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Abstract

Every year, hundreds of thousands of people are affected by natural disasters. The number
of casualties is usually increased by lack of clean water, food, shelter, and adequate medical
care during the aftermath. One of the main problems influencing relief distribution is the
state of the post-disaster road network. In this paper, we consider the problem of schedul-
ing the emergency repair of a rural road network that has been damaged by the occurrence
of a natural disaster. This problem, which we call the Network Repair Crew Scheduling
and Routing Problem addresses the scheduling and routing of a repair crew optimizing
accessibility to the towns and villages that demand humanitarian relief by repairing roads.
We develop both an exact dynamic programming (DP) algorithm and a GRASP meta-
heuristic to solve the problem and compare the performance of both approaches on small-
to medium-scale instances. Our numerical analysis of the solution structure validates the
optimization model and provides managerial insights into the problem and its solutions.

Keywords: Network repair, repair crew scheduling, repair crew routing, dynamic pro-
gramming, greedy randomized adaptive search procedure (GRASP).

1. Introduction

Every year, hundreds of thousands of people are affected by natural disasters such as
floods and earthquakes, especially in less developed regions of the planet (Guha-Sapir
et al., 2011). An important observation, however, is that the number of casualties is
usually increased by lack of clean water, food, shelter, and adequate medical care during
the aftermath (PAHO, 2000). An adequate logistics reply to a disaster is therefore crucial.
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It has been conjectured that 80% of the disaster relief effort consists of logistics (Trunick,
2005). To a first approximation, therefore, disaster relief is logistics.

One of the main problems influencing the delivery of food, shelter, and medical supplies
to affected regions is the state of the road network. In many situations, it is not a lack
of supplies that kills people, but the impossibility to get those supplies to the people that
need it. In Haiti, for example, extensive media coverage of the 2010 earthquake resulted in
a large excess stock of relief supplies. However, distributing those supplies to the affected
villages proved far more difficult as road infrastructure had been damaged or destroyed
(Pedraza Martinez et al., 2010; Van Wassenhove et al., 2010). Further complicating the
repair of the road network is the often limited availability of road repair capacity, especially
in impoverished regions of the world. Therefore, it is crucial that road repair is planned
and executed in the most efficient way possible.

In this paper, we consider the problem of scheduling and routing the emergency repair crew
of a rural road network that has been damaged by the occurrence of a natural disaster. We
call this problem the Network Repair Crew Scheduling and Routing Problem, abbreviated
as NRCSRP. The NRCSRP addresses the scheduling and routing of a single repair crew,
starting from a single depot, while optimizing accessibility to the towns and villages that
demand humanitarian relief. Extending this work to more than one repair crew and more
than one depot is left for future research.

The problem is defined on an undirected and connected graph G = (V , E) of which the
nodes (V) are either demand nodes (Vd) or damaged nodes requiring repair (Vr). There is
one supply node that corresponds to the location in which the relief supplies are positioned
and from which the repair crew initially departs. This node is called the depot. Demand
nodes correspond to locations (usually villages) that demand humanitarian relief. The
importance of a village (node i) is represented by a demand, i.e., a weight factor wi, that
might, e.g., correspond to the number of inhabitants. Damaged (repair) nodes represent
the locations where the work of the repair crew is needed. Such nodes have a repair time
sj (for node j) that represents the time the repair crew spends on its first visit. Without
loss of generality, we do not distinguish between demand nodes and transshipment nodes,
i.e., cross points where two or more roads come together, since such nodes can be modeled
as demand nodes with zero demand. Each edge eij ∈ E represents a road that connects
two nodes i, j ∈ V . A travel time tij is defined for each edge eij to represent the time it
takes the repair crew to traverse it.

The aim of this problem is to determine the optimal sequence in which the crew should
traverse the graph, starting from the depot node. Every time it encounters a damaged
node that it has not visited before, it repairs the node and incurs the repair time of this
node. On subsequent visits the crew can pass that node without incurring any additional
time. When damaged nodes are repaired, demand nodes can become accessible. A demand
node i is called accessible if there exists a path connecting this node to the depot that
contains only undamaged and/or repaired nodes, and is not longer than a certain maximum
distance Di. The maximum distance Di is node-specific and can be computed based on

2



pre-disaster conditions (e.g., the distance between a demand node and the depot should
not be more than twice the distance it was before the disaster). Thus, in addition to the
travel time tij, each edge eij has a distance measure, denoted dij, that is used to evaluate
nodes’ accessibility.

For each demand node, the schedule of the crew determines the moment in time at which
this node becomes accessible. The objective function of the problem is the sum of the
moments at which each demand node becomes accessible weighted by the node demand
wi. The objective of the network repair problem is to determine the schedule and route of
the repair crew that minimizes this objective function. In general, it is not necessary for
the repair crew to visit all damaged nodes. Figure 1 illustrates an example problem and
solution for the NRCSRP with four damaged nodes.

s

wisj

a.) Damaged network

s

wi

b.) Repaired network

wisj

Supply node

Demand node
Repair node

Undamaged road

Damaged road

Repair crew route

Figure 1: Example of a Damaged Network and Repair Crew Route for NRCSRP

The NRCSRP captures the most important aspects of the problem of routing a road repair
crew in order to restore accessibility to demand points affected by damaged roads. To
solve this problem, we develop two very different approaches. A dynamic programming
(DP) model is able to find optimal solutions to small and medium-sized instances and
provides insight into the fundamental structure of the problem. An efficient GRASP
(greedy randomized adaptive search procedure) metaheuristic is able to solve medium- to
large-scale instances in very small computing times. A comparison of the performance of
both approaches yields interesting insight into the underlying problem structure.

The problem of scheduling the repair operations in a post-disaster situation can be modeled
in many different ways and the exact formulation of the NRCSRP is the result of several
design choices. As mentioned, one of the main causes of human casualties is the fact
that a disaster tends to disconnect remote population centers from the main supply hub.
In poorer countries around the world, people are usually dependent on a very limited

3



number of economic centers (usually larger cities) for sustenance. The demand nodes in
the NRCSRP may therefore represent small villages or settlements, temporary medical
facilities, shelters, or food distribution points. The supply node on the other hand will
represent a city, an airport, or a port area where the relief goods arrive. When these
demand points can no longer be reached by road from the supply point, the results are
often dramatic. This is especially the case in rural areas, that lack the redundancy in the
road network that characterizes cities. For this reason, the NRCSRP is explicitly defined
on sparse networks, that are more common in rural than in urban situations, and the
graphs underlying all generated test instances are sparse.

By explicitly considering the routing of the repair crew, the NRCSRP — unlike most
previous contributions — adds a crucial time component that makes the problem more
realistic and more suitable for real-life post-disaster situations. Like in real life, roads
cannot be repaired until they can be reached by a repair crew. As mentioned, the objective
function of the NRCSRP minimizes the demand-weighted moment in time at which all the
demand nodes are connected to the supply node. The demand assigned to each demand
node should be interpreted as a function of the importance of connecting this node, e.g.,
its population size. The objective function also takes the urgency of connecting the nodes
into account, as even less important demand nodes (with small demand) may cause a large
objective function increase when ignored for too long. In a sense, the NRCSRP models
aspects of both the immediate response (routing of the repair crew) and the recovery
(connecting the demand nodes as soon as possible) phases.

In a post-disaster immediate response situation, budget constraints are not usually a pre-
dominant issue, and the focus is on restoring connectivity of the affected regions with the
limited physical means available. Nevertheless, an in-depth analysis of solutions produced
by our solution approaches for the NRCSRP reveal interesting managerial results with
considerable implications for further budgetary analysis. More specifically, our analysis
shows that only a limited number of damaged roads (around 30%) needs to be repaired
in order to restore full accessibility. Additionally, when studying the optimal or best-
known solutions, we observe that the repair operations have, on average, a diminishing
rate of return, connecting a lot of demand in the beginning and much less demand at
the end. However, this simple observation hides a large amount of variation, and cannot
be compressed into some simple rule-of-thumb that could replace an efficient algorithm.
Moreover, we are able to demonstrate the importance of planning the repair several stages
ahead by comparing our results to a greedy myopic heuristic.

The remainder of this paper is organized as follows. The next section reviews the liter-
ature on related network repair problems. In Sections 3 and 4 we develop two radically
different solution approaches for the NRCSRP: a dynamic programming method and a
GRASP (greedy randomized adaptive search procedure) metaheuristic, respectively. Both
approaches are compared in Section 5, and the strong and weak points of each method are
exposed. Section 5 also contains an analysis of the structure of optimal or high-quality
solutions and managerial insights obtained from the numerical results. Conclusions and
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suggestions for future research can be found in Section 6. A detailed list of symbols used
in the paper can be found in Appendix Appendix A. A mixed-integer linear programming
formulation of the problem, which we had to forgo as an inefficient solution method, is
presented in Appendix Appendix B.

2. Literature Review

In recent years, the field of Operations Research and Management Sciences (OR/MS)
has turned its attention to disaster management and humanitarian logistics in a big way.
As pointed out by authors such as Ergun et al. (2010) and Van Wassenhove (2003), this
subject is growing in importance due to the positive impact that the efficient planning of
resources in humanitarian situations and the application of OR/MS techniques can have
on alleviating the consequences of a disaster. However, several authors agree that disaster
management is a topic in which the OR/MS community still has to strengthen its critical
mass. Moreover, Altay and Green (2006) and Ergun et al. (2010) highlight that disaster
recovery, i.e., the planning of actions taken during the reconstruction phase, is one of the
main areas in which more research is needed. A recent survey by Kunz and Reiner (2012)
confirms that “only ten papers specifically address the reconstruction phase” and stresses
the importance of this stage by stating that “the quality of the logistical activities during
this phase strongly impacts the success of the whole disaster recovery process, especially
in terms of sustainability and long-term effectiveness (Beamon and Balcik, 2008; Benson
et al., 2001; Besiou et al., 2011; Kovács and Spens, 2011).” Several authors such as
Ergun et al. (2010) and Sheu (2007) point out the need for comprehensive models that:
(1) integrate multiple stages of the disaster management process as a way to account
for the interaction between the decisions made at different stages; (2) are adaptive to
incorporate new information when a change occurs, due to the fact that in a disaster
framework, information is usually limited at the beginning, and as time passes, more
and more accurate information becomes available. Similarly, Holgúın-Veras et al. (2013)
highlight that single-period formulations cannot account for the inter-temporal effects due
to the impacts of delivery actions that accrue over subsequent time periods. Therefore,
there is a need for models that involve the timing in which the recovery actions are taken
when evaluating the performance of this stage of the disaster management process.

The problem we address in this paper lies on the intersection of the aforementioned areas of
research. It mainly focus on the recovery phase but also touches on the immediate response
phase. Therefore, it integrates different phases of the disaster management process as
it considers the emergency recovery of the road network while capturing the urgency
of repairing a road to facilitate the relief distribution. The objective function of our
problem accounts for the temporal impact of the repair decisions which is neglected in
classical single-period models. Three different decisions are taken into account, on different
managerial levels: (1) decide which damaged arcs have to be repaired; (2) assign the
various repair activities to a repair team in a certain order; (3) determine the actual
route or sequence of nodes to be visited by the repair crew. Most papers in the literature
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address the first or second group of decisions and do not take into account the additional
constraints that might be needed when routing the repair crew(s), such as precedence
constraints to ensure a connected path that allows to traverse the network and reach the
damaged arcs. Only a handfull of papers address the actual routing of the repair crews.
However, these contributions rely on intricate approaches that are not easily scalable to
larger problems.

Most of the papers that simultaneously tackle the three different decisions discussed here,
use mathematical programming to formulate the network recovery problem. Due to the
complexity of those models, they are usually tested only in few small sized instances or
heuristic approaches are used to find good feasible solutions. Additionally, some of those
papers take into account several objective functions which are, in general, handled through
classical multi-objective methods such as weighted sum approaches and goal programming.

Chen and Tzeng (1999) consider the problem of scheduling and routing a set of work-troops
in order to repair a set of damaged points scattered throughout a road-network after a
large-scale earthquake. Their model consists of an upper level that schedules the work
teams and a lower level that is an asymmetric traffic assignment model. Three objectives
are considered, and a fuzzy genetic algorithm multi-objective approach is applied to solve
the model heuristically. The approach is tested on a single small instance based on the
Northridge earthquake (USA, 1994). Feng and Wang (2003) focus on the road network
repair activities that occur over the first 72 hours after the disaster. The authors propose
a multi-objective programming model that assigns the repair tasks to the work teams
and defines the route to be followed by each team while maximizing the performance
of the emergency road repair activities, maximizing the number of people that benefit
from it, and minimizing the risk for rescue crews. A case study presenting the Chi-Chi
earthquake is used to assess the model on a small instance involving disruptions in 6 out
of 62 arcs. Yan and Shih (2009) propose a mathematical bi-objective model based on two
time-space networks, one for the emergency repair and another for the relief distribution,
which considers multiple commodities and minimizes the length of time required for both
emergency roadway repair and relief distribution.

The papers that do not explicitly consider the routing of the repair crew usually focus on
prioritizing the elements of the network that should be upgraded or repaired while con-
sidering interdependencies among related infrastructure and budget constraints. Larger
instances are solved as some of the more complicating constraints (e.g., precedence con-
straints) are not needed.

Karlaftis et al. (2007) develop a methodology to optimally prioritize bridge repair in an
urban transport network following a natural disaster. The resource allocation problem
is formulated as a three-stage model, and a genetic algorithm is implemented to solve
it. An instance considering 400 bridges in the surroundings of Athens is used to test the
approach and to draw useful insights regarding the magnitude of repairs and necessary
funds for repairing a bridge network following an unforeseen event. A multi-objective
network optimization model is proposed by Matisziw et al. (2010) to facilitate identification
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and scheduling of potential recovery scenarios following disruptions involving substantial
loss of network nodes and arcs. The network performance is optimized across a planning
horizon restricted to the constraints on resources for recovery efforts. The developed model
is applied to support recovery planning for a telecommunication backbone network, which
differs from road networks in the sense that a constraint to enforce accessibility to the
damaged nodes is not required. Cavdaroglu et al. (2013) consider the problem of restoring
critical interdependent infrastructure after a non-routine event causes disruptions. The
authors propose a mixed-integer program that integrates three different decisions: the set
of components to be installed or repaired (i.e., restoration decisions), the assignment of
selected components (tasks) to available work groups, and the order in which each work
group will complete the tasks assigned to it. The latter set of decisions involves a network
design phase that does not explicitly considers precedence constraints. The objective
function of this problem measures how well the services are being restored over the horizon
of the restoration plan. A heuristic solution method is proposed and tested on a data set
that is a realistic representation of the power and telecommunication systems of a large
portion of Manhattan. Maya Duque et al. (2013) propose a linear integer programming
formulation and two heuristic solution approaches to prioritize and allocate resources on
a network upgrading problem in order to improve the accessibility to a set of vertices in a
network. This problem arises in the domain of rural road network planning when allocating
resources to upgrade roads of a rural transport network, in order to improve the access
that communities in small villages have to the regional centers. The problem addressed
lies on the strategic and tactical level but does not involve the operational level as the
actual scheduling and routing of the upgrading work is not considered. Tuzun Aksu and
Ozdamar (2014) focus on the planning of road restoration efforts during disaster response
and recovery. The road restoration work is scheduled with the goal of maximizing the
total weighted earliness of all cleared paths as a measure of the network accessibility for
all locations in the area during the restoration process. The authors propose a dynamic
path based mathematical model in which a set of access paths are defined for each node
in the network and the union of these paths compose the total set of pre-defined access
paths to be cleared.

Stilp et al. (2012) study a related problem of managing debris collection and disposal
operations following a disaster. While their work addresses various stages of debris man-
agement operations, the so-called clearance problem with complete information, focusing
on clearing out the roads immediately following a disaster, is the most relevant to our
problem. The authors consider a multi-period problem on a network with a given subset
of supply and demand nodes. A subset of network arcs are blocked by debris and have to
be cleared to connect supply to demand. Maximum budget caps how much debris (and
correspondingly, how many arcs) can be cleared each time period. The objective of the
clearance problem is to minimize total penalty for unmet demand incurred each period.
The problem is modeled using mixed integer programming and solved using both CPLEX
and a set of dedicated heuristics. Unlike Stilp et al. (2012), we do not have discrete time
periods, and our model captures the actual time it takes for a repair crew to reach a
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damaged point and to repair it, before the crew can move on to the next task. Therefore,
our solution includes the explicit route of the repair crew in the time-spatial domain.

A number of classic optimization problems, such as prize collecting traveling salesman
problem (Balas, 1989), the vehicle routing problem (e.g., Toth and Vigo (2002); Laporte
(1992)), the prize collecting Steiner tree problem (Goemans and Williamson, 1995), and
the orienteering problem (Golden et al., 1987), also have similarities with our work, where
damaged points in our problem correspond to “customers” to be visited to collect a “re-
ward”. In this way, our problem can be thought of as an optimal routing problem between a
subset of repair nodes. However, a number of significant distinctions between our problem
and these classic optimization problems prevent the straightforward extension of existing
solution approaches. First, our problem seeks to simultaneously find the repair schedule
and the paths between the nodes to be repaired, since those two entities are interdepen-
dent. Furthermore, the order in which we visit the repair nodes has significant impact on
the set of feasible paths between the nodes and on the “reward” collected when we visit
them. Finally, the actual moment in time at which each node is repaired is also a factor
in the total collected “reward”, equating it to a time-dependent setting. Also note that
unlike the Steiner tree problem setting, a tree solution structure is suboptimal in most
instances of our problem.

3. Dynamic Programming Model for NRCSRP

First, we outline our dynamic programming (DP) model in words, then provide the math-
ematical formulation of the problem, and finally discuss the implementation. For a list of
symbols used see Appendix Appendix A. A MIP formulation of our problem is given in
Appendix Appendix B, but a direct implementation of this model in a commercial MIP
solver resulted in an intractable solution method even for small problem instances.

Our DP model keeps track of the repair crew as it repairs one node in Vr after another,
and makes sequential decisions on which node the crew should repair next. When a node
is repaired, a subset of demand nodes that have not been accessible so far can become
connected to the supply node, and a “cost” is incurred corresponding to the new satisfied
demand weighted by the time when the connection is established. A constraint is implicitly
included requiring to connect all demand nodes to the supply node, and the weighted time
the algorithm connects all the nodes in Vd corresponds to the cost that is being minimized.
Thus, the state of our model needs to keep track of the current time and location of the
repair crew, as well as the subset of damaged nodes that have not been yet repaired,
and the subset of demand nodes that are not yet accessible from the depot. Our DP
formulation requires an additional auxiliary node n + 1 to be added to the graph. This
node corresponds to a dummy depot connected to all the damaged nodes (i.e., nodes in
Vr) through arcs with zero travel time. Note that the DP model explicitly tracks the crew
as it moves from one repair node to the next, while the fastest feasible paths between the
repair nodes are calculated at each state transition to compute the corresponding travel
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time. Finally, we assume that the DP state is updated after repair of the current node is
completed.

3.1. Formulation

Formally, this problem can be expressed as a dynamic programming model as follows.

DP state:. s = (i, t, V̄d, V̄r), where

i ∈ (Vr \ V̄r) ∪ {0} ∪ {n+ 1} current repair node location of the crew,
t ≥ 0 current time,
V̄d ⊆ Vd demand nodes that are not yet accessible,
V̄r ⊆ Vr damaged nodes that are not yet repaired.

DP action:. a = j, corresponding to the decision for the repair crew to move to node j,
where, given the current state s = (i, t, V̄d, V̄r), the action space A(s) is

A(s) =

{
{j ∈ V̄r : τ(i, j, V̄r) <∞}, if V̄d 6= ∅
{n+ 1}, if V̄d = ∅ .

Here, τ(s, a) = τ(i, j, V̄r) is the function that returns minimum travel time between nodes
i and j over all the paths that do not pass through nodes in V̄r. The function returns
infinity if no such paths exist. The fastest path problem from i to j for all j ∈ V̄r can be
solved efficiently with one execution of a Dijkstra’s algorithm (Dijkstra, 1959), similar to
the discussion of the accessibility function below.

DP state transition:. g(s, a) the state transition function that returns a state to which the
system transitions when action a is chosen in state s. That is, s = (i, t, V̄d, V̄r) −→(a=j)

(i′, t′, V̄ ′d, V̄ ′r) = s′, where

i′ = j,
t′ = t+ τ(i, j, V̄r) + sj,
V̄ ′d = V̄d \ v(V̄d, V̄r, j),
V̄ ′r = V̄r \ {j}.

Here, v(s, a) = v(V̄d, V̄r, j) is an accessibility function that returns a subset of nodes in V̄d
that become accessible when node j ∈ V̄r is repaired. Note that v(V̄d, V̄r, j) can return
an empty set when no new nodes are connected to the supply node by repairing node j.
A set of shortest (distance) path problems on the updated network (where node j can be
passed without incurring the repair cost) needs to be solved in order to evaluate v(.). An
efficient way to do so is discussed later in this section.
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DP action cost:. c(s, a) is the instantaneous cost of action a when in state s, where for
s = (i, t, V̄d, V̄r) and a = j we have

c(i, t, V̄d, V̄r, j) = (t+ τ(i, j, V̄r) + sj) ·
∑

k∈v(V̄d,V̄r,j)

wk, (1)

Recursive equation:. Let f(s) denote the minimum cost incurred by the system reaching
from the initial state s0 = (0, 0,Vd,Vr) to the current state s = (i, t, V̄d, V̄r). Then, we can
write the following dynamic programming (Bellman’s) recursive equation:

f(s′) = min
{s, s.t., g(s,a)=s′, a∈A(s)}

{f(s) + c(s, a)} , (2)

where f(s0) = 0. Recursively solving equation (2) we find the minimum value for

min
{s=(i,t,V̄d,V̄r), s.t., i=n+1}

f(s),

which corresponds to the minimum value of our problem objective function.

Accessibility Function:. Recall, v(s, a) = v(V̄d, V̄r, j) is an accessibility function that re-
turns a subset of nodes in V̄d that become accessible when node j ∈ V̄r is repaired. This
function can be efficiently evaluated as follows.

First, let G(V̄r) ⊆ G = (V , E), be a modified network where nodes in V̄r and the arcs
adjacent to nodes in V̄r are omitted from the original graph G. This accounts for the fact
that the demand nodes cannot be connected to the supply node through the damaged
nodes that have not been yet repaired. Then, observe that a previously unaccessible
demand node k ∈ V̄d becomes accessible when node j ∈ V̄r is repaired if and only if there
is a path from k to the depot node (node 0) in network G(V̄r \{j}) that is not longer than
Dk and passes through node j. If there was a path from k to 0 that is not longer than
Dk and does not pass through node j, then that node would have been accessible prior
to repairing node j, i.e., it would not have been in V̄d. Thus, to evaluate the accessibility
function v(V̄d, V̄r, j), we find the shortest distance path from each node in the set V̄d to
node j and then add the shortest distance from j to 0 in network G(V̄r \ {j}). For each
node k ∈ V̄d that has the sum of the two distances less than or equal to Dk, repairing node
j would connect that node to the supply node, and the accessibility function v(.) returns
a set of those nodes.

Note that the algorithm has to evaluate v(V̄d, V̄r, j) for all j ∈ V̄r, each of which would
require to find a minimum path from j to all the nodes in V̄d. We can improve the
implementation efficiency by intelligently sequencing these operations. To this end, the
algorithm uses Dijkstra’s algorithm, which efficiently finds a minimum cost path in a static
network from one node to all other nodes. At each iteration of our dynamic programming
functional equation (2), we implement Dijkstra’s algorithm on G where every node in V̄r
is terminal. That is, as soon as the algorithm reaches one of the nodes that have note
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been previously repaired (i.e., in set V̄r), the paths are not allowed to continue through
that node. Thus, we find a shortest path from supply node 0 to all nodes in V̄r, and let βj
for j ∈ V̄r denote such distance. Then, for each j ∈ V̄r such that βj ≤ maxk∈V̄d Dk we find
a shortest path in network G(V̄r \ {j}) from j to all nodes in V̄d, and let δjk for k ∈ V̄d
denote such distance. Then, v(V̄d, V̄r, j) = {k ∈ V̄d, s.t., βj + δjk ≤ Dk}. Observe, that
our dynamic programming model requires solving a set of smaller dynamic programming
models (shortest paths from node 0 to nodes in V̄d on a partially repaired network) to
evaluate the cost associated with each decision in the action space.

3.2. Implementation

There are a number of observations and problem structure properties we use to facilitate
efficient implementation of the DP model.

3.2.1. Initialization.

To initialize the DP recursive equation, the algorithm preprocesses the problem instance
to find a more compact initial state than s0 = (0, 0,Vd,Vr). We note that in a given
instance, a number of demand nodes can maintain their accessibility despite the damage
to the road network, and s0 does not need to include all the nodes in Vd. Thus, a shortest
path algorithm is run on the damaged network (i.e., no nodes in Vr are assumed to be
repaired) to find the minimum distance between the supply node 0 and all the demand
nodes. Then, the distances found are compared to the values of Di’s, and nodes in Vd that
are already accessible are omitted from the initial state s0. In addition, the demand nodes
with wi = 0 are omitted, since these nodes correspond to transshipment (intersection)
nodes and, regardless of their accessibility status, do not contribute to the value of the
objective function.

3.2.2. Cost Function Reformulation.

The cost function defined in equation (1) assigns a positive value to an action corresponding
to repairing a damaged node that connects new demand nodes to the supply and a zero
value when a repair action does not establish accessibility for any demand nodes. When
a network is severely damaged requiring to repair multiple nodes to improve accessibility,
our DP state network has a significant number of action arcs correspond to zero cost, and
only a small subset of actions has value larger than zero. Implementation of minimum cost
algorithms on such networks is inefficient since a lot of actions and nodes have identical
values (i.e., equal contribution to the objective function). To facilitate more efficient
implementation of the DP model, we redefine the cost function as follows,

c′(i, t, V̄d, V̄r, j) = (τ(i, j, V̄r) + sj) ·
∑
k∈V̄d

wk. (3)
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Thus, equation (3) assigns a cost of going from node i to node j equal to the penalty
accrued during that move (plus repair time at node j) for all the demand nodes that have
not been accessible at that time. Then, the original recursive equation (2) is solved while
substituting cost function c(.) with the new cost function c′(.). Observe that the modified
formulation results in exactly the same objective function value, the only difference being
how we sum the cost: all at once at the time of connecting a demand node to the supply
(1), or progressively as crew moves along the path (3).

4. A GRASP Metaheuristic for the NRCSRP

Due to the limitation on the size of problems that can be solved by our DP model, we
present an alternative approach to tackle the NRCSRP: a GRASP metaheuristic. GRASP
is a constructive metaheuristic introduced by Feo and Resende (1995) that generally con-
sists of two phases: construction of a feasible solution and improvement of the constructed
solution. Both phases are usually iterated several times, after which the best solution is
reported. The construction phase uses a controlled amount of randomness in order to over-
come the myopic behaviour of a greedy constructive heuristic. The improvement phase
uses, in most cases, a local search strategy that iteratively improves the initial solution by
making small changes to it. The choice to develop a GRASP metaheuristic is not arbi-
trary. Besides its simplicity and the fact that its effectivity has often been demonstrated,
the nature of the problem invites the use of a constructive heuristic that starts from an
empty solution and adds one element (the next road to repair) at a time. Moreover, the
DP method can be seen as an advanced constructive procedure that uses backtracking.

In Section 4.1, we present a set of basic definitions for our GRASP metaheuristic. The
construction phase is described in Section 4.2, while the improvement phase is presented
in Section 4.3. Finally, the technical details related to the implementation are discussed
in Section 4.4.

4.1. Heuristic Notation and Definitions

We consider the undirected and connected graph G = (V , E) that defines the NRCSRP,
introduced in Section 1, and refer to it as the original graph. Additionally, we define a
reduced graph G ′0 = (V ′0, E ′0), in which only the repair nodes and the depot node appear.
In this reduced graph the set of vertices is V ′0 = Vr ∪ {0}. The set of edges E ′0 consists
of those node pairs (i, j) ∈ E ′0 between which a path in G exists that does not contain
any other nodes in V ′0 (i.e., that does not pass through nodes in Vr that have not been
repaired). The cost of edge (i, j) ∈ E ′0 is equal to the minimum travel time between nodes
i and j in G. Note that, for a given pair of nodes i and j, such a path might not exist. If
that is the case, no edge is present in the reduced graph G ′0. Figure 2 presents an example
of an original graph and the associated reduced graph.
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Figure 2: Graph Reduction Process

Let x = [x1, x2, . . . , xk] where k ≤ |Vr| and xn ∈ Vr for n = 1, . . . , k be a candidate
solution of the NRCSRP. Such a candidate solution is a permutation of a subset of the
damaged nodes, and corresponds to the sequence to be followed by the repair crew, where
xn is the nth repair node on the crew’s schedule (for n = 1, . . . , k). Note, however, that
not all permutations might be feasible due to existing precedence relationships. These
precedence relationships are due to the fact that there might be some damaged nodes that
can be reached only after another damaged node has been repaired. Therefore, we define
a solution x to be feasible if the sequence that it represents makes all the demand nodes
accessible to the depot and all precedence relationships hold.

For a given permutation x = [x1, . . . , xk] where k ≤ |Vr|, G ′n = (V ′n, E ′n) for 1 ≤ n ≤ k
denotes the updated reduced graph after nodes x1, . . . , xn have been repaired and the
repair crew is located at node xn. Then, V ′n = Vr \ {x1, . . . xn−1} and E ′n is the set of edges
such that (i, j) ∈ E ′n for i, j ∈ V ′n if there exists a path in G between nodes i and j that
does not contain any other nodes in V ′n.

Then, for a given x we define,

t(xn) Time at which node xn is repaired;
V̄nd ⊆ Vd Demand nodes that remain inaccessible after repairing nodes x1, ..., xn

in sequence x;
V̄nr ⊆ Vr Damaged nodes that have not been repaired after repairing nodes

x1, ..., xn in sequence x;
G ′n = (V ′n, E ′n) Reduced graph after repairing nodes x1, ..., xn in sequence x;
δ(xn,G ′n) Set of nodes adjacent to xn in the graph G ′n,

that is δ(xn,G ′n) := {i ∈ V̄nr : (xn, i) ∈ E ′n}.

Similarly to the description of our DP model, we define an accessibility function v(x, i),
for x = [x1, . . . , xk] and i ∈ V̄kr . Function v(x, i) returns the subset of nodes from V̄kd
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that become accessible when node i is repaired after first having repaired nodes x1, . . . , xk
(that is, when the damaged node i is added in the position k + 1 to the repair sequence).
In Section 4.4.2 we present an efficient way to evaluate the accessibility function v(x, i) in
this context.

Finally, solution x = [x1, . . . , xk] has an associated objective value f(x) that is equal to
the demand-weighted sum of the time when each demand node in Vd becomes accessible.
Thus, the objective value f(x) of a solution x = [x1, . . . , xk] is

f(x) =
k∑

n=1

t(xn) ·
∑

i∈v(x′,xn):
x′=[x1,...,xn−1]

wi

 . (4)

4.2. Construction Phase

The construction phase of our GRASP algorithm aims to generate an initial feasible solu-
tion for the NRCSRP. Although some randomness is needed to generate a diverse set of
initial solutions during different iterations of the algorithm, a completely random proce-
dure (e.g., a random permutation of the damaged nodes) is generally not advised. This is
due to the fact that such procedure might either fail to generate a feasible solution or only
generate low quality initial solutions. Therefore, we propose a procedure that generates
feasible solutions for the NRCSRP taking into account the pre-disaster network conditions.

The repair sequence is initialized at time 0 with the depot node (i.e., n = 0, x0 = 0,
x = ∅) and the following steps are iterated until either all damaged nodes are repaired or
all demand nodes have became accessible, whichever comes first.

Step 1. Choose the next node to be repaired (xn+1) from the set of nodes adjacent to xn
(δ(xn,G ′n)). (Section 4.2.1 describes the procedure that is used to select node xn+1.)

Step 2. Update the repair time for node xn+1:

t(xn+1) = t(xn) + t′xnxn+1
+ sxn+1 , (5)

where t′xnxn+1
is the travel time between damaged nodes xn and xn+1 in the reduced

graph G ′n (i.e., the time to traverse the edge that connects nodes xn and xn+1 in the
reduced graph G ′n).

Step 3. Evaluate the accessibility function v(x, xn+1) where x = [x1, . . . , xn]. (Sec-
tion 4.4.2 describes this procedure.) Use the set of nodes returned to update V̄n+1

d

and V̄n+1
r , as follows,

V̄n+1
d = V̄nd \ v(x, xn+1), (6)

V̄n+1
r = V̄nr \ {xn+1}. (7)
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Update the value of the objective function,

f(x1, ..., xn+1) = f(x1, ..., xn) + b(x, xn+1), (8)

where b(x, xn+1) is the marginal contribution to the objective function value of re-
pairing node xn+1 after having repaired the nodes x = [x1, . . . , xn]. That is,

b(x, xn+1) = t(xn+1) ·
∑

i∈v(x,xn+1)

wi. (9)

Step 4. Update the new repair sequence x←− [x, xn+1].

Set n ←− n + 1, update the reduced graph G ′n = (V ′n, E ′n) and identify the set of
adjacent nodes δ(xn,G ′n).

In Algorithm 1, we present a schematic overview of this procedure.

Algorithm 1 Construction Phase

1: Initialization: n = 0, xn = 0, G ′0 = (V ′0, E ′0), x = ∅
2: while V̄nr 6= ∅ and V̄nd 6= ∅ do
3: Select a node xn+1 from δ(xn,G ′n) to be repaired
4: Update t(xn+1)
5: Evaluate the accessibility function v(x, xn+1)
6: Update the sets V̄n+1

d and V̄n+1
r

7: Update the objective function f([x, xn+1])
8: Update the repair sequence x←− [x, xn+1]
9: Set n←− n+ 1

10: Update the reduced graph G ′n = (V ′n, E ′n) and set δ(xn,G ′n)
11: end while

4.2.1. Selection of the Next Node to Be Repaired.

Algorithm 1 (Step 1) requires that, at each iteration and for a given current candidate
solution x = [x1, . . . , xn], we choose the next node to be repaired (xn+1) from the list of
adjacent nodes δ(xn,G ′n). Depending on how this selection is performed, different solu-
tions might be obtained. We propose a selection procedure that encompasses two basic
principles: (1) it uses information about the network before the disaster (i.e., in which all
nodes in Vr are non-damaged); and (2) it includes randomness such that different solu-
tions might be generated every time the constructive phase is executed. This procedure
is carried out as follows.

Given the original network G = (V , E) and assuming that all damaged nodes are repaired
(corresponding to the network before the disaster), we solve a minimum cost flow problem
in which the cost corresponds to the travelled distance; each demand node i has a demand
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wi; each damaged node has a demand equal to zero; and the depot has a supply capacity
equal to

∑
i∈Vd wi. Based on the solution of this minimum cost flow problem, parameter

ui is computed for each damaged node. The value of ui is equal to the amount of flow that
passes through node i and reflects the importance of node i in the pre-disaster conditions.

Next, given a candidate solution x = [x1, . . . , xn], the next node to be repaired (xn+1)
has to be selected from the set of nodes adjacent to xn (δ(xn,G ′n)). To accomplish this,
for each node k ∈ δ(xn,G ′n) we compute a probability pk of selecting that node to be the
next node xn+1. Probability pk is computed using equation (10). The first component of
equation (10) represents the importance of node k relative to all the nodes in δ(xn,G ′n).
This component is multiplied by λ ∈ [0, 1] that weighs the importance of the pre-disaster
conditions. The second component of equation (10) distributes the remaining (i.e., (1−λ)-
weighted) probability of selecting node k equally among all the nodes in δ(xn,G ′n).

pk = λ
uk∑

j∈δ(xn,G′n) uj
+ (1− λ)

1

|δ(xn,G ′n)|
. (10)

Using the presented procedure to generate the initial solution guides our algorithm to
solutions that resemble the network before the disaster while simultaneously introducing
diversity to the set of initial solutions. This random diversity of the initial solutions
facilitates better exploration of the solution space.

4.3. Improvement Phase

The improvement phase of our GRASP metaheuristic uses a local search algorithm to
improve the initial solution generated during the construction phase. The local search
improves this solution by iteratively making small changes, called moves to the current
solution. The set of solutions that can be reached from the current solution by applying a
single move, is called the neighborhood of that solution. In each iteration, a solution from
the neighborhood of the current solution is selected to become the new current solution
according to a pre-specified move strategy. The local search stops when all solutions in
the neighborhood of the current solution have a worse objective function value, or when
a given maximum number of iterations, θ, is reached.

The first step of the local search algorithm is to clean up the solution generated during the
construction phase, x = [x1, . . . , xk] for k ≤ |Vr|. More specifically, the algorithm removes
all the repair nodes in the sequence that do not improve connectivity nor accessibility
of any other node. To do this, for each node xi ∈ x, V̄ i−1

d is compared to V̄ id. If both
sets are the same, repairing node xi has not improved the accessibility of the network.
Equivalently, the algorithm evaluates the accessibility function discussed in Section 4.4.2
to check whether v(x′, xi) 6= ∅, for x′ = [x1, . . . . . . xi−1]. It also compares sets of repair
nodes that can be reached before and after repairing node xi, i.e., it compares δ(0,G ′i−1)
and δ(0,G ′i). If xi itself is the only difference between those two sets, the connectivity
of the network has not been improved. Thus, we define a boolean function h(xi) for
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all xi ∈ x that is equal to 1 if repairing node xi after nodes x1, ..., xi−1 in x have been
already repaired improves at least one of either connectivity or accessibility of the network.
Otherwise, h(xi) is set to 0. The cleanup step of the improvement phase evaluates h(xi)
for all xi ∈ x and removes all xi for which h(xi) = 0 from the repair sequence x. We
denote the new solution by x0 = [x1, ..., xk0 ]. Note that the new solution x0 corresponds
to a feasible solution with an objective function value that is guaranteed to be no worse
than the initial solution x.

After the initial solution has been cleaned up, the second stage of the improvement phase
is executed, which reorders the repair nodes in x0 in order to improve the solution. This
is carried out by iteratively relocating elements in x0 one node at a time. To perform a
relocation move three distinct steps are executed:

Step 1. Select node xi ∈ x0 to be relocated. The algorithm chooses node xi that
has the largest marginal contribution to the objective function, i.e.,

i = arg max
l
{b(xl) : l ∈ (1, ..., k0)} . (11)

Step 2. Choose the position j to which node xi will be relocated. Starting with
j = 1, the algorithm checks whether inserting xi into the jth position is feasible and
decreases the objective value f(.). The algorithm iteratively increases j by one until
it finds such a position or reaches the current position of node xi, i.e., j = i. (See
Section 4.4.1 for details on how the feasibility check is performed.)
If no such j is found, the algorithm goes back to step 1 and selects the xi with the
next largest value of b(xi).

Step 3. Update the new solution. Let the relocation function r(x0, i, j) return the
solution resulting from relocating xi ∈ x0 into the jth position and update b(xi)
values for i ∈ (1, ..., k0) for the new repair sequence. That is

r(x0, i, j) = [x1, ..., xj−1, xi, xj, ..., xi−1, xi+1, ..., xk0 ]. (12)

The intuition behind Step 1 is to select the damaged node from the repair sequence that
has the largest impact on the objective function (possibly, due to its connectivity to a
large number of demand nodes or to the demand nodes with high demand values) and
attempt to decrease its marginal value by inserting it as early as possible into the repair
sequence. Note that another variation of the presented metaheuristic is to implement the
cleanup step on the updated solution after each reordering iteration, but our numerical
tests demonstrate no benefit of doing so.

In order to efficiently explore the neighborhood of the current solution x0 = [x1, . . . , xk0 ]
we form a list L(x0) containing the nodes to be repaired, (x1, . . . , xk0). This list is sorted
in decreasing order with respect to the values b(xi) associated with each damaged node
xi ∈ x0. The sorted list is explored from the beginning until we find the first node to
be relocated that improves the solution. When a better solution is found, we update the

17



solution and resort the list. Algorithm 2 presents a schematic overview of the improvement
phase.

Algorithm 2 Improvement Phase

1: Pre-processing: clean up solution deleting nodes with h(xi) = 0
2: repeat
3: Sort L(x0) in descending order of b(xi)
4: for i = 1 . . . k0 do
5: for j = 1 . . . i do
6: x̂←− r(x0, i, j)
7: if x̂ is feasible AND f(x̂) < f(x0) then
8: x0 ←− x̂
9: Return to line 3

10: end if
11: end for
12: end for
13: until Stopping criterion is met

4.4. Implementation

Here, we discuss the nuances of implementation of the presented GRASP algorithm. First,
in Section 4.4.1, we describe the procedure to determine whether a solution obtained by a
relocation move is feasible. Then, in Section 4.4.2, we present the procedure to evaluate
the accessibility function v(x, i).

4.4.1. Feasibility Check.

Each iteration of the improvement phase, described in Section 4.3, requires the algorithm
to explore the neighborhood of the current solution x0. To this end, for each neighboring
solution x̂ obtained by relocating a repair node xi ∈ x0, the algorithm first evaluates
whether x̂ is feasible, and then whether it improves the current solution x0. In case a
node xi is relocated to position j that precedes its current position (i.e., j < i), the
solution x̂ obtained is feasible if node xi ∈ δ(xj−1,G ′j−1), where node xj−1 is the node in
the position j − 1 of the repair sequence.

4.4.2. Accessibility Function Evaluation.

Each time a node i is repaired and added to the repair sequence in solution x, the accessi-
bility function v(x′, xn), for xn = i and x′ = [x1, . . . xn−1], has to be evaluated in order to
determine the demand nodes that become accessible. This function requires to compute,
for each demand node j ∈ Vnd (i.e., each demand node j that is not yet accessible), the
shortest path from j to the depot and to compare the length of that shortest path with
the maximum acceptable distance Dj.
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To improve the efficiency of the algorithm, we formulate the problem of finding the shortest
path from the depot to all the demand nodes as a minimum cost flow problem (Maya Duque
et al., 2013).

min
∑

(i,j)∈E

lijyij (13)

s.t.∑
j:(i,j)∈E

yij −
∑

j:(j,i)∈E

yij = di ∀i ∈ V (14)

yij ≥ 0 ∀(i, j) ∈ E (15)

In this model, for each edge eij connecting nodes i and j, two decision variables are defined:
yij corresponding to the edge being traversed from i to j, and yji corresponding to the
traversal from j to i. Each demand node i has a demand di = wi; each damaged node has a
zero demand; and the depot has a supply capacity di equal to

∑
i∈Vd wi. The parameter lij

depends on the length of edge eij and the status of the nodes that it connects, i.e., whether
i and j are damaged or repaired. Thus, when evaluating the accessibility function after
repairing node xn, the value of the parameter lij would depend on the set of damaged
nodes that remain unrepaired, V̄nr . If, at least, either i or j ∈ V̄nr , lij = lji = dij + M ,
otherwise lij = lji = dij, where M is a large constant value.

Based on the optimal value of decision variables yij of the minimum cost flow problem,
the shortest path from the depot to a given node j can be obtained by tracking back the
edges that are used to pass the flow. Thus, the shortest path from the depot to j is equal
to the sum of the lengths of the edges that carry the flow between these two nodes. For
each node j that was not accessible after having repaired nodes x1, . . . , xn−1 (i.e., for all
j ∈ V̄n−1

d ), the shortest paths obtained from the solution of (13)-(15) are compared to the
maximum acceptable distances Dj’s. The function v(x′, xn), for x′ = [x1 . . . xn−1], returns
a subset of nodes j ∈ V̄n−1

d for which the obtained shortest paths are not greater than Dj.

Note that, since at each iteration only one additional damaged node is repaired, only a
few of the coefficients lij have to be updated from one iteration to the next. Therefore,
the minimum cost flow problem can be efficiently reoptimized at each iteration.

5. Computational Experiments

In this section, we evaluate the two solution approaches we propose for the NRCSRP.
To this end, we use a set of randomly generated instances of the problem which are
available from http://antor.ua.ac.be/downloads/NRCSRP. The dynamic programming
algorithm was coded in MATLAB while the GRASP metaheuristic was implemented in
Java and CPLEX using Concert Technology (IBM ILOG CPLEX Optimization Studio
Academic Research Edition V12.2).
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5.1. Instance Generation

To generate the instances necessary for the experiments, we use the network generator
GNETGEN, which is a modification of the widely used NETGEN generator proposed by
Klingman et al. (1974). The generator creates a minimum cost flow network for a given
number of nodes n = |V| and edges |E|. In the generated network, each node has associated
a supply/demand value, being the supply equals to total demand, and each edge has a
cost for being traversed. In our case, this cost represents the travel distance dij between
the two nodes i and j connected by edge eij, and it is a variable within the interval [0, 10].
This network is transformed into a network repair instance using the following procedure.

For each edge eij, we generate the parameter tij that represents the travel time. This
parameter is defined as a function of dij and an average travel speed υ as shown in
equation (16), where r is a uniformly distributed value in the interval [0, 1].

tij = (1 + r)
dij
υ

(16)

Next, a number of damaged nodes nd = |Vd| is determined. We use a parameter α that
specifies the percentage of damage of the network, i.e., the percentage of the edges in
the network that are damaged by the disaster. Thus, the number of damaged edges is
nd = dα|E|e.

We randomly select nd edges. For each selected edge e: (1) an intermediate point on
the edge is randomly chosen, and (2) a damaged node j is created corresponding to that
intermediate point. The repair time sj for the damaged node is set as a random variable
uniformly distributed in the interval [10, 60]. (3) The edge e is replaced by two new edges,
each of them connecting one of the extremes of edge e and node j. (4) The distance and
travel time for each of the new edges depend on the proportion that it represents of the
original edge e.

Finally, for each node i, we must generate the maximum acceptable distance Di to the
depot. That is, the maximum acceptable length of an undamaged or repaired path from i
to the depot. The parameter Di is defined as a function of SPi, the shortest path from i
to the depot on the network in which all damaged nodes are repaired (i.e., the pre-disaster
conditions). In order to compute Di, we use a parameter β that represents the maximum
tolerable percentage by which the path connecting i to the depot can increase. Thus, for
each node i the maximum acceptable distance Di is defined as (1 + β)SPi.

Two sets of instances are considered for the computational experiments. First, we consider
a set S1 of small instances, a majority of which can be solved exactly by our dynamic pro-
gramming model. We use these instances to analyze the performance of the DP approach,
evaluate the components of the GRASP metaheuristic, and compare the two solution
methods. Second, we analyze a set S2, containing medium and large size instances, that is
used to test the performance of the GRASP metaheuristic. Note that using each one of the
minimum cost flow networks generated by GNETGEN, several instances can be created
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by using different combinations of the parameters α and β. Table 1 shows the number of
nodes considered in each instance, the number of instances generated for each number of
nodes, the values used for parameters α and β, and the total number of instances in each
set.

Table 1: Sets of Instances Generated for the Computational Experiments

S1 S2

Number of nodes 21, 26, 31, 36, 41 61, 81, 101, 201, 301, 401
Instances per network size 3 3
Values of α (%) 5, 10, 25, 30, 50 5, 10, 25, 30, 50
Values of β (%) 5, 10, 25, 50 5, 10, 25, 50
Total instances 300 360

5.2. Dynamic Programming

The performance of our dynamic programming model is evaluated using set S1, which
consists of 300 small instances. Limiting the maximum computing time to 24 hours for
each instance, the algorithm found optimal solutions for 225 of those instances. Table 2
presents the number of instances solved to optimality for each combination of number
of nodes in the network and value of the parameter α, while Table 3 shows the number
of optimal solutions found for each combination of number of nodes and value of the
parameter β. The number of optimal solutions found decreases when the number of nodes
and the level of damage of the network (α) increase. On the other hand, the number of
instances solved to optimality slightly increases when β, the maximum tolerable percentage
in which the path connecting i to the depot can augment, increases.

Table 2: Number of Optimal Solutions Found by the DP for Each Combination of Number of Nodes and
Values of α, out of 12 (S1 Set of Instances)

α

No. nodes 5 10 25 30 50

21 12 12 12 12 9
26 12 12 12 12 12
31 12 12 12 11 1
36 12 12 5 3 0
41 12 12 2 2 0

Table 4 presents the average computing time for each combination of number of nodes
and value of parameter α that were solved within 24 hours. It increases when both, the
value of α and the number of nodes, increase. However, the effect of the parameter α is
considerably stronger. The average computing time for the instances with 31 nodes and
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Table 3: Number of Optimal Solutions Found by the DP for Each Combination of Number of Nodes and
Values of β, out of 15 (S1 Set of Instances)

β

No. nodes 5 10 25 50

21 14 14 14 15
26 15 15 15 15
31 11 12 12 13
36 6 7 9 10
41 6 6 8 8

α = 25% is about 4 hours. From this point on, the increasing pattern of the computing
times changes due to the fact that the number of instances that DP is able to solve to
optimality within the 24 hours decreases.

Table 4: CPU Time (in seconds) with Respect to the Instance Size and Values of α (S1 Set of Instances)

α

No. nodes 5 10 25 30 50

21 0.03 0.03 1.73 34.88 10243.21
26 0.02 0.03 1.26 15.94 19251.06
31 0.03 0.12 1657.24 14542.48 232.74
36 0.06 0.88 7642.19 205.56 -
41 0.19 23.85 5640.91 24334.51 -

5.3. GRASP Metaheuristic

We first use a subset of the small instances in S1 and the corresponding optimal solutions
found by dynamic programming model to evaluate the significance of the different parame-
ters of the GRASP algorithm. Then, using the optimal parameter setting, we evaluate the
effectiveness of our GRASP algorithm to generate good feasible solutions and discuss its
general performance in terms of computing time and the effect of the different components
and parameters of the algorithm when solving the larger instances (S2).

5.3.1. Parameter Tuning.

The GRASP algorithm we propose in this paper has three parameters that can be tuned:
the importance granted to the pre-disaster conditions when generating the initial solution
(λ), the maximum number of relocation moves that can be performed in the local search
(θ), and the number of times that the two phases of the algorithm are iterated (τ) (i.e.,
the number of feasible solutions that are generated initially).
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Figure 3: Boxplot of the log(CPUtime) and λ
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In a statistical experiment we determine the significance of the effect of the three pa-
rameters on the quality of the solutions and computing time. To this end, we use three
different values for the parameters λ (25%, 50% and 75%) and θ (10, 50 and 100), and two
values for the parameter τ (1 and 5). The analysis of variance (ANOVA) indicates that
the parameters θ and τ have significant effect on the quality of the solution and computing
time. Thus, when θ and τ increase, the value of the objective function decreases while
the computing time increases. At the same time, parameter λ does not have significant
effect on the GRASP performance. However, as it is shown in Figure 3, the computing
times for the most difficult instances (outliers in the figure) decrease when the value of λ
increases. Based on the results of the designed experiment, the parameters λ, θ and τ are
set to 50%, 100 and 5, respectively.

5.3.2. Numerical Results for the Set of Small Instances, S1.

To evaluate the effectiveness of our GRASP algorithm in generating good solutions, we
solve the 300 small instances (set S1) and compare the solutions found by GRASP with
those obtained using the DP approach. Our GRASP algorithm found 219 out of the 225
optimal solutions obtained by the DP model. For these instances, the average computing
time was less than 2.10 seconds. The maximum gap to optimality for these 225 instances is
3.94%. When the analysis is extended to the complete set of instances, i.e., including the
instances that were not solved to optimality by our DP algorithm, the average computing
time increases considerably. In addition, the computing time increases for larger values
of α and smaller values of β, i.e., when the network is severely affected by the disaster
and the maximum tolerable increase in the shortest path from a node i to the depot to
be considered accessible is small. Note, however, that the effect of the parameter α is
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significantly larger than the effect of the parameter β. Tables 5 and 6 present the average
computing time for each combination of the number of nodes and values of the parameters
α and β, respectively.

Table 5: CPU Time (in seconds) with Respect to the Instance Size and Values of α (S1 Set of Instances)

α

No. nodes 5 10 25 30 50

21 0.62 0.73 1.42 2.02 6.66
26 0.77 0.88 1.63 2.35 6.00
31 0.97 1.11 2.52 3.80 46.10
36 1.03 1.54 6.66 12.60 128.42
41 1.35 1.98 31.78 43.83 613.28

Table 6: CPU Time (in seconds) with Respect to the Instance Size and Values of β (S1 Set of Instances)

β

No. nodes 5 10 25 50

21 3.26 2.87 1.77 1.27
26 3.31 2.68 1.80 1.51
31 20.40 13.38 6.27 3.54
36 54.51 36.57 17.84 11.28
41 250.95 163.31 118.46 21.06

5.3.3. Numerical Results for the Set of Medium and Large Instances, S2.

We use instance set S2 to evaluate the performance of our algorithm when solving medium
and large size instances. Note that DP is unable to solve these instance within the 24 hours
deadline. For each of the instances we run the GRASP algorithm with parameters λ, θ
and τ set to 50%, 100 and 5, respectively. Table 7 presents the average computing time
for the combinations of number of nodes and α values for which all the instances were
solved in less than 10 hours. Parameter α, the percentage of damaged network, has a
higher impact on the computing time than the number of nodes. In addition, our results
show that parameter β, the maximum tolerable percentage in which the path connecting
each node i to the depot is allowed to increase, also affects the computing time such that
when the value of β increases the computing time decreases. However, this effect is less
significant than the one generated by the value of parameter α and the number of nodes.

Table 8 presents the average number of iterations it took GRASP algorithm to find the
best solution. We observe that as the value of α increases, the number of iterations also
increases. That is, finding a good solution is more difficult for the instances in which the
network is severely damaged.
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Table 7: CPU Time (in seconds) with Respect to the Instance Size and Values of α (S2 Set of Instances)

α

No. nodes 5 10 25 30 50

61 1.50 2.77 173.93 331.95 5708.91
81 2.53 8.59 615.72 1531.73 22907.68
101 5.06 31.79 1624.17 - -
201 10.76 355.83 - - -
301 373.18 5818.85 - - -
401 1684.75 13447.40 - - -

Table 8: Average Number of Iterations in Which the Best Solution is Found with Respect to the Instance
Size and Values of α (S2 Set of Instances)

α

No. nodes 5 10 25 30 50

61 1.0 1.0 2.8 1.9 3.3
81 1.3 1.2 2.0 3.3 2.8
101 1.3 1.5 2.5 - -
201 1.0 2.1 - - -
301 1.5 2.3 - - -
401 1.0 2.2 - - -

5.4. Solution Analysis and Insights

In this section, we analyze the structure of the solutions found with the goal to validate our
optimization model and obtain some managerial insights. The discussion in this section
is restricted to the solutions found by the GRASP heuristic for instance set S1. While
not all solutions found using GRASP are guaranteed to be optimal (see Section 5.3), an
analysis of the subset of S1 instances for which GRASP does find an optimal solution
yields analogous results.

5.4.1. Comparison to Myopic Heuristic.

As discussed earlier, one important distinction between our model and the existing litera-
ture is the fact that we enforce predecessor constraints and ensure feasible repair schedules,
where a damaged node cannot be repaired until the crew has repaired all the damaged
nodes on a path between that node and the depot. The effect of these constraints is espe-
cially important when the crew needs to repair a sequence of nodes before a large demand
can be connected. In such situations, repairing any of the intermediate nodes will have a
small effect on the objective function value at best, and good solution strategies can only
be found by considering several repairs into the future. The importance of this strategy
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is demonstrated by comparing our solutions to those found by a greedy heuristic that
myopically selects the next node to repair without considering the effect of future repairs
(we call such heuristic “myopic”). To this end, we considered 280 out of 300 instances in
S1 for which two or more nodes needed to be repaired to obtain full accessibility.

For 127 out of 280 instances, GRASP found a better solution than the myopic heuristic,
with an average difference between the two solutions of 54.52% and a maximum difference
of almost 300%. The myopic heuristic found a better solution in 8 cases, with an average
difference of 1.64% and a maximum difference of 3.19%. For the instances in which GRASP
found a better solution, the myopic heuristic solution always repairs a larger number of
nodes. On average, the myopic heuristic repairs 58.78% of the damaged nodes while our
GRASP algorithm repairs only 34.04%. Moreover, for the instances with 10 or more
damaged nodes, the myopic heuristic repairs, on average, 18.1 nodes while the GRASP
algorithm repairs 8.5 nodes. This demonstrates that failing to look ahead and, by doing
so, ignoring the effects of repairing a given node on future demand accessibility generally
results in a repair operation that takes much more time and consumes more resources, by
repairing more roads, than strictly necessary.

5.4.2. Solution Structure and Managerial Insights.

The first important observation we make from a policy and planning perspective is that
only a fraction of the damaged roads (i.e., repair nodes) need to be repaired to ensure
accessibility for the entire network (see Tables 9 and 10). As expected, that percentage
decreases as β values increase, since this corresponds to more relaxed requirements for a
demand node to be accessible. The correlation with α values is not as clear. While there
is an overall positive trend for the percentage of repaired nodes, instances with α = 5%
correspond to a particularly high number of repaired nodes. This can be explained by
an observation that for such low value of α a number of instances have only one or two
damaged nodes, and the solution requires to repair all of them.

Table 9: Average Percentage of Nodes Repaired for Various α Values.

Values of α (%) 5 10 25 30 50
Nodes repaired (%) 37.24 28.01 29.72 29.69 31.82

Table 10: Average Percentage of Nodes Repaired for Various β Values.

Values of β (%) 5 10 25 50
Nodes repaired (%) 39.88 34.81 26.02 19.55

By analyzing the cumulative demand that becomes accessible over the duration of the
repair operation we observe that, on average, the percentage of accessible demand follows
a law of diminishing returns. Figure 4 illustrates how cumulative demand accessibility
changes over the course of the entire repair operation, for different numbers of nodes
repaired. The figure graphs demand averaged over all S1 instances and a few examples
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Figure 4: Aggregate and Overall Averaged Cumulative Demand Accessibility versus Normalized Time
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of demand averaged over subsets of instances with the same number of nodes repaired.
To account for different repair times between the instances, the x-axis corresponds to
normalized repair time. From the graphs, we observe an initial delay until the first set
of demand nodes become accessible, which corresponds to the travel and repair times of
the crew to complete its first assignment. Then, on average, the percentage of marginal
demand connected decreases with the passing of time and with each additional repair of
a node, resulting in a concave cumulative demand curve. We make the same observation
in Figure 5, illustrating accessible demand versus number of nodes repaired. Towards
the end of the repair operation (Figure 4), the curves become flat, corresponding to the
repair crew traveling father away to repair the subsequent node or repairing multiple nodes
before the next improvement in demand accessibility. At the very end, we observe a jump
in percent of accessible demand, which is explained by a considerable amount of demand
that becomes accessible after the last repair is carried out by the crew at the completion
of the repair operation.

While, on average, the rule of diminishing returns is clearly illustrated, there is a lot
of variation from instance to instance with regards to the percentage demand connected
by each consecutive node repaired. This fact highlights the importance of solving the
optimization model for each individual instance, and further explains poor performance
of the myopic heuristic. Boxplots in Figures 6-8 illustrate the distribution of cumulative
demand accessible after each repaired node for all instances that require four, eight and
twelve nodes to be repaired, respectively. While all instances connect a progressively higher
percentage of demand as more nodes are repaired, we observe high variance earlier in the
operation. Figure 9 illustrates individual examples of the cumulative demand accessibility
over the duration of the repair operation. Here, we see that Examples 1, 3, 5 and 6 have
a significantly lower percentage of demand connected early on in comparison to Examples
2 and 4. At the same time, Examples 2, 3, 4 and 6 illustrate instances where multiple
nodes need to be repaired before the next improvement in network accessibility. More
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Figure 5: Aggregate Cumulative Demand Accessibility versus Number of Nodes Repaired
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specifically, in case of Example 3 the sixth node repaired does not directly contribute
to the cumulative accessible demand, but its repair is necessary in order for the seventh
repaired node to connect a substantial percentage of demand. Examples 4 and 6 illustrate
the cases where multiple consecutive repairs are required before the next improvement in
accessible demand. This diverse set of examples highlights the importance of finding a
close-to-optimal solution of each individual problem instance.

6. Conclusion and Future Research

In this paper, we study the problem of emergency repair of a rural road network that has
been damaged by the occurrence of a natural disaster. We address the scheduling and
routing of a repair crew, starting from a single depot, while optimizing accessibility to the
towns and villages that demand humanitarian relief. This is an important problem given
the impact that a functioning road network has on providing the opportune relief to the
affected population. This paper extends the traditional network upgrading problems by
considering not only the selection of the edges to be repaired or upgraded, but also the
time dependency and crew routing associated with the required repair work.

While the NRCSRP was developed mainly to be used as a support tool in the initial
response stage, our problem setting and solution methods could be directly extended to
the later recovery stage, as long as the time scale of travel times and repair times are
equivalent. Problems such as connecting remote villages to a central medical facility
would be applicable here, where moving the repair equipment from one node to the next
requires significant time that is comparable in scale to the actual repair time.

We develop a dynamic programming model and discuss efficient implementation techniques
that allows us to find optimal solutions for a range of instance sizes of the problem.
However, the DP approach limits the size of the road networks that can be solved within a
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Figure 6: Boxplot of Cumulative Demand Accessibility for All Instances with 4 Nodes Repaired.
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Figure 7: Boxplot of Cumulative Demand Accessibility for All Instances with 8 Nodes Repaired.
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Figure 8: Boxplot of Cumulative Demand Accessibility for All Instances with 12 Nodes Repaired.
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Figure 9: Individual Examples of Cumulative Demand Accessibility
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24-hour time limit. This fact motivated the development of a metaheuristic (GRASP) that
we develop for our problem. We run extensive computational experiments to analyze the
difficulty of solving instances of the NRCSRP depending on the values of three distinct
parameters. Two of the parameters are beyond the control of the decision maker: the
number of nodes or population centres in a network and the level of network damage
caused by the disaster, which is denoted by parameter α and determines the number of
edges requiring repair. The third parameter, β, is the maximum tolerable percentage by
which a path connecting each demand node i to the depot is allowed to increase in order
to be considered accessible. This parameter can be controlled by the decision maker and
depends on the specifics of each setting.

Our results show that the factor that has the highest impact on the difficulty of solving
an NRCSRP instance is the α parameter. That is, the most severely affected networks
correspond to the most difficult instances to solve. This is mainly due to the fact that
the NRCSRP is, in part, a combinatorial problem for which a solution is represented by
a permutation of the damaged nodes that have to be repaired. Therefore, as the level of
network damages increases, so does the number of nodes that have to be repaired, which,
in turn, increases the number of possible permutations to be considered. An instance of
the NRCSRP also becomes more difficult to solve when the size of the network increases.
However, the effect of this parameter is not as significant as it is for parameter α. Finally,
when the value of the parameter β increases, the time required to solve each instance
decreases. This phenomenon is explained by the fact that increasing the value of β implies
that the decision maker is willing to accept a longer path between a demand node and the
depot in order to consider that demand point accessible.

When comparing the difficulty of solving an instance of the NRCSRP using the dynamic
programming model versus the GRASP algorithm, the results show that the two algo-
rithms experience similar trends in the levels of difficulty. That is, the instances that are
easily solved by the DP are also easily solved by the GRASP. Similarly, for the instances
that could not be solved to optimality by DP within the time limit, the computational
time of the GRASP algorithm is also higher. However, the DP methods performs better
than the GRASP for instances with few nodes and a small percentage of network damage
(α), while the GRASP performs better than the DP when both the size of the instance
network and the level of damage increase. We use the GRASP heuristic to solve instances
containing up to 401 nodes, and the results confirm that parameter α strongly correlates
with the level of difficulty of an NRCSRP instance.

Analysis of the solution structure provides important managerial insights for our problem.
We observe that only a fraction of damaged nodes (approximately 30%, on average) needs
to be repaired to establish accessibility for the entire network. In addition, while, on
average, each subsequent repair of a damaged node follows a law of diminishing return,
that property does not necessarily hold true for all instances. This fact, along with poor
performance of the tested myopic heuristic, establish the need for optimization of the
repair crew schedule and rout for each individual instance. This is especially the case
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when a sequence of multiple nodes need to be repaired before observing improvement in
the network accessibility.

In this paper, we have designed an objective function to accurately capture and evaluate
the accessibility measure, since it is closely tied to the performance of our solution strate-
gies. An interesting open research direction to pursue in future work is to study alternative
measures and objective functions for estimating network accessibility. Moreover, the effi-
ciency of the GRASP algorithm can be potentially improved by restricting the complete
exploration of the current solution neighborhood, at each iteration, and instead, focusing
on specific regions of the feasible solution space. Note, however, that from the perspective
of the quality of the solutions, the suggested measures might not have any positive effect
on the value of the objective function itself, just the algorithm run time.

From our extensive study of the NRCSRP, we are able to identify problem properties
that can be useful in extending this work to more complex and realistic settings. The
first promising research direction is to extend this problem to more than one repair crew
and more than one depot node. This extended problem would model real-life situations
where different organizations or relief entities are involved in the emergency reconstruction
operations of the region’s road network. In addition, the collaboration and coordination
aspects of such problem settings would have to be considered. For example, one would
have to answer the question of what happens when two or more crews are able to work
simultaneously on repairing a single damaged node. Another interesting extension that
emerges from considering multiple depots is the distribution allocation decisions. In such
cases, one has to consider the limited amount of resources available at each depot, and the
repairing decisions are restricted by the need of fulfilling the relief demand of the towns
that are made accessible.

Appendix A. List of Symbols

V Set of nodes {0, 1, . . . , n+ 1}; node 0 is the depot; node n+ 1 is a dummy node;
V = {0} ∪ Vd ∪ Vr ∪ {n+ 1}

Vd Set of demand nodes; Vd ⊂ V
Vr Set of damaged nodes requiring repair; Vr ⊂ V
E Set of edges or roads
eij edge connecting nodes i and j; eij ∈ E
E(k) Set of arcs adjacent to node k ∈ V , E(k) ⊂ E
wi Relief demand of node i ∈ V
tij Time required to travel between nodes i and j on edge eij
sj Time required to repair damaged node j ∈ Vr
dij Length of edge eij connecting nodes i and j, i.e., distance between nodes i and j
de Length of edge e
Di Maximum acceptable distance from node i ∈ Vd to the depot

in order for i to be accessible to it.
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Appendix B. Mixed Integer Programming Model for NRCSRP

For completeness, we present an alternative formulation for NRCSRP in addition to the
dynamic programming model. The mixed integer programming formulation developed in
this section requires an additional auxiliary node n + 1 to be added to the graph. This
node corresponds to a dummy depot connected to all the damaged nodes (i.e., nodes in
Vr) through arcs with zero travel time. The supply capacity of the depot w0 is set to
the total relief demand in the network. The notation used in that model is presented in
Appendix Appendix A.

The model we propose involves three different kinds of decisions. First, the model has to
decide the order in which the damaged nodes are repaired. The second set of decisions
determines the route to be followed by the repair crew. That is, the paths connecting each
pair of consecutive damaged nodes in the repair sequence. Those paths indicate the nodes
that have to be visited when travelling between two consecutive damaged nodes and might
include non-damaged nodes and other damaged nodes that have been previously repaired.
Any node can be visited more than once, however, a damaged node has to be repaired the
first time it is visited. The third set of decisions defines the shortest path that connects
each demand node to the depot. The length of such path is used to determine whether a
node that demands humanitarian relief can be considered accessible or not.

We let binary variables xij keep record of the order in which the damaged nodes are
repaired (i.e., visited by the repair crew for the first time). A variable is defined for each
pair of nodes in Vr∪{0, n+1} and it takes value 1 when node j is repaired right after node
i. Additionally, the variable zj keeps the time at which the damaged node j is repaired,
that is, the time at which node j is visited for the first time by the repair crew plus the
actual repair time sj. Two binary variables are defined to track the path that connects any
pair of nodes in the tour followed by the repair crew. Variable rije is assigned value 1 when
edge e is used on the path from i to j and 0 otherwise, while variable aijk is given value
1 when node k is visited on the path from i to j. Similarly, two other binary variables
are considered to track the path that connects each demand node to the supply node.
Variable y0i

e takes value 1 when edge e is used on the path from the depot to node i, and
variable b0i

k is assigned value 1 when node k is visited on the path from the depot to node
i. A mixed integer programming model for the network emergency repair problem is the
following:

min
∑
i∈Vd

wi max
k∈Vr

{
zkb

0i
k

}
(B.1)

s.t. ∑
j∈Vr∪{0,n+1}

xij = 1 ∀i ∈ Vr ∪ {0, n+ 1} (B.2)
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∑
i∈Vr∪{0,n+1}

xij = 1 ∀j ∈ Vr ∪ {0, n+ 1} (B.3)

∑
i,j∈S

xij = |S| − 1
∀S ⊂ Vr ∪ {0, n+ 1}

|S| > 1
(B.4)∑

e∈E(i)

rije = xij ∀i, j ∈ Vr ∪ {0} (B.5)

∑
e∈E(j)

rije = xij ∀i, j ∈ Vr ∪ {0} (B.6)

∑
e∈E(k)

rije = 2aijk
∀i, j ∈ Vr ∪ {0}
∀k ∈ V \ {i, j} (B.7)

∑
e∈E(0)

y0j
e = 1 ∀j ∈ Vd (B.8)

∑
e∈E(j)

y0j
e = 1 ∀j ∈ Vd (B.9)

∑
e∈E(k)

y0j
e = 2b0j

k ∀j ∈ Vd,∀k ∈ V \ {0, j} (B.10)

∑
e∈E

y0j
e de ≤ Dj ∀j ∈ Vd (B.11)

zj =
∑
i∈Vr

(zi +
∑
e∈E

rije te)xij + sj ∀j ∈ Vr (B.12)

zka
ij
k ≤ zj

∀i, j ∈ Vr ∪ {0}
∀k ∈ Vr

(B.13)

xij ∈ {0, 1} ∀i ∈ Vr ∪ {0, n+ 1} (B.14)

rije ∈ {0, 1}
∀i, j ∈ Vr ∪ {0}

∀e ∈ E (B.15)

aijk ∈ {0, 1}
∀i, j ∈ Vr ∪ {0}

∀k ∈ V (B.16)

y0i
e ∈ {0, 1} i ∈ Vd,∀e ∈ E (B.17)

b0i
k ∈ {0, 1} i ∈ Vd,∀k ∈ V (B.18)

zj ≥ 0 ∀j ∈ Vr (B.19)

The objective function (B.1) minimizes the weighted sum of the times at which each node
j in Vd becomes accessible. That is, the time when the last damaged node k ∈ Vr visited
by the path connecting j to the depot is repaired. Constraints (B.2)-(B.4) establish the
order in which the damaged nodes are repaired; they define an open travelling salesman
problem restricted to the set of nodes formed by the damaged nodes and the depots
(i.e., Vr ∪ {0, n + 1}). Therefore, constraints (B.2) and (B.3) ensure that each damaged
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node is repaired exactly once, and that the repair sequence starts and ends at the initial
node 0 and the auxiliary node n + 1, respectively. The sub-tour elimination constraints
are taken into account through equations (B.4). In addition to determining the order in
which the damaged nodes are repaired, it is also necessary to track the path to be followed
by the repair crew when travelling between damaged nodes i and j. That path exists only
if node i immediately precedes node j in the repair sequence and might involve visiting
damaged nodes that have been previously repaired. Thus, constraints (B.5) and (B.6)
enforce, respectively, that there is exactly one edge leaving i on the path from i to j, and
that there is exactly one edge entering j on the path from i to j. That is, only one path
between i and j is tracked. Additionally, the constraints (B.7) ensure that the path from i
to j is connected. Similarly, constraints (B.8)-(B.10) help to track the paths that connect
every demand node to the depot. Constraints (B.11) guaranty that the length of each of
those paths does not exceed the permitted accessible parameter Di. Constraints (B.12)
define the time zj at which damaged node j is repaired. That time is the result of adding
the time in which the predecessor node i is repaired, the travel time on the path from i
to j, and the time it takes to repair node j. Additionally, constraints (B.13) ensure that
if there is a damaged node on the path that connects the damaged nodes i and j, it is
repaired before repairing node j. Finally, constraints (B.14)-(B.19) define the type and
bounds for the decision variables.

The objective function (B.1) and the constraints (B.12) and (B.13) involve the product of
decision variables. However, these expressions can be reformulated to avoid non-linearity
by introducing a big constant M , as shown in expressions (B.20), (B.21) and (B.22),
respectively.

min
∑
i∈Vd

wi max
k∈Vr

{
zk + (b0i

k − 1)M
}

(B.20)

zj = max
i∈Vr

{
zi +

∑
e∈E

rije te + (xij − 1)M

}
+ sj ∀j ∈ Vr (B.21)

zk + (aijk − 1)M ≤ zj ∀i, j ∈ Vr ∪ {0}, ∀k ∈ Vr (B.22)

Finally, the function maximum that is considered in expressions (B.20) and (B.21) can be
also reformulated through linear expressions by defining auxiliary decision variables and
constraints.
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J. Holgúın-Veras, N. Pérez, M. Jaller, L. N. V. Wassenhove, and F. Aros-Vera. On the
appropriate objective function for post-disaster humanitarian logistics models. Journal
of Operations Management, 31(5):262 – 280, 2013.

36



M. Karlaftis, K. Kepaptsoglou, and S. Lambropoulos. Fund allocation for transportation
network recovery following natural disasters. Journal of Urban Planning and Develop-
ment, 133(1):82–89, 2007.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale ca-
pacitated assignment, transportation, and minimum cost flow network problems. Man-
agement Science, 20(5):814–821, 1974.
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