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The stochastic tree is a continuous-time version of a Markov-cycle tree, useful for constructing
and solving medical decision models in which risks of mortality and morbidity may extend
over time. Stochastic trees have advantages over Markov-cycle trees in graphic display and
computational solution. Like the decision tree or Markov-cycle tree, stochastic tree models
of complex medical decision problems can be too large for convenient graphic formulation
and display. This paper introduces the notion of factoring a large stochastic tree into simpler
components, each of which may be easily displayed. It also shows how the rollback solution
procedure for unfactored stochastic trees may be conveniently adapted to solve factored
trees. These concepts are illustrated using published examples from the medical literature.
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A stochastic tree may be regarded as a continuous-
time version of a Markov-cycle tree,’ or alternatively,
as a multi-state DEALE model.? Stochastic trees were
introduced by Hazen .2 They are useful for constructing
and solving medical decision models in which risks
of mortality and morbidity may extend over time, pos-
sessing significant advantages over Markov-cycle trees
in model display and solution. Like decision trees and
Markov-cycle trees, stochastic trees may be rolled back
to determine such quantities as mean lifetime or mean
quality-adjusted duration.

Figure 1, adapted from Hazen® and based on Mat-
char and Pauker,* illustrates the typical ingredients in
a stochastic tree*:

1. Incremental impact states: These are states such
as Well, Post Big Stroke, and Post Small Stroke in figure
1, whose impacts are proportional to their durations.
Each of these states has an associated quality factor,
indicating life years earned for each year spentin the
state. In figure 1, Well has quality factor 1.0, whereas
Post Small Stroke has quality factor 0.80, and Post Big
Stroke has quality factor 0.20. The implication is, for
example, that each year spent in Post Big Stroke is
worth only 0.20 year in state Well.

2.Instantaneous impact states. These are states such
as Stroke, Big Stroke, and Small Stroke in figure 1, which
have short durations (assumed zero for simplicity), but
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whose impacts can be felt through associated tolls.
For example, in figure 1, Big Stroke has a toll of 4
months, meaning that passing through Big Stroke sub-
tracts the equivalent of 4 months from total life years
(due to the poor quality of life during a big stroke).
Similarly, Small Stroke has an associated toll of 1 month
Stroke has no toll.

3. Stochastic transition arrows. These are the wavy
arrows emanating from incremental impact states.
These arrows are labeled with rates, indicating the
average numbers of transitions per unit time along
them. The higher the rate, the more likely it is that the
indicated transition will occur first. For example, in
figure 1, the patient remains in state Well until either

-a stroke occurs or death occurs from another cause.

Stroke occurs at rate g = 0.05 stroke per year,
whereas death occurs at rate P, + Peycess = 0-01106
+ 0.065 = 0.07606 occurrence per year (data from
Matchar and Pauker?).

4. Probabilistic transition arrows. These emanate from
instantaneous impact states, are labeled with proba-
bilities, and are identical in function to arrows from
chance nodes in a decision tree.

5. Repeated states. These are the states whose bor-
ders are dashed instead of solid. Transition to one of
these indicates that the previous state with the same
name is to be revisited. For example, in figure 1, the
patient remains in the state Post Small Stroke until
death occurs or until transition back to the previous
state Stroke occurs. We call stochastic trees with re-
peated states cyclic, and those without repeated states
acyclic. '

When quality factors and transition rates are given,
mean quality-adjusted duration beginning at a partic-
ular state may be calculated from mean quality-ad-
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Ficure 2. Rollback at an incremental impact state.

justed durations beginning at immediately subse-
quent states. The procedure at incremental impact
states is as follows. Suppose that from state y, having
quality factor vly), transition at rate \; may occur to
any one of the subsequent states z;, with associated
toll 8. Figure 2 depicts this situation when there are
three possible subsequent states. Given the mean qual-
ity-adjusted durations L(z;) associated with subse-
quent states z, the corresponding quantity L{y) can
be calculated using the formula

V(y) + Ei(—sl + L(Zi)))\i
I\

Lly) = (1)

(For a derivation, see Hazen?) For instantaneous im-
pact states, the same proba‘bilistic averaging proce-
dure used in decision trees is appropriate. In these
ways, mean quality-adjusted durations may be cal-

FIGURE 3. A stochastic tree, illustrating rollback.
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FIGURE 1. A stochastic tree model of recur-
rent stroke.
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culated for all states in an acyclic stochastic tree, be-
ginning at the terminal states and proceeding recur-
sively backwards to the initial state in the tree. In other
words, acyclic stochastic trees may be rolled back tQ
determine mean quality-adjusted duration.

Mean quality-adjusted durations can be obtamed in
cyclic stochastic trees by repeatedly rolling back th:g

tree until the calculated L(y) values stabilize. This prq—

cedure is known as value iteration, or the method )
successive approximations. Examples ofvalue 1teratloP
are given below and by Hazen.?

Figure 3 illustrates this rollback procedure for an
acyclic stochastic tree taken from Hazen, and based
originally on the cancer/AIDS model of Roach et a15
The italicized quantities attached to each state are t&le
Liy) values in equation 1 computed using p., = 0.0141;?1,
A\, = 00325, \, = 0.10, i, = 0.3081, i, = 0.9979 oc-
currences per year. For example, beginning in the No
Disease state, mean subsequent quality-adjusted dur-
ation is 7475 years, whereas it is only 04857 years
beginning in the AIDS state.

The purpose of this report is to present a procedure,
called stochastic factoring, for the formulation and dis-
play of large stochastic trees. Factored stochastic trefas
are split into components, which we call factors, eaqh
of which is itself a simpler stochastic tree. Formulation
and display of the simpler factor trees is usually
straightforward. Many complex processes may be
thought of as several simpler subprocesses unfolding
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in parallel. Often these parallel subprocesses may be
thought of as factors in a large stochastic tree.
We also show how the rollback procedure for un-

factored stochastic trees may be conveniently adapted -

to solve factored stochastic trees. lustrations are given
using published examples from the medical literature.
Finally, comparison is made with techniques for dis-
playing large Markov-cycle trees, and advantages of

factored stochastic trees in model formulation and

presentation are pointed out.

Factored Displiays of Stochastic Trees

We introduce the notion of factoring stochastic trees
by reconsidering the Cancer/AIDS example of figure 3.
Notice that there are three sources of mortality in this
model: cancer, AIDS, and other sources, with corre-
sponding mortality rates p, ., po. In fact, the model
contains three independent subprocesses, unfolding
in parallel: cancer, AIDS, and background mortality.
These subprocesses may themselves be depicted as
stochastic trees, and we do so in figure 4. Notice that
the state of the overall process is actually determined
by the states of the three subprocesses. For example,
the triple (No Disease, No Disease, Alive) of subprocess
states corresponds in the original tree to the state No
Disease, and the triple (No Disease, AIDS, Alive) cor-
responds to the AIDS state. Moreover, the triple (Can-
cer, Dead, Alive) (or any other triple with one or more
Dead components) corresponds to the state Dead in
the original tree.

The quality factors in the original tree may also be
obtained from the subprocess quality factors if we fol-
low the approach of Roach et al® and postulate that
the overall quality factor is the product of the corre-
sponding subprocess quality factors:

VY1 Y2 Ya) = VilyaVa{yaIvslys)

For example, vi(Cancer + AIDS) = vi(Cancer, AIDS, Alive)
= (0.6)(0.5)(1) = 0.3, as desired; and the quality factor
assigned to any triple with one or more Dead com-
ponents is zero.t

Whenever we can depict a stochastlc tree as a col-
lection of subtrees unfolding in parallel such that the
state in the overall tree can be recovered from the
states of the subtrees, then we say we have factored
the original tree. We call the subtrees factors of the
original tree, and say that the original tree is the prod-
uct of its factors.

There are many cases in which the number of health

tThis method of assigning quality factors to product states is
merely illustrative. In general, any coherent assignment of quality
factors to product states is permissible, so long as product states
with “Dead” components are assigned quality-factor zero. Quality
factors may even be assigned directly to product states, without
attaching quality factors to states in the factors.
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Ficure 4, Factored representation of competing cancer and AIDS
risks. ’

states in a stochastic-process model of medical man-
agement becomes large enough to impede formulation
or display of the model. In fact, the usual -reason is
that a state descriptor is required that indicates the
simultaneous status of several parallel subprocesses.
A case in point is the discrete-time Markov-chain model
used by Hillner et al.? to help analyze the use of post-
menopausal estrogens in the prevention of osteopo-
rosis. Hillner et al. formulate a Markov chain with the
following states (from their table I):

Wwell

Uncomplicated fracture

Postfracture well .

Uncomplicated hysterectomy
Posthysterectomy well

Endometrial cancer

Disabled

Nursing home

Posthysterectomy and uncomplicated fracture
Posthysterectomy and postfracture
Uncomplicated hysterectomy and postfracture
Disabled and endometrial cancer

Disabled and uncomplicated hysterectomy
Disabled and posthysterectomy ]
Disabled and new uncomplicated fracture
Endometrial cancer and uncomplicated fracture
Endometrial cancer and postfracture

Dead

These authors do not graphically portray the process.
However, it may be seen that this 18-state formulation
is really an attempt to desribe the simultaneous un-
folding of three parallel subprocesses fracture and its
consequences; endometrial cancer and hysterectomy;
and death due to natural causes. We supply a sto-
chastic-tree description of these subprocesses in fig-
ure 5, based on our interpretation of Hillner et él.'s
formulation.
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Ficure 5. Factored stochastic tree representation of the use of pbst-
menopausal estrogens in prevention of osteoporosis.

Notice that the Fracture factor is a cyclic stochastic
tree: from the state Fracture, one may return to the
previous state Well, as is indicated by the repeated
state. Also, from Another Fracture one may revisit Dis-
abled, or transit to the previous state Nursing Home.
(The reason for the state Another Fracture is not to
allow repeated fractures, which is possible already by
cycling from Fracture to Well and back again to Frac-
ture, but to allow fractures while preventing return to
the Well state once Disabled has been visited.)

We have not specified the values of probabilities and
transition rates in figure 5. Suffice it to note that post-
menopausal estrogen decreases fracture rates and in-
creases the rate of endometrial cancer and hysterec-
tomy. The state of the product process is a triple
(x,y,z) indicating the individual states x,y,z of the three
factor processes. Any triple having “Dead” as one of
its components is assumed to have quality factor 0.
Thus, although there are 6 X 5 X 2 = 60 product
states, only 5 X 5 X 1 = 20 of them have nonzero
quality factor. The model is therefore comparable in
size to the original Hillner et al. Markov chain. For
computational purposes, further reduction in the
number of states can be accomplished, as we shall see
below. :

Factoring stochastic trees in this manner has clear
advantages for model presentation. Its advantages for
model formulation are more subtle but nevertheless
real. Considering one factor at a time reduces com-
plexity, and thereby reduces the chance of modeling
errors. In figure 5, one may, for example, focus exclu-
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sively on the modeling of fracture and its conse-
quences, without immediately having to worry about
how to incorporate Cancer/Hysterectomy transitions,

“which are irrelevant to fracture status. Similarly, one

may formulate the Cancer/Hysterectomy factor with-
out paying attention to Fracture transitions.

Sometimes, however, there are cross-factor depen-
dencies that must be accounted for. For example, none
of the original Hillner et al. states given above allows
for the possibility of either hysterectomy or endo-
metrial cancer while in a nursing home. This can be
modeled in figure 5 by letting the rates A\, and A, in
the Cancer/Hysterectomy factor depend on the state
of the Fracture factor. The rates A A, would be zero
when the Fracture state was Nursing Home, but other-
wise would take on their usual values.

A model that requires more complex cross-factor
dependencies is given in figure 6, which is based on
the embolism/hemorrhage model of warfarin efficacy
for dilated cardiomyopathy constructed by Tsevat
et al” The anticoagulant drug warfarin reduces the
rates of systemic and pulmonary embolism, but in-

" creases the rate of systemic hemorrhage. Does the

benefit of reducing the embolism rate offset the in-
creased rate of hemorrhage? Quality-adjusted lifetime
calculations based on figure 6 can be used to address
this question.

The model contains a number of cross-factor de-
pendencies. For example, the rate A, of systemic em-
bolism depends on whether anticoagulant status (AS)
is Warfarin or not. The rates A,, of pulmonary em-
bolism and M\, of systemic hemorrhage also depend
on anticoagulant stutus. Another cross-factor depen-
dency concerns warfarin administration strategy. If
the patient is not taking warfarin and an embolism
occurs, the strategy is to immediately place the patient
on warfarin. This is indicated in the systemic embo-
lism factor by the reference mark (+) at the head of
the arrow leading to embolism. A reference mark such
as (+), or some other parenthesized character at the
head of a transition arrow, indicates that this transi-
tion may cause another transition in some otherfactor.
The transitions caused are indicated by the presence
of the same character at the tails of transition arrows
somewhere else in the diagram. In this case, there is
a (+) at the tail of the arrow leading from "No War-
farin” to “Warfarin” in the anticoagulant status factor.
(The arrow is dashed because the transition cannot
otherwise occur.) Therefore, the transition from No
Warfarin to Warfarin occurs as soon as the systemic
embolism factor enters the Embolism state. As can be
seen, the same transition would also be forced when-
ever the pulmonary embolism factor enters the Em-
bolism state. On the other hand, a systemic hemor-
rhage while taking warfarin causes temporary
discontinuance of the drug, as indicated by the ref-
erence mark (—).
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Relling Back Factored Stochastic Trees the rollback algorithm in come convenient program-

o ming language. The purpose of this section is to show
how the rollback solution procedure for unfactored
stochastic trees can be conveniently adapted to solve
factored stochastic trees. We also suggest a state-elim-
ination strategy to speed up the rollback procedure.

As the previous section illustrates, stochastic trees
that are complex enough to require a factored display
will usually have so many states that the graphic roll-
back procedure mentioned above becomes unwieldy
to execute by hand: For example, the five-factor em-
bolism/hemorrage model just discussed has 1 X 5 X
3 X 5 X 3 = 225 nonfatal product states. For such . .
large models, one would typically encode and execute First, the state-elimination strategy: It is often pos-

STATE ELIMINATION
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Ficure 7. The results of state elimination in the embolism/hem-
orrhage model.

sible to eliminate instantaneous states from each fac-
tor of a stochastic tree using the decomposition rule
given by Hazen? In graphic form the rule is

1 A "
/\/\/\}' 1
. . i (2)
Y s~ \AM}' 2
). ! \/\A}' Hg

which has the following meaning. Suppose instanta-
neous state z can be entered from state y at rate A,
and from z one transits to subtree H; with probability
p:- Then z may be eliminated and transitions made
from y directly to subtree H; at rate Ap;. The rule holds
even if there are other possible transitions out of y.
Using rule 2 and standard methods for combining
chance nodes, one can eliminate from a stochastic tree
all instantaneous states except initial ones not pre-
ceded by any stochastic transitions. The result would
be a stochastic tree of the form

H,
H;
3 HS
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where z is an initial instantaneous state and the sub-
trees H, contain no instantaneous states. The mean
quality-adjusted duration L(H) associated with H is
then 3,q;L(H,}, so L(H) is determined once the subtrees
H; are rolled back to obtain L(Hj).

The motivation for state elimination is that the value-
iteration procedure requires work proportional to the
number of nonfatal product states. State elimination
can therefore significantly speed rollback. Figure 7 il-
lustrates. how state elimination may be done in three
of the five factors of the embolism/hemorrhage model.
Consider, for example, the two instantaneous states
Embolism and Survive in the Systemic Embolism fac-
tor of figure 6. Considering only the portion

] -

NQ A s e Enbo- .23
embo—| ~4, |lism
lism

Sur-

)|vive [ -1

No
Iii—d embo—|

(ism

of the Systemic Embolism factor, one may first com-
bine the two chance nodes by multiplying probabili-
ties in the standard way to obtain

.53
.30

M Long-

term
No |1 Embo—| L:-70) (. 23) (—1 yr morbi~
enbo—| ~7, | Lisn Y| dity

lism

[N |
70y (.77 (Hyr)lembo—l
L lism J

making sure to transfer the — 1/24-year toll to the sub-
sequent states. Next one may apply the decomposition
rule 2 to eliminate the Embolism state, and figure 7B
results. Notice that the triggering symbol (+) is in-
herited by each stochastic arrow created.

The remaining state eliminations are performed in
the same fashion. After state elimination, there are only
1 X 2 X1 X 2 X 3 = 12 nonfatal product states,
compared with the initial 225 product states of figure
5, quite a dramatic reduction.

ROLLBACK

Next we turn to the value-iteration procedure for
rollback. The procedure has a relatively intuitive inter-
pretation in the factored tree setting. Assume that all
chance nodes have been eliminated as just described,
and suppose that for product state y, A;;(y) is the tran-
sition rate from state y associated with the jth tran-
sition in the ith factor. Moreover, let ¢,;(y) be the new
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product state to which this transition leads, and let
3;;(y) be the toll, if any, associated with this transition.

For example, in the embolism/hemorrhage model of .

figures 6 and 7, number the factors in order from i =
0toi = 4, and abbreviate the names of the factor levels
(“No embolism,” “Long-term morbidity,” and so on)
using the initial letters (N, L, and so on, respectively)},
Consider the product state

y = ANNNN

which abbreviates (Alive, No embolism, No embolism,
No hemorrhage, No warfarin). Then

Mot (ANNNN) = g + p.

and
A (ANNNN) = \.(0.30) = (0.04)(0.30)
Ao (ANNNN) = A..(0.70)(0.23) = (0.04)(0.70)(0.23)
A13(ANNNN) = A,(0.70)(0.77) = (0.04)(0.70)(0.77)

and so on for the other factors. Moreover,

For each factor i:

I
. LMY
Wiy <SS

- For each product state y:
For each factor i:

Lin (y ) <«

Initialize: For each product state y:
L,{y) < 0 (Set initial quality-adjusted durations to zero)
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¢o,(ANNNN) = DNNNN (fatal)
and
- ¢,,(ANNNN) = ADNNN (fatal)

©:2(ANNNN) = ALNNW
®15(ANNNN) = ANNNW

I

Notice that transitions 2 and 3 in factor 1 result in the
change N — W “No warfarin” to “Warfarin" in factor
4. The tolls associated with these transitions are

80, (ANNNN) = 0
and
3,,(ANNNN) = 0
3., (ANNNN) = 1224 yr
5, (ANNNN) = 1/24 yr

Using this notation, value iteration for factored sto-
chastic-tree rollback can be formulated as follows:

-(3)

Repeat for n = 1,2,3,... until the values L,(y) stabilize:

Wl(ij(y) + 2))‘11(}')(—811(}') + Ln_l(‘Pij(y)) (4)

Laly) < Sw(y)Lny)

This algorithm is a straightforward extension of our
original value-iteration algorithm. Notice in formula 3
that w,(y) is the proportion of total transition rate out
of product state y that occurs in factor i. The assign-
ment 4 is just our original rollback formula 1 {with
w;(yvly) replacing viy)) performed within factor i. One
such calculation is done for each factor, and the re-
sults are weighted using the w;(y) to obtain the quality-
adjusted duration L (y) associated with y. This cal-
culation is done for each product state y. The whole
process is then repeated until convergence occurs.

ZAly)

We performed value iteration on the embolism/hem-
orrhage model of figures 6 and 7. For the background
mortality rate p,, we used the value 0.07685/year, ap-
proximately correct for a 75-year-bld white male. We
had to estimate the excess mortality .. due to car-
diomyopathy, since Tsevat et al. did not specify the
value they used. We found that p, = 0.20/year gave
quality-adjusted durations very similar to the values
given by Tsevat et al. Moreover, to be consistent with

‘Tsevat et al, the quality factor viy) assigned to any

product state y must be the minimum of the quality
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Tabie 1 o Value Iteration for the Embolism/Hemorrhage Model of
Figures 6 and 7

ALNLW
ALNLT

1.471 1.525 1.701 1.722 1.726
0.040 1.468 1.687 1.717 1.722

Cycle 7
State 0 1 2 4 6 10

ANNNN 0 2,720 3.170 3.234 3.243 3.245
ANNNW 0 2.946 3.048 3.391 3.430 3.435
ANNNT 0 0.081 2.940 3.363 3.421 3.429
ANNLN 0 1.357 1.594 1.629 1.634 1.635
ANNLW 0 1.471 1.525 1.701 1.722 1.725
ANNLT 0 0.040 1.468 1.687 1.717 1.722
ALNNN 0 1.439 1.690 1.727 1.732 1.733
ALNNW 0 1.560 1.616 1.803 1.825 1.828
ALNNT 0 0.043 1.556 1.788 1.820 1.825
ALNLN 0 1.357 1.594 1.629 1.634 1.635

0

0

factors vy(y;) associated with component states y;,.

The numerical results of value iteration are pre-
sented in table 1. Convergence to three decimal places
was achieved after ten cycles. The resulting values are
mean quality-adjusted durations beginning in the in-
dicated product state. The two values of interest are
the 3.245 years associated with the initial no-warfarin
state ANNNN (alive, no embolism or. hemorrhage, no
warfarin) and the 3.435 years associated with the initial
warfarin state ANNNW (alive, no embolism or hemor-
rhage, warfarin). The difference 3435 — 3.245 = 0.190
years = 69 days is the mean quality-adjusted benefit
of warfarin.

Because the value-iteration process converges but
does not terminate, the quality-adjusted durations at
cycle 10 are only approximately correct. However, one
can develop bounds on the maximum possible error
after each cycle. We discuss this in the appendix. The
cycle-10 values in table 1 are accurate to within 1.729
X 1074

ROLLBACK USING AN ERLANG MORTALITY FACTOR

All the stochastic trees described above used tran-
sition rates that were stationary, so, for example, age-
dependent mortality rates were not allowed. Using
constant instead of the more accurate age-dependent
rates can significantly affect quality-adjusted lifetime
calculations. When accurate age-dependent mortality
approximations are desired in a factored stochastic
tree model, it is quite natural to use the Erlang mor-
tality model introduced by Hazen® as a background
mortality factor. We illustrate this procedure using the
embolism/hemorrhage model of figures 6 and 7. The
background mortality factor has mortality rate p, +
1., where p, is mortality rate due to cardiomyopathy
and p, is mortality rate due to other causes. We wish
to make the latter age-dependent. To this end, we split
off cardiomyopathy mortality into a sixth factor of its
own, and replace the background mortality factor by
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an Erlang factor with the appropriate rates and num-
ber of stages. Figure 8 depicts the result.
To compare with the data of Tsevat et al.,” we wish

“to calculate mean quality-adjusted durations for 35-,

55-, and 75-year-old white males. From Hazen,® we see
that background mortality would require n = 7, n =
3, and n = 1 stages, respectively, with corresponding
stage transition rates p, = 0.16985, p, = 0.1300, and

" Mk, = 0.07685. Mean quality-adjusted durations were

calculated by value iteration, and the results are shown
in table 2. There, “Warfarin” indicates the policy of
starting a patient on warfarin treatment and tempo-
rarily discontinuing if there is a hemorrhage. Similarly,
“No Warfarin” indicates a policy of starting with no
warfarin, but beginning warfarin therapy if there is an
embolism. The quality factor q associated with war-
farin use was taken to be 1.0 (no decrement in quality
of life due to warfarin use).

Also shown in table 2 are quality-adjusted durations
when only one type of embolism, either systemic or
pulmonary, is allowed. These latter calculations are
easily performed by simply omitting the other em-
bolism factor (or equivalently, setting all its rates to
zero). The same calculations were performed by Tsevat
et al.” and the results were qualitatively similar.

The number of nonfatal product states for the 35-

(a) Background mortality

Alive Alive
el e M L

vv@v

(f) Cardiomyopathy mortality

[ o]

FiGURE 8. Revised mortality factors for the embolism/hemdrrhage
model.

Tablle 2 o Quality-adjusted Durations for the
Embolism/Hemorrhage Model

No Net Gain
Warfarin Warfarin.  Warfarin
(Years) (Years) (Days)
Age 35 years
Combined 4.654 4.330 118
Systemic embolism only 4.739 4.641 36
Pulmonary embolism only 4,714 4.569 53
Age 55 years
Combined 4.417 4130 105
Systemic embolism only 4.490 4.405 31
Pulmonary embolism only 4.469 4342 46
Age 75 years
Combined 3.435 3.245 69
Systematic embolism only 3.482 3.427 20
Pulmonary embolism only 3.469 3.386 30
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Ficure 9. Markov-cycle tree model of em-
bolism/hemorrhage.
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year-old calculationswas 7 X 2 X 1 X 2 X 3 X 1 =
84, and value iteration required 15 cycles to terminate.
For the 55-year-old calculations, there were 3 X 2 X
1 X 2 X 3 X 1 = 36 product states and 12 cycles
were required. The 75-year-old calculations involved
only 12 product states and ten cycles, and were iden-
tical to those presented in table 1. -

Gomparison with Markov-cycle Trees

How does the factored stochastic-tree approach
compare with previous techniques that have been used
to display large Markov-cycle trees? The comparison
is difficult to make because there are no systematized
display procedures for large Markov-cycle trees. It may
be instructive to compare the original cycle tree dia-

gram for the embolismvhemorrhage model of Tsevat

et al.” with its staochastic tree representation in figure
6. Tsevat's Markov-cycle tree diagram is reproduced
in figure 9. Its interpretation is as follows. First, the

]

drug strategy (Warfarin versus No Warfarin) is decided.

" Then, beginning in one of the “OK” states, the patient

transits successively through parts (b), (c), {(d) of the
tree, afterwards returning to part (a) of the diagram to
repeat the cycle (which is one month long). The factor
structure for this model can be clearly seen in figure
9: part (b) includes what we have called the back-
ground mortality factor and the systemic embolism
factor; part (c) is the pulmonary embolism factor; part
(d) is the systemic hemorrhage factor.

Like the factored stochastic-tree display, the graphic
feasibility of this cycle-tree diagram hinges on the fact
that the same event possibilities occur in parts (b), (c),
(d) regardless of the paths taken through the preceding
parts. Unlike the stochastic-tree display, all transition
probabilities, quality factors, tolls, and triggers have
been left out of the cycle tree, resulting in a less clut-
tered appearance. However, should it be desired, the
same omissions would also reduce clutter in a sto-
chastic-tree display (e.g. figure 5).

There are structural elements of the stochastic-tree
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model that apparently cannot be represented in the
cycle-tree diagram. For example, the cycle tree does
not specify which of the branches in (a) should follow
particular transition paths in (b), (c), (d). If there is an
embolism event with long-term morbidity in (b), but
no pulmonary embolism in (c) and no bleeding in (d),
then presumably transition is made to “Long-term
morbidity post systemic embolism,” although the dia-
gram by itself does not indicate. But what should hap-
pen if both systemic and pulmonary embolism occur
in {b), (¢)? ‘

These specific comparisons may not be fair, because
there might well be other better methods of depicting
factor structure in Markov-cycle trees. The point, how-
ever, is that there is currently no standard method
available. Although it might be possible to adapt some
of the conventions for displaying factored stochastic
trees, the relatively more cumbersome graphic nature
of the Markov-cycle tree compared with the stochastic
tree® would, in my opinion, be an obstacle to such an
effort.

Conclusion

This paper has introduced the notion of stochastic
factoring, a graphic technique for the formulation and
display of large stochastic trees. It has also illustrated
how the stochastic-tree solution method of value it-
eration may be conveniently carried out in the factored
setting. The factored stochastic tree is a complete but
parsimonious tool for specifying the probabilistic
structure of a stochastic medical decision model. By
allowing model assumptions to be presented graph-
ically, the factored stochastic tree facilitates both the
comprehension and the critiquing of a proposed model
by others in the medical community. It is also of sub-
stantial benefit in formulating a stochastic model, be-
cause it allows the analyst to focus formulation effort

on one factor of the model at a time, without needing

to attend to other irrelevant aspects. In other words,
factors are modular, in the sense that tolls and rate
parameters may be altered in a given factor, or the
entire factor may be replaced by one with different
structure, with little or no change in the remaining
factors of the model. This is the same reason the sub-
tree display is used in Markov-cycle-tree diagrams.
The factored stochastic-tree approach therefore con-
fers on stochastic-tree modeling the same benefits as
subtrees do for Markov-cycle trees, but in addition
inherits the previously known advantages of stochas-
tic-tree models over Markov-cycle trees.
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APPENDIX

Error Bounds

It is desirable to obtain error bounds on the deviations
|L,ly) — L{y)| between the calculated guality-adjusted dur-
ations L, (y) and the true values L{y) to which they converge.
Bounds on this error may be calculated using the following

result.

Theorem 1: For each factori and product state y, let

Jy) = [j]¢;;ly) is nonfatal]

that is, J,(y) is the set of nonfatal transitions from state y in
factor i. Let L(y) be the true quality-adjusted duration as-
sociated with state y, and suppose w;y) and L,(y) are cal-
culated according to equations 3 and 4 above. Let B,(y) be
an upper bound on |L{y)|. If forn = 1,23, ...

Ejeji(yl)\ij(y)Bn ~1(@y;ly)
2Ny

Bi,ly) = (5)

Bly) = 3.w;ily)B;(y) ‘ (6)
then
|L.(y) — Liy)| = B,(y)
for all n and y. Moreover, if
ZiZjehily) > 0

(that is, there is some mortality risk from each state y) then
B,(y) converges to zero as n —> <,

Calculations 5 and 6 can be performed along with the
value iteration algorithm given above, and the quantity max,
B,(y) may be used as a termination criterion. This is in fact
what was done for the calculations of table 1. The initial
upper bound B,{y) on |L{y)| was taken to be (., + p)"! =
3.612, the mean quality-adjusted lifetime achievable by stay-
ing well until death from either cardiomyopathy or back-
ground causes. The termination criterion was that maxi-
mum error not exceed 0.0005 (accuracy. to three decimal
places}. Termination occurred at n = 10 with max, B,ly) =
1.729 X 1074,



