 8 probability and efficacy parameters. In
the examples above, we have already calculated pos-
terior distributions for 6 of these parameters, as the
table indicates. The baseline values and ranges listed
there are the medians and 95% credible intervals
based on these posterior distributions.

The following discussion provides further detail
on our use of these parameters.

Prevalence of HIV infection in pregnant women
withoul prenatal care: Mrus and Tsevat estimate the
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prevalence of HIV infection in pregnant women in
the United States to be p, = 0.0017 according to a
completed survey for the year 1991. They assign a
relative risk (rrHIV) in the range 2-4 to women
without prenatal care. The resulting prevalence of
HIV infection without prenatal care is p = p, rrHIV.
Because the estimate p, is based on a very large sam-
ple, we take the value p,=0.0017 as fixed and include
only the relative risk parameter rrHIV in our proba-
bilistic sensitivity analysis. As we have mentioned,
Mrus and Tsevat cite studies by Lindsay and col-
leagues® and Donegan and colleagues*' on the relative
risk of HIV infection without prenatal care. In Example
9, we used these studies to obtain a posterior on rrHIV
using Table 4.1 and the log transformation in Table 4.2.
Percentage of women delivering before preventa-
tive therapy can take effect: Mrus and Tsevat estimate
the percentage p of women delivering before preven-
tative therapy can take effect as the product p=p,-a of
the percentage p, of women without prenatal care
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Table 5 Probability and Relative Risk Parameters in the Mrus and Tsevat Model. The Baseline Values
Listed Are Posterior Medians Obtained Using Techniques from Table 1 through Table 4

Parameter Description Baseline Value (range)
Py HIV prevalence 0.0017
rrHIV Relative risk of no prenatal care on HIV prevalence 2.872
(Example 9) (0.796-10.368)
pTransNo Vertical transmission risk without intervention 0.244
(Example 8) (0.138-0.431)
rrTransZid Relative reduction in vertical transmission risk of 0.347
zidovudine prophylaxis (Example 8) (0.109-1.096)
pAcc Test and treatment acceptance rate (Example 7) 0.852
(0.572-0.964)
P, Probability of delivery within 4 hours 0.549
(0.467-0.631)
a Percentage of women delivering before preventative 0.5
therapy can take effect (0.25-0.75)
Sens Rapid HIV antibody test Sensitivity (Example 6) 0.998
(0.910-0.99996)
Spec Rapid HIV antibody test Specificity (Example 5) 0.988

(0.981-0.995)

who deliver within 4 h of presentation and the per-
centage a of such women who would deliver before
preventative therapy can take effect.

Mrus and Tsevat take a = 12 based on an estimated
2 h needed to test, treat, and derive benefit from the
drug. Our re-analysis uses a = % as baseline, but for
probabilistic sensitivity analysis, we take a to have a
beta distribution with mean %2 and 95% credible
interval 0.25-0.75, that is, a beta(7,7) distribution.

Regarding p,, Mrus and Tsevat cite Grobman and
Garcia™ as observing k = 306 of n = 557 women (p, =
54.9%, ¢, = 2.1%) without prenatal care delivering
within 4 h of presentation. We take this as a single
study from a heterogeneous population (Table 3.1) and
use the “no transformation” results in Table 3.2. With
only 1 study, we must subjectively estimate o7 where
¢ is in this case the (unobserved) proportion p, esti-
mated by a I‘ElIldDIIlhf chosen study. Ideally the
estimate o; = o; should be informed by some knowl-
edge of how or wh‘.,r p, might vary across studies. In
the absence of such mfnrmatmn here, we take an
approximate 2-standard-deviation range for p, to be
0.10, yielding o, = 0.10/3.92 = 0.0255. Invoking Table
3.1, we obtain an approximate normal posterior on u
with mean p = 0.549 and standard deviation (0.021* +

o, 0?)"* = 0.0331. A future observation p, has approxi-

mate normal distribution with mean 0.549 and stan-
dard deviation (0.0331% + o ]”2 0.0418. This is twice
the standard deviation that would have been obtained
assuming homogeneity.

METHODOLOGY

Incremental QALYs

R o T T |
0 500 1000 1500
Incremental Cost of Rapid HIV Testing

= 550 000/QALY ™ Baseline Cost,QALY

Figure 7 Incremental cost and quality-adjusted life vear (QALY)
results for 10,000 iterations of a prﬂbﬂblflbfﬂl sensitivity analysis on
all probability and rate parameters in Mrus and Tsevat’s analysis
of zidovudine prophylaxis for HIV fransmission in pregnancy.
Baseline expected cost and QALYs are also shown.

Results of Probabilistic Sensitivity Analysis

For illustrative purposes, we re-analyze the version
of Mrus and Tsevat’s model that includes $100,000
additional lifetime costs associated with early HIV
detection and treatment. (Mrus and Tsevat estimated
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a range of $0-$200,000 on this cost and used $0 in
their primary analysis.) In our base case analysis, we
used the medians of the posterior distributions for the
8 probability and efficacy parameters discussed in
this article, along with Mrus and Tsevat’s estimates
for the remaining cost and quality-of-life parameters.
This analysis and the subsequent probabilistic sensi-
tivity analysis was conducted in Microsoft Excel
using the Stotree software written by one of the
authors.**® Using the standard value of $50,000/
QALY, we found a net benefit of $114 per pregnancy
for rapid HIV testing followed by zidovudine prophy-
laxis (C/E ratio of $38,142).

We performed a probabilistic sensitivity analysis
jointly on the 8 probability and efficacy parameters
discussed in this article, leaving the remaining cost
and quality parameters at the levels specified by
Mrus and Tsevat. We note, however, that the uncer-
tainty surrounding the cost and quality parameters
in this model is substantial, and these should also be
included in a probabilistic sensitivity analysis. For
the purposes of this article, however, we confine our
analysis to the probability and efficacy parameters.

Our Monte Carlo simulation takes random draws
for parameters from their posterior distributions and
estimates the probability of decision change and the
expected improvement” in net benefit were the val-
ues of all 8 parameters known prior to the decision
to offer rapid HIV testing.

Based on 10,000 Monte Carlo iterations (see Figure 7),
zidovudine prophylaxis has a 77.3% (s.e. 0.4%) prob-
ability of optimality and the expected improvement
in net benefit on all 8 relative effects and probabilities
equal to $18.20 (Xs, $0.64) per pregnancy. This figure
is not large compared to the baseline expected net
benefit ($114), and we conclude that the optimality of
zidovudine prophylaxis is only somewhat sensitive
to simultaneous variation in the 8 probability and effi-
cacy parameters in the model.

It is of interest to determine which parameters con-
tribute most strongly to the expected improvement
value. As Table 6 shows, the vertical transmission
parameters pTransNo and rrTransZid together make
the largest contribution, with an estimated expected
improvement of $13.02, and no other parameter con-
tributes significantly on an individual basis. (Note that
it is not meaningful to isolate individual expected
improvement values for pTransNo and rrTransZid, as
they are not probabilistically independent variables.)

"As noted by Felli and Hazen,” expected improvement is equal
to expected value of perfect information in many decision prob-
lems. However, here net benefit is a nonlinear function of the prob-
ability and efficacy parameters, so equality does not hold.
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Table 6 Estimated Expected Improvement Values
in Our Mrus and Tsevat Reanalysis for All
Parameters and Parameter Subsets of Size 1 or 2,
Based on 10,000 Monte Carlo Iterations Each

Expected Improvement Given
Foreknowledge (with Estimated

Parameters Standard Error)

$18.20 (0.064)
$13.02 (0.39)

All parameters
pTransNo, rrTransZid

p,. a $0.560 (0.048)
rrHIV $0.123 (0.012)
Sens, Spec $0.004 (0.003)
pAcc $0 (0)

Expected improvement given foreknowledge is equal to the expected
increase in net benefit if the value of parameter in question were revealed
prior to the decision to offer rapid HIV testing, and is approximately equal
to the expected value of perfect information. Only the vertical transmission
parameter combination pThansNo, rrTransZid, with expected improve-
ment of $13.02, contributes significantly to the expected improvement for
all 8 parameters jointly, which was equal to $18.20,

CONCLUSION

We have presented large-sample Bayesian meth-
ods for obtaining approximately normal posterior
distributions for transformations of probability, rate,
and relative-effect parameters given data from either
controlled or uncontrolled studies. These methods
can account for issues that are rarely addressed in
standard probabilistic sensitivity analyses, such as
heterogeneity across studies and correlations between
control and treatment parameters. Analysts can then
generate random variates from these distributions
and reverse transform to obtain probability, rate, or
relative-effect random variates for the purposes of
probabilistic sensitivity analysis. This variate gener-
ation and transformation procedure is simple
enough to be conducted on a spreadsheet, as we
have done. Because these are large-sample approxi-
mations, caution must be exercised in applying
these techniques to studies with small sample sizes,
as we have discussed. The results we present may
also be used for the calculation of expected value of
sample information using Monte Carlo simulation,
much in the manner of Ades and colleagues.

Our results assume that population variances within
each study—the quantities ¢° in Table 1.1; ¢}, o/ in
Table 2.1; o7 in Table 3.1; 0, o Table 4.1—are well
estimated by sample variances, and this is very likely
to be so for large samples. However, as we have pointed
out, when the number of studies is small, there is likely to
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be little or no information on cross-study heterogeneity,
and the estimates of o7 in Table 3.1 and the covariance
matrix X, in Table 4.1 must rely on subjective input. A
fully Bayesian approach would calculate posterior dis-
tributions of these parameters given study data, but
such posteriors do not take on a simple form and may
even be improper when a noninformative prior distrib-
ution is employed."* Because we use point estimates for
these cross-study variances instead of calculating poste-
rior distributions, the predictive distributions from
which we sample during probabilistic sensitivity analy-
sis are too tight to some unknown degree, much in the
same way that a normal distribution based on known
variance is tighter than the corresponding t-distribution
that includes uncertainty about variance. The resulting
probabilistic sensitivity analysis may therefore underes-
timate problem sensitivity. A fully Bayesian approach
to combining heterogeneous studies would require the
specification of a proper prior distribution for cross-
study variance and the use of Markov chain Monte
Carlo techniques to estimate posterior distributions.

APPENDIX A
BIVARIATE NORMAL RANDOM
VARIATE GENERATION

See Tong,” Anderson,* or similar references for mul-
tivariate normal characteristics. When x = (x,.x,) is
bivariate normal with mean (m, m,) and covariance
g T2

. 1
malrix (

0 O

) . generate a bivariate normal vector x
2

using the following steps:

Step 1: Generate x, from a normal distribution with
mean m,and variance o /.

Step 2: Generate x, from a normal distribution with
mean m, + (x, —m,)o,,/o; and variance 6/ —0;,/07,
which is the conditional distribution of x, given x,.

APPENDIX B
NORMAL CONJUGATE POSTERIOR
DISTRIBUTIONS

Lemma 1'*": If a random vector y has a multi-
variate normal distribution yl g ~ normal(u, X), and
i is parameterized as normal(y,, X,), then

i} The posterior on p given y is also normally distrib-
uted: 4ly,, ..., vy, ~normal(p , £ ) where

PR TS v il v v e vy T OB ] e 2
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ii) The marginal distribution of v is normal(y,, £, + X).

Theorem 1'*: Suppose the independence structure of
Figure 2 holds, and moreoverthaty,,...,y.,.$,, ..., &,
and u are univariate parameters with y,I£ ~ nor-
mal(¢, o7), and & | 4 ~ normal(p, :::Ff}.

i) If p has prior distribution normal(p,, o), then
the posterior on p given y, , v, is also normally
distributed: u!l v, ..., v, ~normal(p,, c’).

nt n

ii) If p has noninformative uniform prior distribution

that is, () =<, 1, then nly,, ..., y, ~normal (‘, L) A

H =
ere
V4 Tyl ; 1
'”-” e ZJ J}" ap0 ‘ H: = —, ',[_"“ = 2.&;‘. _I_ Tos
Z,-ﬂ-"s T T [ !
v s ey 1
r:ﬂ]_1":r3—|—1"r31 = S ow W= o
f P j Wi 0

We are unable to find the following result in the lit-
erature and have derived it ourselves. A proof is
available from the authors upon request.

Theorem 2: Suppose the independence structure of
Figure 2 holds, and moreover thaty,,...,v.,&, ..., <&,
and u are d-dimensional parameters with y,| &, ~
normal(&,, £), and & |y ~ normal(y, Zg).

i) If p has prior distribution normal(p, X ), then the
posterior on p given y,, . . ., v, is also normally dis-
tributed: ply,, ..., y, ~normal(p , 2 ).

ii) If pp has noninformative uniform prior distribution, that
is, f(u) o<, 1, then ply,, ..., y, ~ normal (¥, ()Y

Here

= (X 2+57) (X 25+ 5 m).
no(Toen)

Q= (E; 52 Esu)_] ' J_'r — (Z, E12’-)_1 (Z, QFF'.) '

APPENDIX C:
MODELS WITH UNBALANCED DATA

Suppose there are m controlled studies and n-m
studies assessing only baseline risk (no treatment
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groups). The n-m baseline study groups give data
yY, which estimate parameters £, i=1,2, ... n-m. For
these studies, y?1&? are independent and have normal
distributions with mean £? and variance o;7. And &Y, .

., & Ugiven p, are i.i.d. random variables, each is
normal(y,, o;3). In the other m study groups with treat-
ment arms, we have y.= (y/, x)', {,= (&, &)', where x,
=y, - yi, §=¢&; — &/ . Here y;| 5, is normal (S, &),

2 el

il UJ'[F

2 2 z
— T T + T

where X is estimated by Z: = (

érr-mﬂ &s

random vectors,

F
T i e
o0 Oug
E&-u —_ A -
F, g0 {:F;

A Bayesian approach to obtain the posterior for
p = (u’ p*)" would be as follows: Under the assump-
tion of noninformative uniform prior distribution for
p=(p’ p*)', update the distribution for p, (using the
methods developed in Table 3.1 and Table 3.2)
according to the data from the (n-m) groups, which
do not contain studies for treatment. Then use this
distribution for p” and noninformative distribution
for p* as the prior to obtain the posterior distribution
for p = (p” p*)" given the data from the remaining m
control groups and m treatment groups (using the
conclusion in Theorem 2). This approach leads to
the following result. A proof is available from the
authors upon request.

)+ And

.. &, given p=(p’ p*)" are ii.d. (2-dimensional)

each is normal(n, Zéﬂ]* with

Theorem 3: For a random effects model with unbal-
anced data, described above, suppose p = (p°, p)"
has noninformative uniform prior distribution. Then

ply, ...,y ~normal(y, [Z!.QJ]“]], where

(52) (520
=3 9)

1
w; = — Ejzlfz....n-m
O + 00
and
-1
Q2 = (Es + E‘sn)
a4 ok ol +o a
1 =1 = ' £ ED -
= 2’” : 2‘“ 2 : 2 i=n-m+1....n.
—0 + O 0 Fig 23 a + o,
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APPENDIX D
ACCURACY OF LOG AND LOGIT
TRANSFORMS

The results for transformed parameters in Tables 1-4
draw on the following well-known result.

Lemma 2" (Delta-Method): If X is approximately
normal(u,0?), where o, is a sequence of constants
tending to zero, and g is a differentiable function,
then for large n, g(X ) is approximately normal with
mean g(u) and standard deviation o, I g”(u)!.

If X is normal(u,0°) and Y = g(X), then what is the
error in approximating Y by a normal(g(u), g u)?)
random variable Y7 Assuming g is increasing, a
good measure of error is the difference in cumulative
probabilities

Err(f) = P(Y'< glu + to)) — P(Y < glu + to))

— ¢ (g{"‘ il _g””) — (1),
g'(p)o

where ®(-) is the standard normal distribution func-
tion. The following result is based on a Taylor series
approximation to Err(t) around {=0. A proof is avail-
able from the authors upon request.

Lemma 3: If g is an increasing ditferentiable func-
tion, and ¢ is the standard normal density, then

g (1)

Err(t) = 1p(t) ——t*a + all?).
( @ 7 (0) a (%)
and
1 | 7 :
Errn] < > 2m)te [EX o 1 o),
2 2'(t)

The bounds (1) and (2) in the text follow from the
lemma by taking

g(t) = logit(t) Eli) _ oAb

gt -1t
g.l-'{t} 1
g(t) = In(t) o) 1

w=p  o=/tp-p)

For the Poisson case, take

= k/At o = vk/[At.
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