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Abstract

Suppose you must choose between two pieces of information A and B. In the absence of cost, you would
prefer to obtain A rather than B, and in fact would be willing to take more risk to obtain A than B.
Nevertheless, you would pay more money for B than for A. Are your preferences consistent with
expected utility? The answer is yes; they may very well be. We give an example to illustrate how this may
happen, and relate this reversal phenomenon to the well-known discrepancy between buying and selling
prices for lotteries. Along the way, we demonstrate that even though selling an information source is
strictly analogous to selling a lottery, buying an information source is not strictly analogous to buying a
lottery. However, for any collection of lotteries there is a decision problem with corresponding
information sources, each source having both buying price and selling price equal to the buying and
selling prices of the corresponding lottery. The existence of preference reversals for mode of informa-
tion acquisition dispels any notion that the relative value of competing information acquisitions should
not depend on the nature of the acquisition. Among expected utility maximizers, only those with
constant risk attitude avoid these reversals.
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1. Introduction

Suppose you must choose between acquiring information about A and acquiring
information about B. In the absence of cost, you would prefer to learn about A
rather than B, and in fact would be willing to take more risk to learn about A.
Nevertheless, you would pay more money to learn about B than A. Are your
preferences consistent with expected utility? The answer is yes; they may very well
be. A closely related question involves certainty equivalents (cash equivalents,
selling prices) and buying prices for lotteries. As is well known, buying and selling
prices need not coincide unless the risk attitude is constant. However, consider an
expected utility maximizer who would pay more for lottery X than lottery Y. Might
she demand a higher selling price for Y if she owned it than she would for X if she
owned it? Once again the answer is yes.
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In what follows, we give examples to illustrate how these reversals may happen.
We also show that among expected utility maximizers, only those with constant risk
attitude avoid these phenomena, either for lottery payoffs or for information.
While the discrepancies between buying and selling prices of lotteries are well
known, the question of whether preference reversals are possible and which utility
functions allow them seems not to have been treated adequately in the literature.
Bell (1988) establishes the type of utility functions that allow only one preference
reversal over the entire range of wealth levels for the case of lotteries, without
reference to buying or selling. Our emphasis here is on buying and selling
information which involves changes in decision strategy as well.

In Section 2 we begin by briefly reviewing the literature on information value,
and discussing measures of information value. Our approach involves reducing
questions about valuing information to the analogous questions about valuing
payoff lotteries, and this approach is presented in Section 3, where we present our
main results. As the reader will see, even though selling an information source is
strictly analogous to selling a lottery, buying an information source is not strictly
analogous to buying a lottery. In Section 4 we provide some concluding remarks.

2. Information value
Background

Early work in the area of information value as it pertains to decision analysis is
attributable to Howard (1966, 1967) and Matheson (1968). Their consideration of
the value of clairvoyance led to the concept of perfect information and a methodol-
ogy for calculating the expected value of perfect information. General discussions
of information value may be found in Raiffa (1968), Gould (1974), and Howard
(1988). Rothkopf (1971) advocates EVPI as a measure of venture risk. Hazen and
Felli (1997) propose information value on input parameters as the proper way to
measure problem sensitivity. In recently developed normative expert systems (e.g.,
Heckerman 1991), information value is used to determine what question to ask the
user next.

Information value is notorious for its lack of convenient mathematical proper-
ties. For example, it is well known that information value is not additive across
sources (see Howard (1988) for a discussion). LaValle (1968), Gould (1974), and
Hilton (1981) show the lack of any general relationship between information value
and the level of wealth, the degree of absolute or relative risk aversion, or the
Rothschild-Stiglitz degree of uncertainty in the prior. Miller (1975) examines
situations where it is possible to obtain information sequentially throughout the
decision process and determines that the value of any particular piece of informa-
tion is a function of the prices of all other obtainable pieces of information. In a
production model with uncertain demand, Merkhofer (1977) shows that the value a
decision maker places on a given piece of information depends on the flexibility of
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his decisions. In the non-expected utility framework, it is well known that nonlin-
earity in probability can give to rise to negative value of information (e.g., Wakker
1988). More details about information evaluation under non-additive expected
utility theory can be found in LaValle and Xu (1990).

Measures of information value

Suppose a decision maker will receive uncertain payoff 7/, when choosing action a,
and V, depends directly or indirectly on an uncertainty X. We assume that the
decision maker acts to maximize expected utility under some utility function u
defined, continuous, and increasing over payoffs. Let a* be an optimal action in

the absence of further information, the event which we denoted [,. Letting 1/ be
the overall payoff, we have

E[u(V) 1] = maxE[u(V,)] = E[u(V,.)].

Let I, denote the event that the value of the uncertain quantity X will be
available prior to choosing, and let a*(x) be an action maximizing E[u(V,)| X = x].
Then

E[u(V)|I,] = EX[maaxE[u(Va) | X]] = Ex|E[u(Vyox)) | X]]

= E[u(Vicx)] -
The standard approach to quantifying information value is to ask what the decision
maker would give up to acquire the information. The buying price BPI is defined

as the maximum payoff the decision maker would forgo to learn X before
choosing. It satisfies:

E[u(V - BPIy) | Iy] = E[u(V) | L.

If we let CE[V | I,] = u"'"(E[u(V)| 1] be the certainty equivalent of V given I,
then we may write the last equality as

CE[(V — BPIy)|Iy] = CE[V | L.

The utility increase EUI, is defined as the increase in utility obtained by being able
to observe X before choosing:

EULy = E[u(V) | Iy] — E[u(V) | L].
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EUI is more mathematically tractable than BPI, and has therefore seen some use
in theoretical contexts (e.g., Bernardo and Smith 1994). A related measure of
information value is the certainty equivalent increase CEI, defined as

CEI, = CE[V |Iy] — CE[V | L.

Another measure is the selling price of an information. The selling price of I,
denoted by SPI, is the minimum price a seller who already possesses I, (but has
not used it) would ask for giving up I, and it satisfies

E[u(V)| 1] = E[u(V + SPI) | L.

Yet another measure of information value is the Probability Price which is the
maximum probability of a large, designated loss that the decision maker is willing
to bear in order to acquire the information. To define it formally, suppose there is
a payoff v, which bounds below the payoff variables V/, in the decision problem at
hand. Imagine that in exchange for I, the decision maker can take on some
chance p of obtaining v, instead of V. The probability price of I, denoted by
PPI,, is the probability that satisfies

PPIyu(vy) + (1 — PPL)E[u(V) | Iy] = E[u(V) | L].

Now let us consider the question of how different measures rank order different
information sources. For any I, the three measures, namely, EUI,,CEIl, and
SPI, are readily seen to be increasing transformations of one another. Coming to
PPI,, we can rewrite its defining equation as

PPI, EUI,
1— PP, E[u(V)IL)] — u(v,)

revealing that it is also an increasing transformation of EUI, and therefore of
CEI, and SPI,. Thus all four measures will always rank different information
sources in the same order.

Let us say that two measures of information value are ordinally equivalent if they
rank information sources identically. We then have the following formal assertion.

Proposition 1. CEI, EUI, SPI and PPI are ordinally equivalent measures of informa-
tion value, that is, for any two uncertainties X and W,

CEl, > CEl,, < EUI, > EUI,, < SPI, > SPI,, < PPI, > PPI,,.

In what follows we will use any one or another of these four measures for
comparison with the fifth measure, BPI. The reason we keep track of all four
measures is that each one has its own advantage. CEI is relevant for the delta
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property discussed below, EUI is tractable, SPI has a practical significance, and
PPI has the flavor of buying the information.

When two measures of information value are not ordinally equivalent, there will
exist reversals, pairs X, W of uncertainties such that the information value of X is
higher than that of W according to one measure but lower according to the other.
The primary question we address in this paper is whether the measure BPI is
ordinally equivalent to SPI (and therefore to CEI, EUI and PPI), or in other
words, whether there exist what we term BP-SP reversals for information.

The more specific question of whether CEI and BPI are equal (not merely
ordinally equivalent) can be addressed by invoking familiar results on buying and
selling prices. If the utility function u has constant risk attitude (i.e., u, is linear or
exponential), then certainty equivalents obey the delta property (Howard, 1967).

CE[V + Al =CE[V] + A.

Invoking the delta property on the defining equation for BPI yields BPI,, = CEI.
This is an extension of the familiar result for lotteries that certainty equivalent and
buying price are equal if (and only if) utility is linear or exponential (Raiffa, 1968;
Howard, 1970).

At first glance it may appear that there is no oddity if SP/ and BPI are not
ordinally equivalent. But if they are not, then PPl and BPI will also not be
ordinally equivalent. This implies that one might rationally reverse the preference
for information depending upon how one pays for the information, paying money
or accepting risk. Accepting risk to acquire information is not as rare as one might
think. For example, medical patients accept the mortality risks of exploratory
surgery and the cancer hazard of X-ray examination, and police detectives interro-
gate dangerous criminals to pursue investigative leads.

In view of the above it is tempting to hope that SPI and BPI are ordinally
equivalent. In the next section we show that in fact this equivalence fails in
general; that is, BP-SP reversals can happen for information sources. Such rever-
sals are basically the analogies to BP-SP reversals for simple payoff lotteries.

3. Valuing Information and valuing payoff lotteries
Examples of reversals

We first illustrate a BP-SP reversal for payoff lotteries. Suppose the utility
function u is given by u(w) = w'/? for nonnegative w. Let the initial wealth L be
$100 and the payoff of the lotteries Y, and Y, be as shown in Figure 1. Because
Elu(L + YDl =15 and E[u(L + Y,)] = 15.11, the decision maker will prefer
receiving Y, as gift. Since E[u(L + Y,)] = 15 = u($225), it follows that the cer-
tainty equivalent of L + Y, is $225, an increase of $125 over the initial wealth
$100. Similarly, the certainty equivalent of L + Y, is $228.31, and increase of
$128.31 over initial wealth.
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2_ 50 2 _ $15

Figure 1. Payoff lotteries Y, Y, exhibiting BP-SP reversal with wealth = $100 under square-root utility.

The buying price b, for Y, satisfies the equation
E[u(L +Y;—b,)] =u(L).

Calculation shows that b, = $93.75 and b, = $83.79, in contrast to the respective
certainty equivalent, increases $125 and $128.31. These respective quantities would
be equal if risk attitude were constant.

An analogous reversal can be generated for information acquisition by appropri-
ately embedding Y, and Y, into a decision problem. Consider the decision problem
in Figure 2. In this problem, the decision maker must choose to play game 1 or
game 2 or not to play. If game i is chosen, then the decision maker must guess the
value of a discrete uncertainty X;. A correct guess increases wealth by Y;, whereas
an incorrect guess yields a penalty k.

Take k = $75 and let X, X, be independent ternary lotteries with P(X, = x) =
P(X, = x) = 1/3 for each possible x. Extend the utility function u(w) = w'/* to
w < 0 in any way that leaves u increasing. Then with wealth = L = $100 as above,
Don’t Play is optimal in the absence of information about X; or X,. It is not
difficult to show that the certainty equivalent increases and buying prices for
information about the independent uncertainties X, and X, are identical to the

N0 y_pay,
Play 1 Guess x;
X, # x, Vel _k
N=% yoL+y,
[g Play 2 Guessx2
X, #x VeI —k

Don'tPlay ,_;

.

/N

Figure 2. Embedding the payoff lotteries Y;,Y, into a decision problem so that buying and selling prices
for Y; are identical to buying and selling prices for the information source X;.
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corresponding quantities for the payoff lotteries Y; and Y, above, that is,

CEly = $125  CEIy, = $128.31
BPILy, = $93.75 BPIy = $83.79.

We have therefore exhibited a BP-CE and therefore a BP-SP reversal for
information sources.

Payoff lotteries induced by information acquisition choices

There is, of course, an intimate relationship between the operators CE and BP
over random variables and operators CEI and BPI over information sources. For
certainty equivalents, the relationship is the obvious one: CEI, is the amount an
owner of V. .y, would demand to give it up in exchange for V., that is, CEIy is
the difference between the certainty equivalents of V., and V.. In detail,
because E[u(V)|I,] = E[u(Va*(X))], we have

CEly =u Y (E[u(V) | Iy]) —u "(E[u(V) | L))
= ”_1(E[”(Va*(x>)]) —u (E[u(V,-)])
= CE[Va*(X)] - CE[Va*]

where CE[Z] = u"'(E[u(Z)] denotes the certainty equivalent of a lottery Z.
Because of this relationship, properties of certainty equivalents and selling prices
extend naturally from lotteries to information sources.

One might naively expect that the buying price for I, is the price an owner of
the lottery V,. would pay to exchange it for the lottery V. y,. However, in general
this statement is false, and one cannot invoke this kind of reasoning to extend
properties of buying prices from lotteries to information sources. To see why, let
BP[Z | Wealth = L] be the buying price of the lottery Z given (possibly uncertain)
wealth L. If BP[Z | Wealth = L] = b, then b satisfies the equation

E[u(L +Z — b)] = E[u(L)].

The buying price BPI, is the quantity b satisfying
E[u(V = b) [ Ix] = E[u(V) | ]

or equivalently

EX[maaxE[u(Va ~b)| X]] = E[u(V,.)].
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Let ai_,(X) be the maximizer on the left side of this equation. The act a}_,(X) is
optimal after paying b for I, and observing X. When risk attitude is not constant,
a¥_,(X) need not equal a*(X) = a¥(X), which is the optimal act after observing
X for free. When aj_pp; (X) = a*(X) with probability 1, then paying the buying
price for I, does not affect the optimal act when X is observed. In this case we say
that a*(X) is purchase invariant. When a*(X) is purchase invariant, the last
displayed equation becomes

E|u(V,x, = BPI)| = E[u(V,.)].

We have established the following result.
Proposition 2. Consider a decision problem with uncertainty X.

(a) CEIy is the amount an owner of the lottery V. x, would demand to give it up in
exchange for the lottery V., that is

CEly = CE[V,.x)| — CE[V,.].

(b) Suppose a*(X) is purchase invariant. Then BPI, is the price an owner of the
lottery V,. would pay to exchange it for the lottery V. y,, that is,

BPI,, = BP[Va*(X) — V. | Wealth = Va*]

To summarize, while selling an information source is strictly analogous to selling a
lottery, buying an information source is not analogous to buying a lottery unless
purchase invariance holds.

Information acquisition choices induced by payoff lotteries

Because Proposition 2(b) fails in the absence of purchase invariance, one cannot in
general invoke it to infer properties of BPI from those of BP. However, it would be
useful in light of Proposition 2 if for any payoff lottery Y, we could find a decision
problem containing an uncertainty X with a*(X) purchase invariant such that
Virxy — Vo= was equal to Y. In fact, we have essentially accomplished this already
in the construction of Figure 2.

Proposition 3. Let u be any strictly increasing utility function u. Then for any wealth
level L and any random variables Y,,...,Y, with E[u(L + Y))] > u(L) for each i,
there is a decision problem with independent uncertainties X,,..., X, such that
BPIy = BPY;| Wealth = L] and CEI, = CE[Y, + L] — CE[L].
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Figure 2 illustrates this construction for n = 2. As before, the decision maker
must first choose to play or not, and if s/he chooses to play i, s/he must guess the
value of the uncertainty X;. A correct guess yields independent incremental payoff
Y,, but an incorrect guess yields incremental payoff —k < 0. Without further
information, the expected utility of Play i is p(x)u(L +Y;) + (1 — p(x)Du(L —
k), where p,(x;) = P(X; = x;). Because u(L — k) < u(L), we can, for each possi-
ble value x; of X;, choose p,(x,) sufficiently small so that for each x;, p;(x)u(L +
Y) + (1 — p(xDu(L — k), < u(L); that is, the decision maker would prefer to not
play. So the optimal action a* without information is a* =“Don’t Play,” and
V.= L.Butif X; =x, can be observed prior to deciding, then because E[u(L +
Y)] > u(L), it is optimal to play i and guess x;. Then a*(x;) =“Play i and guess

7and V. x, = L + Y. Therefore V. x) = V,. =Y,

a

If we let BP(Y | Wealth L) =b, then by definitilon of BP
E[u(L +Y, - b)] = u(L),

so b; > 0 because E[u(L + Y;)] > u(L). Therefore because u is increasing, we
have

E[u(L +Y; - b)] =u(L —b,).

This inequality implies aj,_,(x;) =“Play and guess x,” = a*(x,). Therefore a*(X)
is purchase invariant. Hence by Proposition 2, BPI = BP[Y, | Wealth = L]. Fi-
nally it is easy to check that CEIly = = CElY, +L] CE[L]. This establishes
Proposition 3.

Equality of certainty equivalent and buying price

Proposition 3 allows us to extend known properties of certainty equivalents and
buying prices for payoff lotteries to information sources. The following well known
result on payoff lotteries receives general mention with partial or no proof by
Howard (1970) and by Raiffa (1968). Because we did not locate a specific proof of
necessity in the literature, we provide our own.

Proposition 4. In order that BP[Z | Wealth = L] = CE[Z + L] — CE[L] for all
nonnegative payoff lotteries Z it is necessary and sufficient that the utility function u(x)
has constant risk attitude (i.e., is linear or exponential).

Proof: Sulfficiency is shown by LaValle (1968) and Howard (1970). To demonstrate
necessity, note that buying price has the so-called A-property:

BP[Z + A|Wealth = L] = BP[Z |Wealth = L] + A A > 0.
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Therefore CE[Z + L] also possesses the A-property, i.e., CE[Z + L + A] = CE[Z
+ L]+ A for all A > 0. Then the risk premium, as defined in Pratt (1964), is
constant in wealth, and it follows from results there that # must have constant risk
attitude. O

Corollary. BPI, = CEIy for all decision problem uncertainties X if and only if the
utility function u(x) has constant risk attitude (i.e., is linear or exponential).

Reversals for certainty equivalents and buying prices

Although the question of BP-CE equality is treated in the literature, we are aware
of no examination of BP-CE reversals for payoff lotteries. Say that a utility function
u allows no BP-CE reversals if for every pair of payoff lotteries X,Y

BP[X] > BP[Y] < CE[X] > CE[Y].

Here we omit reference to wealth, for expositional simplicity. Of course, linear or
exponential utility functions allow no reversals because for them, BP = CE. Are
there any other utility functions that do not allow reversals? We answer that
question as follows.

Proposition 5. A utility function u allows no BP-SP reversals for payoff lotteries if and
only if its risk attitude is constant (i.e., u is linear or exponential).

Proof: Only necessity remains to be established. Switching SP to CE, the assump-
tion of no BP-SP reversals implies no BP-CE reversals. By simple logical manipu-
lation then

CE[X] = CE[Y] « BP[X] = BP[Y].

From this it follows that CE is a function of BP, that is, there is some function g
such that CE[X]=g(BP[X] for all X. But for constant payoff lotteries
X,CE[X] = BP[X], so it must be that g is the identity function. Therefore,
CE[X] = BP[ X] for all payoff lotteries X. O

Once again, invoking Proposition 3 extends this result to information sources.
Corollary. BPI and SPI are ordinally equivalent measures of information value for a

given utility function u if and only if u has constant risk attitude (i.e., u is linear or
exponential).
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4. Conclusion

We have shown that although utility increase, certainty equivalent increase, selling
price and probability price are ordinally equivalent measures of information value,
none of these is ordinally equivalent to buying price. In particular, probability price
and buying price may rank information sources differently. Only utility functions
with constant risk attitude avoid this phenomenon. It is interesting that this lack of
equivalence between buying and selling prices for information sources is not a
naive consequence of their lack of equivalence for lotteries. As we have shown, the
analogy fails because while selling an information source I, is equivalent to selling
the lottery resulting from an optimal response to learning X, purchasing an
information source I, is not equivalent to purchasing that lottery, because due
to wealth effects, the act of purchasing may change the optimal response to
learning X.

We suspect that for many, information is a fundamental entity, in that the
relative values of competing information acquisitions should not depend on the
nature of the acquisition. This viewpoint must be abandoned in light of the fact
that an expected utility maximizer can be willing to take more risk to learn about
X (i.e., X has a greater probability price), but pay more to learn about Y (i.e., Y
has a higher buying price). The point is not a trivial one: Utility increase is often
preferred over buying price as a measure of information value due to its analytical
tractability. Neither measure is more correct than the other—they are merely
different measures. Analysts should be aware of the potential conflict between
these measures due to their lack of ordinal equivalence.
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