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Abstract

Most performance evaluation models in operations management literature have assumed that
tasks possess standardized completion criteria. However, in many operation systems, particu-
larly in service and professional work, judgment is frequently required to determine when a task
is completed. In thin paper, we show that introducing discretion in task completion adds a
fourth variability buffer, quality, to the well known buffers of capacity, inventory and time. To
gain insight into the managerial implications of this difference, we model the work of a single
worker system with discretionary task completion as a controlled queue. After characterizing the
optimal control policy and identifying identifying some practical heuristics, we use this model
to examine the differences between discretionary and non-discretionary work. We show that
adding capacity may actually increase congestion in systems with discretionary task comple-
tion, and information about job types in queue is less useful in systems with discretionary task
completion than in systems with non-discretionary task completion.
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1 Introduction

Since the 1980�s, the American economy has steadily shifted toward service, with 34.2%, 37.1% and

42.7% of the national GDP coming from the service sector1 in 1987, 1994 and 2001 respectively.

The manufacturing sector2 constituted 25.2%, 22.5% and 20.3% of national GDP in these same

years (Bureau of Economic Analysis 2001). This trend is being driven by an increase in the

number and size of service-oriented Þrms. Moreover, even within manufacturing organizations,

there is an increasing emphasis on service and professional work. For example, in 1972 semi-

skilled operators (e.g., line workers) represented 55% of the General Motors workforce, while non-

management professionals (e.g., engineers) represented 5%. By 2001, operators represented only

44%, while professionals had increased to 14% (General Motors 1974 and General Motors 2002).

A large portion of research on operations systems has focused explicitly or implicitly on manufacturing-

oriented work systems. Since the early work of Fredrick W. Taylor at the beginning of the 20th

1Including sectors of Þnance, insurance, real estate and services
2Including sectors of mining, construction and manufacturing
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century, in studies ranging from time and motion studies to the modeling of production ßows, in-

dustrial engineers and operations management researchers have concentrated on developing better

methods for managing manufacturing systems. Considerably less research has been devoted to

service systems and almost no industrial engineering work has systematically studied professional

work.

An almost universal in past models of manufacturing work systems is that these involve well-

deÞned tasks with non-discretionary completion criteria (i.e., determined by objective standards).

However, in practice, many operations systems involve less deÞned tasks with discretionary com-

pletion criteria (i.e., determined by a worker�s subjective standards). In particular, service and

professional systems frequently require workers� judgment on when tasks are completed. Discre-

tionary task completion introduces a degree into process times, so a worker can adjust quality of

his/her output to manage workload. For our purposes, we label traditional manufacturing work

and routine service work (e.g., bank tellers, checkout clerks) as Non-Discretionary Task Comple-

tion (NDTC), and professional work and complex service work (e.g., engineers, physicians, Þnancial

analysts) as Discretionary Task Completion (DTC).

For example, consider the task of installing a car seat into a sedan on an assembly line. The

worker has to follow a standardized procedure to secure the seat to the car frame. The output

quality has well-deÞned metrics (e.g., whether the seat is secure) and management can easily

specify the completion standard. hence, this task is NDTC. Various service industry tasks, such as

transferring money between bank accounts follow similarly well-deÞned structures, are hence also

regarded as NDTC work in our terminology.

In comparison, consider a call center agent who provides computer software support. The

agent is typically presented with unstandardized information about the problem, which must be

intelligently sorted to diagnose the software issue. Once the problem has been identiÞed, the agent

must select a solution approach which may involve trials that could be done during call with

the help of the agent or independently by the caller after the call is complete. Hence, the agent

has considerable inßuence over the call duration. Moverover, such an environment, it is nearly

impossible to enforce a clear and objective completion standard. For a review of research on call

centers, see Gans et al. (2003).

One of the primary challenges in managing manufacturing or service systems is how to better

control and mitigate variability. Variability is inherent in virtually all systems, whether they
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involve DTC or NDTC work. This variability degrades system performance because of a well-

known principle of factory physics which states that variability in traditional production systems

must be buffered by some combination of capacity, inventory, and time (Hopp and Spearman 2000).

In service systems, this reduces to two variability buffers, capacity and time, because services cannot

be stored. For example, variability in arrivals to a call center causes queueing delay and hence a

time buffer (unless the center is signiÞcantly overstaffed, in which case the variability is buffered

by capacity instead).

In this paper, we show that discretionary task completion introduces quality as an additional

factor for buffering variability in DTC systems. To gain insights into the managerial implications

of this newly introduced variability buffer, we examine a single server with discretionary task com-

pletion and either one or two classes of tasks. We Þrst characterize the optimal control policy

which speciÞes how long the worker should spend on each task for the single class model. We also

introduce two simple threshold heuristics and show that they can be effective under certain con-

ditions. Next, we compare our discretionary completion models with analogous non-discretionary

completion models and identify two interesting phenomena that are distinctive to systems with

discretionary task completion: (a) in contrast to well-known non-discretionary task completion

system behavior, congestion can actually increase when capacity is increased in a discretionary

task completion system, and (b) in a multi-class system, the value of task type information about

jobs in queue at the time of arrival decreases with the degree of discretion in completion times.

2 Literature Review

Extensive analytical research has been devoted to the design and control of DTC work systems. This

work covers a wide range of topics, including work ßow design, production scheduling and inventory

management (see, e.g., Buzacott and Shanthikumar 1992, Altiok 1996, Hopp and Spearman 2000,

Askin and Goldberg 2001, and Halevi 2001.)

Researchers have also conducted empirical and experimental studies to understand the impacts

of human behavior on work systems (see Bailey 1998, Banker et al. 2001, and Longenecker et al.

1994.) For example, Schultz et al. (1998) conducted laboratory experiments to investigate how

motivation affects worker processing time. A survey and discussion of research at the interface of

operations management and human resources management is given in Boudreau et al. (2003).

Many of the principles that have emerged from the above research have implicitly or explicitly
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focused on systems in which tasks are routine and well deÞned. Hence, they are applicable to what

we term �NDTC� settings. Some researchers have attempted to extend these NDTC insights to

DTC environments, ranging from large scale reengineering of a corporation (Hammer and Champy

1993) to small scale process improvement of a product development process (Alder et al. 1995,

Krishnan et al. 1997, and Loch and Terwiesch 1996.) Adler et. al. (1995) suggested thinking of

�development as a process in which projects move through the knowledge-work equivalent of a job

shop,� while Loch and Terwiesch (1996) argued that the product development process has many

manufacturing-like activities. Although this work has yielded useful results, it is limited by the

implicit assumption of NDTC work.

Some recent of modeling work has been done speciÞcally with discretionary task completion in

mind. This can be classiÞed into two major streams: (i) models that allow adjusting service rate

as dynamic control of queueing systems, and (ii) models that represent the relationship of dynamic

pricing and adjustable service rate.

The Þrst stream of research focuses on the characterization and computation of optimal policies

and provides limited managerial insights. The two papers most closely related to our work are

Stidham andWeber (1989) and George and Harrison (2005), both of which showed the monotonicity

of optimal policy which service rate increases with queue length. The two papers allow the service

rate to be changed only at job arrival or departure epochs. In contrast, our paper allows service

time to be adjusted at any time during processing and hence gives more ßexibility to the server.

The second stream of research studies similar systems in which servers determine the optimal

combination of pricing and service rate. This includes Debo et al. (2004), and Ata and Shnerson

(2005). The work yields interesting results on interactions between service providers and customers

but does not explore the implication of discretionary task completion in system design and worker

management.

The only paper at which we are aware of that addresses DTC work from the perspective of

generating managerial principles is Owen and Jordan (2003). They proposed S-curve model that

describes the time dependence of output quality in white-collar work systems. Using simulation,

they examined the performance of various scheduling policies in managing jobs with due dates in

a single server system.

In this paper, we adopt an optimal control approach as a step toward developing analytic

principles of DTC workforce management. The remainder of the paper is organized as follows.
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In Section 3, we deÞne a time-dependent quality curve to capture discretionary task completion

characteristics of DTC tasks. In Section 4, we study a single-station, single-job class model of a

discretionary task completion system, and derive the structure of the optimal control policy. We

also conduct a series of numerical studies that examine the efficiency and robustness of alternative

heuristic policies. We then investigate the role of discretionary completion times on the effect of an

increase in capacity in Section 5. In Section 6, we extend our model to a system with two classes of

tasks with different processing time characteristics, and evaluate the value of job type information

by comparing the performance of two-job-class systems with combined and separate queues. The

paper concludes in Section 7.

3 Discretionary versus Non-discretionary Task Completion

In a manufacturing or routine service environment, output is typically measured as the rate of

task completions (e.g., jobs per day or customers per hour). The reason is that the work content

of tasks is known (at least in expectation). So if an auto assembly line completes 500 cars in a

shift, we know exactly what value has been created (subject to post-sale quality adjustments, which

are measured after the fact as warranty repair costs). What ensures this are the non-discretionary

standards that deÞne each task needed to build a car. Hence, for a single non-discretionary task, we

can describe the (expected) quality or value generated as a function of time with a curve like that

in Figure 1.Left. This shows a task that requires exactly τ0 units of time to complete. Processing

for less than τ0 units of time leaves the task unÞnished and hence without value to the downstream

station (or the customer), while processing more than τ0 does not add value. This gives us a precise

deÞnition of Non-Discretionary Task Completion (NDTC).

However, the completion criteria in some tasks are not so clear. For example, in the previously

described customer support example a call can be made short or long at the agent�s discretion.

Assuming that the agent makes rational use of call time, the expected value to the customer will

be an increasing function of time. However, since the total value of information provided by the

agent is Þnite, the value versus time curve must be eventually concave. While many forms are

possible, the simplest relationship between processing time and expected value is a concave curve,

as depicted in Figure 1.Right. Since a curve like this presents the agent with decisions of when to

terminate processing, it represents what we mean by Discretionary Task Completion (DTC).
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Figure 1: Left: Value vs. time for non-discretionary completion tasks, Right: Value vs. time for discretionary
completion tasks.

A simple way to model the concave curve in Figure 1.Right is the exponential function:

f(τ) = b(1− e−aτ ) (1)

The parameter a determines the rate of increase of the value function f(τ). The larger a is,

the faster f(τ) approaches its upper limit, b. Hence, a characterizes the processing rate, while b

represents the highest possible task value.

In practice, it may be difficult to estimate the value-time curve. Nevertheless, in high volume

systems such as call centers, it may be feasible to determine the general shape and determine

whether a simple family, such as the exponential, is a good approximation. If so, by using data on

the proportion of customers that are satisÞed within x minutes is sufficient to estimate a, while b

can be set to reßect the relative value of different call types. Even if a curve cannot be estimated

in practice, we can still draw basic insights into how DTC workers should behave and how DTC

work differs from NDTC work by using such a curve as the basis for structural modeling, as we

show in the next section.

4 Control Policy of DTC System

To develop a basic model of work with discretionary task completion, we consider a worker who

staffs a single station that receives jobs that arrive according to a Poisson process with rate λ. Jobs

have the DTC behavior depicted in Figure 1.Right and are processed according to a Þrst-come-

Þrst-served (FCFS) discipline. A holding cost h per unit time is charged for each task while it is in

the system. If the worker spends τ units of time on a task, it generates value f(τ), where f(τ) is
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deÞned in Equation 1. To guarantee a minimum level of average quality fmin, we assume that all

tasks are required to be given at least τmin units of processing (where τmin ≥ 0). The greater τmin
is, the less ßexibility the worker has in adjusting the service time of each task.

Our goal is to Þnd a task completion policy that maximizes the value generated per unit time.

In a call center, for example, this leads to rules that determine the amount of time an agent should

spend on the current caller given knowledge of the number of customers waiting in queue.

4.1 Model Formulation

To develop an optimization model, we discretize the time horizon into equal, non-overlapping

inÞnitesimal intervals δτ , where δτ is small enough to ensure the probability of having more than

one arrival during δτ is almost zero. Thus, the probability of having one arrival during interval

δτ is λδτ . We deÞne tmin = τmin/δτ . We can then formulate the problem as a Markov Decision

Process (MDP) in which:

� State Space S includes states (n, t), where n is the number of jobs in the system, and t is the
number of time intervals that the job under service has been worked on. Both n and t are

non-negative integers.

� Decision epochs are the beginning of every period.

� Action space A includes actions Keep, and Release. Action �Keep� requires the worker to

continue working on the current job for one more period, while action �Release� requires that

the worker stop working on the current job and release it.

Without loss of generality, we assume that the worker can release a job at the beginning of a

period, but jobs arrive only at the end of a period. We deÞne V (n, t) as the proÞt at state (n, t) per

transition (with length δt). The optimality equation of the MDP model for n ≥ 1 and t ≥ tmin+ 1
is therefore as follows:

δτ g+V (n, t) =Max


−nhδτ + (1− λδτ)V (n, t+ 1) + λδτV (n+ 1, t+ 1) : Keep

−(n− 1)hδτ + f(tδτ) + (1− λδτ)V (n− 1,1n) + λδτV (n,1n) : Release

where g is the optimal average proÞt per unit time, and 1n = 0 if n = 1, and 1n = 1 if n ≥ 2. For
n ≥ 1, and t ≤ tmin, we have

δτ g + V (n, t) = −nhδτ + (1− λδτ)V (n, t+ 1) + λδτV (n+ 1, t+ 1),

and for n = 0,

δτ g + V (0, 0) = (1− λδτ)V (0, 0) + λδτV (1, 0).
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4.2 Optimal Control Policy

Since task completion time is determined by the worker, utilization in a DTC system is also con-

trolled by the worker. However, because of our assumption that all jobs must receive at least

minimal processing, we deÞne ρmin = λτmin. It is clear that the system is only stable when

ρmin < 1.

The structure of the optimal service policy in a stable system is characterized by Theorems 1, 2

and 3. For ease of presentation, we omit δτ in the value function f(tδτ). Therefore, f(t) represents

the value when the job is released after tδτ units of time. The proofs of our analytical results are

available in online appendix at http://users.iems.northwestern.edu/∼gigi/research.htm.

Theorem 1 If ρmin < 1, then there exists an optimal stationary policy that maximizes the total

average proÞt per unit time. Furthermore, the gain rate g is constant and the value iteration

algorithm converges.

To further characterize the optimal policy, we classiÞed all systems into two categories based

on whether or not f(t) < ht for all t. For systems where this condition holds, it is easy to show

that the proÞt function is negative and decreasing in t and hence we prove that:

Theorem 2: If f(t) < ht for all t, then the optimal policy is to spend the minimum amount of

time (i.e., tmin) on each job.

For systems where f(t) > ht for some t, we begin by establishing the following properties of the

value function:

Proposition If f(t) ≥ ht for some t, then the optimality equation has the following properties:
C1: V (n+ 1, t)− V (n, 1) is non-increasing in n for n ≥ 1 and t ≥ tmin + 1
C2: V (n, t)− V (n, t+ 1) is non-increasing in n for n ≥ 1 and t ≥ 1
C3: V (n, t)− V (n− 1, t) is non-increasing in n for n ≥ 2 and t ≥ 1
C4a: V (1, t+ 1)− V (2, t+ 1) + V (1, 1)− V (0, 0) ≥ 0 for t ≥ tmin
C4b: V (2, t+ 1)− V (3, t+ 1) + V (2, 1)− V (1, 0) ≥ 0 for t ≥ tmin
C5: V (n, t+ 1)− V (n, t) ≥ 0 for n ≥ 1 and t ≥ 1
C6: (1− λδτ)[V (n− 1, 1)− V (n, t+ 1)] + λδτ [V (n, 1)− V (n+ 1, t+ 1)] + f(t)

is non-decreasing in t for n ≥ 2 and t ≥ tmin + 1
Since Condition C1 holds, we know that if it is optimal to keep a job in state (n, t), where

n ≥ 2, then it is also optimal to keep a job in state (n − 1, t). For n < 2, we can prove using a

sample path argument that there exists an upper bound on the amount of service the server should

provide.
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Figure 2: Typical structure of the worker�s optimal policy.

Theorem 3 If f(t) > ht for some t, then there exists a non-increasing threshold function n = R(t)

such that it is optimal to keep the job in state (n, t) if n ≤ R(t) and release the job if n > R(t).

Figure 2 shows the typical structure of the optimal service policy. The boundary that separates

the �Keep� region from the �Release� region is composed of state-dependent thresholds that de-

termine the optimal decision in different states. For example, in state (n0, ta) where tmin ≤ ta, the
current job has already been processed for ta units of time. In this state, since the potential value

generated by working on the job for one more period outweighs the holding cost of keeping n0 jobs

in the system, it is optimal to keep the job. On the other hand, in state (n0, tb), since the potential

beneÞt of spending one more period processing the current job does not exceed the holding cost of

keeping n0 jobs in the system, the optimal decision is to release the current job.

The structure of the optimal control policy demonstrates how DTC systems mitigate congestion

by varying the quality of outputs. When the queue is long, the system lowers product quality by

processing jobs for a shorter amount of time. This helps the system reduce congestion and keep the

holding cost low. In a call center, this implies that during peak demand times, an agent will tend

to provide less service (shorter calls) than during low demand times in order to prevent the queue

from growing so long that waiting time becomes unacceptable. Hence, depending on the relative

costs of waiting versus hurrying, adjusting the quality buffer to avoid excessive time buffering can

be an appropriate strategy for a call center.
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Figure 3: Left: The double-threshold (DT) policy, Right: The single-threshold (ST) policy.

4.3 Performance of Heuristic Policies

The optimal policy in Figure 2 presents two major difficulties: (i) it has a complex structure

which may make implementation impractical, and (ii) jobs are released at different points of time

during their processing, resulting in inconsistent quality, which might erode long-term customer

satisfaction. These issues motivated us to consider heuristic policies that may be better suited to

practice.

The Þrst heuristic is called the Double-Threshold (DT) policy and has its structure illustrated

in Figure 3 Left. The DT policy has three parameters (N,T1, T2), where T2 ≥ T1 ≥ tmin. Under

this policy, the server works on the current job for T2 units of time as long as there are less than

or equal to N jobs in the system. Otherwise, the current job is processed for T1 units of time. For

example, in an emergency room operating under the DT policy, physicians can choose to provide

either basic treatment or extended treatment depending on the number of patients awaiting for care.

If the emergency room is busy, physicians will only provide basic treatment to remove immediate

threats to life before moving on to the next patient. If the emergency room is not busy, physicians

will provide extended care in which detailed diagnosis and additional treatments are conducted to

enhance the patients� long-term well-being.

The second heuristic, called the Single-Threshold (ST) policy, is a special case of the DT policy

for which TST = T1 = T2 ≥ tmin. Under this policy, all jobs are processed for the same amount

of time TST . Hence, the ST policy corresponds to the policy for NDTC work systems in which

processing times are independent of the work backlog. That is, there is discretion over the comple-

tion time of a task but we choose not to use it. For example, a physician in general practice might
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choose to see patients for the speciÞed amount of time regardless of the number of people in the

waiting room.

We studied the performance of the DT and ST heuristics relative to that of the optimal policy

in various systems in order to describe the conditions under which these heuristics perform well

or poorly. We used a value iteration algorithm for each case to obtain the optimal proÞt, as well

as the proÞt under the DT and the ST heuristics. We deÞne τmax = argτ{f(τ) = 0.99b} and
tmax = τmaxδτ . Therefore, tmax is the maximum number of time intervals the worker is allowed to

spend on a job, which is also the time required to obtain 99% of the maximum proÞt (we use 99%

instead of 100% because of the asymptotic property of exponential function). The parameters we

investigated are:

� Shape of value function A: DeÞne A as,

A =
F (τmax)− τmax(b/2)

τmax(b/2)
,

where F (x) =
R x
0 f(τ) dτ . This measure characterizes the shape of the value function. At

A = 0, the value-time relationship is linear from τ = 0 to τmax. As A increases, quality

increases more rapidly with time. We considered values A = 0.24, 0.59 and 0.79, to represent

situations ranging from strongly �DTC� to nearly �NDTC� work.

� Minimum Traffic Intensity ρmin: The parameter ρmin is a relative measure of the minimum

level of system congestion. We considered values from 0.1 to 0.55 in increments of approxi-

mately 0.15, depending on A and fmin.

� Holding Cost to Maximum Value Ratio h/b: This ratio characterizes holding cost relative to

(maximum) job value. We considered values 0.01, 0.02 and 0.04. A small ratio (i.e., 0.01)

represents situations where the customer dissatisfaction generated from a long wait is small

compared to the satisfaction gained from the best possible service.

� Minimum quality fmin/b: This ratio measures the minimum quality a customer is willing to

accept relative to the maximum quality possible. We considered values of 20%, 40% and 60%.

� Process ßexibility φ: DeÞne φ = (τmax − τmin)/τmax. This measure represents the amount
of discretion a worker has in choosing processing time. We considered values ranging from

0.6 to 1 in increments of 0.2, depending on A and fmin. The larger this value is, the more

discretion a worker has in selecting processing time.

For computing purposes, the state space was truncated at N = 30 after determining by exper-

iment that increasing N beyond 30 does not have a signiÞcant effect on the average proÞt. We set
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the unit time δτ such that the probability of more than one arrival during a period of length δτ

is less than 0.001. Hence, δτ = 0.64 when the arrival rate λ = 0.1; δτ = 0.32 when the arrival

rate λ = 0.2, and so on. The number of time units for the value-time curve was truncated at

τmax. For example, when A = 0.79 and λ = 0.2, it is straightforward to compute τmax = 6.2, and

hence M = 6.2/0.32 = 20. By repeating this process for different values of (N, T1, T2) and TST , we

obtained the proÞt under the best DT and ST policies.

Our numerical study of 108 cases showed that the DT policy performs well under most parameter

settings. We observed that the DT policy results in an average of only 0.5% less proÞt per unit

time than the optimal policy. The maximum difference we observed was 2%. The reason that the

DT policy is very close to optimal under most conditions is because it is able to adjust the quality

level to respond to changes in the work backlog. Evidently, even the crude adjustment afforded by

only two process time settings is enough to take advantage of quality ßexibility.

The ST policy, however, only performs well under a restricted range of parameter settings.

Our numerical study showed that the ST policy results in an average of 5% less proÞt per unit

time than the optimal policy, with a maximum percent difference of 18%. We found that the ST

policy performs well in: (i) systems with high A, which represent work systems that approach their

maximum value quickly, (ii) systems with small h/b, where holding cost is not signiÞcant compared

to the potential quality earned, (iii) systems with small process ßexibility (φ), and (iv) systems

with fairly high minimum traffic intensity (ρmin). One of the key factors that affects the ST policy

performance is the shape of the value-time function f(τ). The closer f(τ) is to a step-function (e.g.,

large A and small process ßexibility φ), the better the ST policy performs. We can summarize the

results of these tests in the following observations:

Observation 1 The DT heuristic performs almost as well as the optimal service policy in single

station single-class DTC systems.

Observation 2 The ST heuristic performs reasonably well in DTC systems only when the tasks

are fairly similar to NDTC tasks.

The difference in process time control between the heuristic policies and the optimal policy

results in different levels of quality variation. Workers under the optimal policy have the highest

variation in task processing time, since it can range from tmin to tmax depending on what is the

best release time based on queue length. In contrast, the ST policy imposes absolute control on
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Figure 4: Increase in Capacity, i.e., proÞt functions f1(τ ), f2(τ), and f3(τ ).

processing time and results in no quality variation at all. The DT policy has an intermediate level

of quality variation. If high variation affects customer perceptions of fairness, and thereby has a

long-term effect on proÞtability, the DT heuristic might actually be preferred to the optimal policy

in practice.

5 Capacity in DTC Systems

It is well-known that, increasing system capacity reduces congestion in NDTC environments (Hopp

and Spearman 2000, Chapter 9.) One might reasonably expect the same to be true in DTC systems.

However, since DTC systems introduce quality as an additional variability buffer, we need to look

closely at the factors that affect system congestion in order to understand the role of capacity. In

this section, we perform numerical experiments to investigate the question: does a capacity increase

in a DTC work system always decrease queue length?

In single-worker NDTC systems, an increase in capacity corresponds to a decrease in the average

effective processing time of a job. In DTC systems, since capacity is deÞned by the value-time curve,

an increase in capacity can be measured in various ways.

For our purposes, we deÞne increase in capacity as an upward shift in the value-time curve (see

Figure 4). That is, the new curve completely dominates the old one because at every point in time,

the value earned from working on a job is greater (or equal to) after a worker�s skills improved

through training or learning. Formally, f1(τ) ≤ f2(τ) ≤ f3(τ) for all τ . For an exponential

value-time function, an increase in capacity can be represented by an increase in the parameter a.

To investigate the effects of changing capacity, we conducted another set of numerical tests using

an exponential value-time function with values of a = 0.25, 0.5, 1, which refer to as low, medium and
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high capacity, respectively. To isolate the effect of capacity, we consider value-time functions fi(τ)

with the same τ imin and bi for i = 1, 2, 3. We then used MDP to compute the optimal service policy

for single station DTC systems with the various capacities. We used the convergence requirement

and truncated state space we described in Section 4. To calculate the average queue length (i.e.,

congestion), we fed the optimal policy back into the MDP program as the decision structure but

set f(τ) = 0 for all t, and h = 1. Hence, the average proÞt obtained from the second value iteration

gave the average queue length.

Table 1. The effects of increase in capacity on queue length
Min. Traffic Holding Rate Expected % Change in E[Queue]
Intensity Cost Parameter Average Queue Compared with Compared with
ρmin Ratio h/b a ProÞt/Time Length a = 0.25 a = 0.5

0.3 0.02 0.25 12.6 1.35 � �
0.5 19.5 1.49 11% �
1 25.0 1.26 -6% -16%

0.04 0.25 10.3 1.05 � �
0.5 16.9 1.11 6% �
1 22.8 0.96 -8% -13%

0.06 0.25 8.3 0.90 � �
0.5 14.9 0.94 4% �
1 21.1 0.78 -13% -17%

0.4 0.02 0.25 14.2 1.36 � �
0.5 23.2 1.68 24% �
1 31.7 1.54 -14% -8%

0.04 0.25 11.8 1.10 � �
0.5 20.4 1.23 12% �
0.4 29.0 1.17 7% -5%

0.06 0.25 9.7 1.02 � �
0.5 18.1 1.05 3% �
1 26.8 0.98 -4% -7%

0.5 0.02 0.25 15.3 1.41 � �
0.5 26.1 1.73 22% �
1 37.4 1.85 31% 7%

0.04 0.25 12.8 1.18 � �
0.5 23.1 1.33 13% �
1 34.3 1.36 15% 2%

0.06 0.25 10.5 1.15 � �
0.5 20.7 1.11 -4% �
1 31.8 1.12 -3% 1%

Table 1 presents some of the results from our experiments that illustrated some surprising

behavior. In sharp contrast to the behavior of NDTC work systems, an increase in capacity in a

DTC work system sometimes results in an increase in average queue length (hence average waiting

times). Table 1 shows that this counter-intuitive phenomenon is more prevalent in systems with:

(i) high minimum traffic intensity, ρmin, and (ii) relatively low holding cost to value ratio, h/b.

Hence, we can make the following observation:

Observation 3 In DTC systems, congestion may intensify when capacity increases.

The underlying reason for this behavior is the presence of quality as a variability buffer in

discretionary task completion systems. This makes it possible to take advantage of an increase in
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capacity to either reduce queueing (and hence holding cost), or increase average quality level (and

hence value), or both. The optimal mix of these depends on the relative costs. When the ratio

of holding cost to value (h/b) is high, it makes senses to apply the additional capacity to reduce

congestion. But when h/b is low, the extra capacity should be used to improve quality. In some

cases, it can even make sense to actually increase queueing in response to a capacity increase in

order to facilitate an even greater increase in quality.

Finally, we observe by comparing the last two columns of Table 1 that the increase in congestion

is more signiÞcant when capacity is increased from low to medium (a = 0.25 to 0.5) than when it is

increased from low to high (a = 0.25 to 1.0.) The explanation for this is that, because the value-time

function is concave, using capacity to increase value exhibits diminishing returns. Hence, as the

capacity increase grows larger, the optimal policy will eventually dedicate some of the additional

capacity to reducing queue length.

We also studied the effect of increase in capacity by adding an additional server to a single-server

system. Using a new MDP model, we determined the optimal policy and the corresponding queue

length. We observed in similar phenomenon, namely the queue length may increase as capacity

increases (through additional server).

From a managerial perspective, this result is potentially signiÞcant. For example, in a call center,

adding capacity (via staff or by means of technology) might be expected to shorten customer waiting

times. But our results suggest that if management insists on shorter delays, they may induce a

suboptimal solution. Hence, it is important for management to measure and control both quality

and responsiveness in setting improvement goals.

6 Value of Information

In this section, we consider the value of customer information and task sequencing issues for DTC

systems. To accomplish this, we consider a simple two-class model. Similar to the single-class

model, we assume that tasks of types 1 and 2 arrive according to Poisson processes with rates λ1

and λ2, respectively. A task of type q (q = 1, 2) has an average value function fq(τ) and minimum

processing time τ qmin which guarantees a level of average quality f
q
min.

Many operations systems involve multiple task types. For example, in a call center, agents

often handle multiple types of calls. Since the different types of calls require different conversation
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lengths to satisfy customers, they will have different value functions. The value functions may also

vary due to different level of experience an agent has in handling the call types. Similarly, in an

emergency room, physicians may classify the cases as life threatening or non-life threatening. The

different case types require different procedures, and hence different service times.

We consider our model under the following information scenarios:

� Complete Information: The task type is known for each job as soon as it enters the system.

� Partial Information: The task type of an entering job is not known and is only revealed when
the worker starts processing it.

Note that under complete information the worker knows the number of jobs of each type in the

queue, while under partial information, he/she only knows the total number of jobs in the queue,

but not the number of each type or their sequence in the queue.

6.1 Partial Information Case

We Þrst consider a single worker system in which the task type is not revealed until service begins,

that is, the partial information case. This situation arises in call centers in which callers do not

identify themselves or their needs until they speak to an agent.

We developed a Markov Decision Process (MDP) model to determine an optimal service policy

that considers the current state (type of job currently under process and the queue length) and

speciÞes how much more time the worker should spend on the current job in order to maximize the

value generated per unit time. As we did in the single-class system in Section 4, we discretize time

into equal, non-overlapping inÞnitesimal intervals δτ , where δτ → 0, and deÞne tqmin = τ qmin/δτ .

But now, since the overall arrival rate is λ = λ1 + λ2, the probability that an arriving job is of

type 1 is γ = λ1/λ and (1 − γ) is the probability of type 2. We deÞne the minimum utilization

ρmin =
P2
q=1 λqt

q
min.

The decision epochs in the MDP are at the beginning of each period and the available actions

are Keep and Release. Since the mix of job types in the queue is affected by the process times

of the jobs, the holding cost cannot be computed as a weighted average of the job holding costs

with weights proportional to arrival rates. Hence, we need to deÞne the state of the system to be

(x1, x2, x3, ..., t), where xj = q indicates that the job at the j
th location in queue is type q, in order

to compute the holding cost when h1 6= h2. However, this information should not be used to obtain
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the optimal action in each state because of our assumption that it is not available to the worker in

the partial information case.

We use a linear programming (LP) approach to tackle the problem. We start with the standard

LP for the full information MDP (to ensure the proper holding costs), and then add constraints to

enforce a FCFS service policy where the optimal policy only depends on (n, t, q). To accomplish

this, we deÞne state i in the LP by vector (x1, x2, x3, . . . , xni , ti, ai), where xj (xj = 1 or 2) is

the job type at the jth location in the queue, ti is the amount of time spent on the current job,

ai ∈ {Keep,Release} is the action chosen in state i, and ni is the total number of jobs in the
system in state i. Note that x1 indicates the type of the task under process. We deÞne:

� yi as the probability of being in state i at any instant, and Y as the vector of yis,

� Ci as the proÞt of being in state i for duration δτ , which is the revenue generated from job

processing at release minus the sum of holding costs of type 1 and type 2 jobs in the system

per δτ .

� pij as the transition probability from state i to state j, and P is the square transition proba-

bility matrix composed of pij, and

� zi as a binary variable which has value 1 when the probability of being in state i is greater
than zero, and is zero otherwise.

We formulate the LP to obtain the optimal expected proÞt in partial information system as follows:

Max
X
i

Ci yi

s. t. :
X
i

yi = 1 (2)

Y = YP (3)

yi ≤ zi ∀ i (4)

yk ≥M zi ∀ i, k, where ni = nk and ai = ak (5)

yi ≥ 0 for all i (6)

where M is a very small positive number with magnitude in the range from 10−7 to 10−9. Con-

straints (2), (3), and (6) are standard MDP constraints (see Hiller and Lieberman 2001). Con-

straints (4) and (5) are added to force the system to ignore the composition of the queue in

optimizing the proÞt. This is done by using a binary variable zi for each state i. When yi is

positive, the corresponding action is optimal and Constraint (4) gives zi the value of one. Then,
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sinceM is a very small positive number, Constraint (5) requires all the states with the same queue

length and action to have their yi to be positive and smaller than one. To satisfy these constraints,

all states with the same queue length must use the same action. Despite the fact that information

on queue composition is available (to ensure correct holding cost calculation), the system makes

decisions as if it is unaware of it and bases its decision only on queue length. As a result, it behaves

exactly as if it had only the information available in the partial information case.

6.2 Complete Information Case

We now consider the complete information case, in which the worker knows the number of jobs

of each type in queue. In a call center system, this information could come from an automatic

Þltering process that requires customers to select from two call types (e.g., account billing inquiry

and service inquiry.) By routing calls to different queues, the system allows the agent to choose

the type of customer to process next. The agent can also use the information on the number and

type of customers in queue to determine how long to process each task. Similarly, in an emergency

room, case type information could come from a preliminary evaluation by other medical personnel

at registration. The patients can then be prioritized accordingly for treatments.

To develop a Markov Decision Process (MDP) model of the single station, two-class DTC work

system, we deÞne the following:

� State Space S includes states (n1, n2, t, q), where n1 and n2 are the number of type 1 and
type 2 jobs in the system, respectively, t is the number of time intervals the job under service

has been worked on, and q is the type of job under service. The variables n1, n2 and t are

non-negative integers.

� Decision epochs are the beginning of each period.

� Action space A includes actions Keep (K), Release and Process Type 1 (R1), and Release and
Process Type 2 (R2). Action �Keep� requires the worker to continue working on the current

job for one more period. Action �Release� requires the worker to stop working on the current

job and release it. The worker can then choose between a type 1 and type 2 job for processing

if jobs are available. Otherwise, the worker becomes idle.

Letting hi denote the holding cost per unit time of task type i, we can write the optimality equation

of the MDP model for the case where the job in process is type 1 (q = 1), and n1 ≥ 2, n2 ≥ 1 and
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t ≥ tmin + 1 as follows:

δτg+V (n1, n2, t, 1) = max



λδτ
h
γV (n1 + 1, n2, t+ 1, 1) + (1− γ)V (n1, n2 + 1, t+ 1, 1)

i
: (K)

+ (1− λδτ)V (n1, n2, t+ 1, 1)− (n1h1 + n2h2)δτ

λδτ
h
γV (n1, n2, 1, 1) + (1− γ)V (n1 − 1, n2 + 1, 1, 1)

i
: (R1)

+ (1− λδτ)V (n1 − 1, n2, 1, 1)−
h
(n1 − 1)h1 + n2h2

i
δτ

+ f1(t)

λδτ [γV (n1, n2, 1, 2) + (1− γ)V (n1 − 1, n2 + 1, 1, 2) : (R2)

+ (1− λδτ)V (n1 − 1, n2, 1, 2)−
h
(n1 − 1)h1 + n2h2

i
δτ

+ f1(t)

where g is the optimal average proÞt per unit time. The optimality equations for the other three

cases where n1 = 1, n2 ≥ 1 and t ≥ tmin + 1; or n1 ≥ 1, n2 = 0 and t ≥ tmin + 1; or n1 = 1,

n2 = 0 and t ≥ tmin+ 1 can be written in similar fashion. For the cases where t ≤ tmin, optimality
equations can also be written in similar fashion by considering only action Keep.

For a fair comparison with the capacitated partial information system, we limit the maximum

number of jobs in the system to be Þve, where n1+n2 ≤ 5. The above MDP enables us to compute
the optimal proÞt for the complete information case.

6.3 Job Type Information in DTC versus NDTC Systems

Now that we have models for both the partial and complete information cases, we can investigate

the value of information about job types (VOI) in queue. In addition, we can ask whether the

beneÞt of having this information is higher in DTC or NDTC work systems. We deÞne the value

of information as the percent increase in proÞt that results from using information about queue

composition. Letting P be the average proÞt per unit time, we deÞne the value of information as:

Pcomplete info. − Ppartial info.
Ppartial info.

For the numerical study, we studied 128 cases for each system (DTC and NDTC). We used

the convergence requirement and truncated state space used previously in Section 4. Using the

same parameters that we deÞned for the single-class study in Section 4.3, we studied the following

parameter settings for each job class q = 1, 2:

� Shape of value function Aq: We considered values Aq = 0.24 and 0.79.

� Minimum Traffic Intensity ρmin: We considered values from 0 to 0.8 in increments of approx-

imately 0.2.
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� Holding Cost to Maximum Value Ratio hq/bq: We considered values 0.01 and 0.04.

� Minimum quality fqmin/bq: We considered the values 20% and 60%.

� Process ßexibility φq: We considered values ranging from 0.6 to 1 in increments of approxi-

mately 0.2.

SpeciÞc to the multi-class system, we consider the following parameters that describe the relation-

ship between the different job classes:

� Probability of a Type 1 Arrival γ: We set this parameter to γ = 0.5. Our tests focused on

cases with equal arrival probabilities for type 1 and type 2 jobs, in order to emphasize the

impact of job type differences (e.g., differences in holding costs and value-time functions).

� Ratio of Maximum ProÞts b1/b2: We considered the values 1 and 4. When this ratio is 1,

both value-time functions have the same maximum values. Depending on the parameter a,

this may lead to f1 < f2 for some t. However, when the value is 4, we have f1 > f2 for all t.

� Ratio of ProÞt Function Shape Parameter A1/A2: We considered values 0.25, 1 and 4. This
ratio describes the relative shapes of the value-time functions. The greater the ratio, the

faster the type 1 value-time function increases over time (df1(t)/dt) relative to the type 2

value-time function (df2(t)/dt).

Computing VOI in DTC System

First, we studied the value of information about task types in queue for DTC systems. The

proÞt for the complete information case was obtained by solving the MDP in Section 6.2 for DTC

capacitate systems. Then, we compared this with the proÞt for the partial information case by

solving the LP in Section 6.1. We implemented the LP for systems with maximum queue length

of Þve using AMPL (Fourer et. al. 1993). We truncated the queue length to a maximum of 5

due to computational limitations. In systems with a large number of states, each state would have

a very small probability, particularly for those corresponding to long queues. Due to precision

limitations in computers, a state with less than 10−5 probability may be rounded to zero and cause

its corresponding integer variable zi to be set to zero. This would destroy the integrity of Constraint

(4) and result in an incorrect solution.

To investigate the value of job type information in systems with larger state spaces, we developed

an approximation method for the partial information system to obtain upper bounds on the VOI

for DTC systems. The approximation method uses the results for the M/M/1 queueing system
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with two classes of customers (see Gross and Harris 1985, equation 3.45) and our MDP to obtain

a lower bound on the proÞt. We do not present the details of the approximation method due to

space constraints.

Computing VOI in NDTC System

Second, in order to compare the value of information in DTC and NDTC environments, we

speciÞed a step function for the NDTC case (see Figure 1.Left) that �matches� the value-time

function in the DTC case. We did this by Þtting a step function to a given value-time function

such that the step function matched the optimal ST policy for that function.

Using these step functions as the value-time functions, the proÞt in the NDTC environment

for the complete information case was found by solving the MDP in Section 6.2. For the partial

information case, we modiÞed the LP described in Section 6.1 to restrict attention to policies that

process tasks of the same class for the same amount of time (i.e. using the ST policy). Then, for

each case, we enumerated all possible combinations of ST policies for the two job classes (i.e. from

τ qmin to τ
q
max) and chose the best outcome as the proÞt under partial information.

Our experiments showed that the value of job type information in NDTC systems is at least 2

times greater than thatin DTC systems. For instance, in our exact LP model, the VOI in NDTC

systems can be up to 19%, which is 5 times greater than the maximum VOI in DTC systems. In

our approximate model, the VOI in NDTC systems can be up to 23%, which is 2.5 times greater

than the maximum upper bound on the VOI in DTC systems. Hence, we conclude:

Observation 4 Job type information is less valuable in a DTC environment than in a NDTC

environment.

The underlying reason for observation 4 is that DTC systems can compensate for a lack of

information by controlling queue length through adjustment of quality output (i.e., by changing

processing times). When information is not available in NDTC systems and a �wrong� job is chosen

for processing, there is no way to compensate. For example, if a job with a very long processing

time is chosen when the queue is long, the system will suffer by keeping many jobs waiting. In

contrast, in a DTC system, this job could be released more quickly in order to reduce waiting time

of the jobs in queue. The lack of ßexibility in NDTC environments makes job type information

more valuable as a means for avoiding costly mistakes.

As an example, consider a call center where agents provide technical support for a software
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product. In such a system, customers are likely to have a wide range of needs, from assistance in

learning how to use basic functions to suggestions for improving software performance. But it may

be difficult to differentiate the actual needs of the customers without conversing with them. Hence,

separating the calls into different queues as they enter the system could be very costly. Fortu-

nately, our results suggest that the value of knowing the call types in queue for these discretionary

completion times tasks is small. As a result, the beneÞt of modifying the system from a partial

information setting to a complete information setting is unlikely to warrant the cost.

In contrast, consider call center agents who are responsible for basic account support, including

assisting customers to change their account information and answering service inquiries. Each of

these call types have standard quality measures since a request is either completely fulÞlled or not

fulÞlled at all. Hence, the value-time curves will have shapes closer to a (NDTC) step-function.

Our results suggest that the value of information on call types in queue for these non-discretionary

completion time tasks could be large. Fortunately, in such a setting, the call types are more

clearly deÞned and can be easily differentiated using an automatic Þltering system (e.g., �press

one to change your account information.�) Consequently, it seems that technology for classifying

customers is more beneÞcial in precisely the environments where it is most feasible.

7 Conclusions

In this paper, we have presented analytical models that capture one important characteristic of

many operation systems - discretionary task completion. Our main insight is that, in work systems

with discretionary task completion times, it is attractive to adjust processing time, and hence job

quality, in response to system congestion. In factory physics terminology, quality is a variability

buffer (along with capacity, inventory and time). The presence of this fourth type of variability

buffer causes systems with discretionary completion times to exhibit some very different behaviors

from systems with non-discretionary completion times. Most strikingly, in contrast with DTC

systems, congestion may actually intensify as we increase capacity in NDTC systems. This occurs

when value gained from higher quality overrides the increase in holding cost. The implication from

a managerial standpoint is that quality must be incorporated into the evaluation of operational

improvements in systems with discretionary completion times.

By considering a two-job-class system, we also showed that the ability of DTC systems to

leverage quality ßexibility makes their performance less dependent on job-type information than
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less ßexible NDTC systems. This implies that investment in technology to identify job types in

queue is most attractive in systems where tasks are fairly similar to NDTC tasks.

The above insights were obtained by examining the optimal service policy for single-station

DTC work system. However, the optimal policy is probably too complex to implement in real-

world settings, particularly since value-time curves can only be approximated. We showed that the

double-threshold heuristic achieves nearly optimal performance, while the single-threshold heuristic

performs reasonably well only when tasks are fairly similar to NDTC tasks. Both of these policies

would be simple to implement (possibly by trial-and-error) in practice.

The work in this paper represents a Þrst step toward modeling and understanding service and

professional work systems with discretionary process times. To develop a more comprehensive set

of principles concerning design and management of service and professional work systems, further

modeling work is needed.

For instance, it would be valuable to extend the modeling of the value-time relationship from

deterministic to stochastic, where the level of quality output for a certain processing time is a

random variable. For example, two patients in an emergency room could both have a minor

leg injury (i.e., same task type), but have different age and medical histories which affects the

effectiveness of the time a physician spends on them. A stochastic quality-time curve would capture

another dimension of uncontrolled variability that may be important in DTC systems. With such

a model, we could investigate interesting questions such as: how do the different variability buffers

work together to mitigate the additional process variability? How does a time-based threshold

policy perform differently than a quality-based threshold policy?

It would also be useful to extend the single station model to network models of multi-stage DTC

work systems. An example of such network is an emergency health care system in which patients

go through several stages, such as: pre-screening by nurses at registration, initial diagnosis by

the doctor on duty, receipt of treatment possibly involving counsel by specialists, post-treatment

monitoring and Þnally discharge. These stages could be iterative if complications arise during

treatment.

In multi-stage systems, each stage has a distinct purpose and requires a different skill set. As

such, they raise questions about interactions and impact of discretionary task completion at the

different stages; for example, what is the best way to accommodate variable quality from upstream

stages at downstream stages? How do we deÞne the bottleneck in such DTC work systems?
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The long-term goal of research into DTC work systems is to gain insights into the best ways to

conÞgure and train service and professional workforces. By understanding the interactions between

capacity, variability and customer service (as determined by both quality and responsiveness), DTC

workers can make better time management decisions, while managers can make better decisions

concerning worker cross training, information sharing and collaborative work policies.
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