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Path Planning in an Anisotropic Medium

Irina S. Dolinskaya ∗ Robert L. Smith †

Abstract

Many of the optimal path finding problems studied to-date are restricted to a
direction-independent metric. In this paper we discuss path planning in an anisotropic
medium illustrated by the fastest-path problem where speed is direction-dependent.
Such problems arise in vessel routing, robotics, and aircraft navigation, where the
agent’s speed is affected by the direction of waves, winds or slope of the terrain. The
difficulty of optimal-path finding in a direction-dependent medium comes from the fact
that our travel-time function is asymmetric, and in general, violates the triangle in-
equality. We present an analytical form solution for the fastest-path finding problem in
an obstacle-free domain without making any assumptions on the structure of the speed
function. Subsequently, we merge these results with visibility graph search methods to
develop an obstacle-avoiding fastest-path finding algorithm for a direction-dependent
speed function. Our results provide computationally fast techniques for finding a closed
form solution to a very large class of applied problems.

1 Introduction

In this paper, we address a broad class of optimal path finding in anisotropic environment
problems where the cost function is direction-dependent. For ease of exposition, we focus
our discussion on fastest-path finding problems for direction-dependent speed functions;
however, our analysis and results can be easily extended to any anisotropic cost function.
We are given the points of origin and destination, and time and space homogenous speed
function of heading. Our objective is to find a path that minimizes the total travel time.
Problems of optimal path finding in an obstacle-free domain as well as in the presence of
polygonal obstacles are addressed.
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The difficulty of optimal-path finding in an anisotropic medium comes from the fact that our
travel-time function is asymmetric; that is, the time it takes to travel along a straight line
path from a to b does not necessarily equal the time required to traverse the reversed path ba.
Therefore, our cost function is not a metric, which prevents us from using more traditional
and established approaches to solving optimal-path finding problems. Furthermore, the
anisotropic cost, in general, violates the triangle inequality, which is another key property
exploited in Euclidean shortest-path finding problems. In particular, it is not guaranteed
that one of the ‘taut-string’ paths will be an optimal obstacle-avoiding path. Thus, the
traditional approach of searching among a finite number of taut-string paths may fail to
deliver an optimal solution.

1.1 Related Work

Optimal path planning problems have been studied for a very long time. However, the
majority of the work to date concentrates on determining Euclidean shortest paths (see
an extensive survey by Mitchell [16]). Even though a number of extensions to optimal
path planning have been considered (e.g., traversing through polygonal constantly-weighted
regions in [18, 27]), most work is restricted to isotropic metrics, where the cost function is
assumed to be independent of the traveling direction. Some shortest path finding problems
discussed in the literature [28, 15] introduce direction dependency by restricting the feasible
paths to a fixed set of orientations; however the resulting cost function retains its metric
properties.

Optimal path finding problems in anisotropic media have been addressed for a few specific
applications, however the solution approach and results are often customized to the appli-
cation at hand. Furthermore, the presence of obstacles is not commonly addressed in the
published studies. For example, [25, 24] study optimal path finding for a mobile agent (e.g.,
robot or vehicle) across hilly terrains, where a simple and specific physical model of friction
and gravity forces is used to compute the anisotropic cost function for the agent.

In the area of optimal yacht sailing, [21] created a mathematical programming model that
evaluates the vessel speed for a specified range of wind speeds and yacht heading angles.
The resulting velocity prediction data is used to find the yacht fastest path by applying
dynamic programming algorithms [1, 22, 20]. Alternatively, Sellen [26] studies the optimal
sailing routing problems for a more abstract scenario, and presents results similar to ours by
heuristically arguing that an optimal path in an obstacle-free domain consists of at most two
line segments. He also introduces a set of polygonal obstacles and extends his discussion to
this restricted domain. However, Sellen’s analysis is limited to problems with very specific
speed functions represented by piecewise-linear reciprocal functions (i.e., for a direction-
dependent speed function denoted by V (θ), the function 1/V (θ) is assumed to be piecewise-
linear). Unlike in the aforementioned work, we make absolutely no assumptions on the
structure of the speed function, and find closed form solutions for any time and space
homogeneous medium.
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Some researchers have employed the calculus of variations and optimal control theory for
optimal vessel routing problems. References [9, 10, 19] employ Euler’s equations to charac-
terize an optimal path; while [12] establishs an analogy between a traveling light ray and an
optimal path seeking sailboat, and extend the use of optical notions such as Fermat’s prin-
ciple, Huygens’ principle and Hamilton’s optics to sailing strategies. These optimal-path
finding methods reduce to solving systems of differential equations, which can present a dif-
ficult and challenging task. Moreover, researchers typically use a simplified form of the speed
function in order to make the analysis more manageable. From our experience of working on
vessel routing problems [8], it is clear that analytical functions cannot accurately describe
vessel movement through waves, thus obliging us to look for alternative methods to solve
the problem.

Reif and Sun [23] investigate a problem of time-optimum movement planning through a set of
polygonal regions, where anisotropy is introduced as a uniform flow assigned to each region.
The actual velocity of an object is defined to be the sum of a flow vector and a chosen control
velocity. While the resulting speed function does display the direction-dependent property,
its structure is very specific, and Reif and Sun’s analysis does not extend to more general
problems addressed in this paper.

In the most recent work on anisotropic movement, [4] generalizes the problem studied by
Reif and Sun, and looks at shortest path finding in anisotropic regions where the direction-
dependency of the speed is not restricted to the effect of the uniform flow. However, Cheng
et al. still limit their research to the speed function with a very specific structure, referred
to as a ‘convex distance function’ (first discussed by [5]). Their convex distance function is
equivalent to our case of a convex linear path attainable region, however the results presented
in our work subsequently relax the convexity assumption and deliver a closed form fastest
path among obstacles for a general anisotropic speed function. In addition, we provide
rigorous proofs previously absent in the published work on convex distance functions.

1.2 Overview of the Results

This paper presents an analytical form solution to the fastest-path finding problem for any
given anisotropic speed function. We demonstrate that an optimal path in a general obstacle-
free, time and space homogeneous medium is piecewise-linear with at most two line segments
(i.e., one waypoint). Consequently, we merge these results with the visibility graph search
methods developed for Euclidean shortest path problems [13, 2], to develop an obstacle-
avoiding fastest-path finding algorithm for an anisotropic speed function. Our results provide
computationally fast techniques for finding a closed form solution to the very large class of
applied problems discussed earlier.

While our main results make no assumptions about the structure of the speed function, we
first consider a special case of the problem where the speed polar plot (or the linear path at-
tainable region) encloses a convex region. This restricted scenario provides important insight
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and intuition to the structure of an optimal path for the more general case. Subsequently,
we relax the convexity assumption to consider a case for a very general speed function. One
of our main results is presented in Theorem 10, which characterizes a fastest path for an
arbitrary speed function in an obstacle-free domain. Algorithm 1 describes a step-by-step
procedure to construct such an optimal path. In addition to characterizing a fastest path,
we also compute a bound on the improvement in travel time were one to choose to follow an
optimal path as opposed to traversing the simpler linear path between the two points. This
bound is an important tool for evaluating tradeoffs, as well as for proving our key theorem.

We employ our findings for fastest path in an obstacle-free domain to the problems that
consider the presence of polygonal obstacles. For the speed functions corresponding to
convex linear path attainable regions, the straight line path is a fastest path in R2, and the
triangle inequality holds true in an obstacle-free domain. Consequently, fastest-path finding
in a polygonal domain can be restricted to a modified visibility graph, similarly to Euclidian
shortest-path finding problems. The triangle inequality might not hold true for a general
speed function. In that case, an augmented speed function corresponding to the convex hull
of the original speed polar plot is used to find a lower bound on the minimum travel time for
our problem. We use the results for an optimal path in the obstacle-free domain to construct
an obstacle-avoiding path that achieves this lower bound, thus establishing its optimality.

The rest of the paper is organized as follows. Subsection 2 provides the key notation used
throughout the paper and gives a more rigorous statement of the problem. Section 3 develops
and presents fastest paths for an anisotropic speed function in an obstacle-free domain. This
section includes the analysis for a convex linear path attainable region (Subsection 3.1); the
construction of a bound on the optimal travel time for the general speed function (Subsection
3.3); and the later employment of this bound to prove Theorem 10 that characterizes a fastest
path in a general anisotropic medium (Subsection 3.4). In Subsections 3.1 through 3.4, we
assume that a speed function takes on only positive values, where as in Subsection 3.5 we
discuss the problem of feasibility and fastest paths for the case where speed can be zero for
some headings, such as in the cases of stalling or infeasible headings. Subsection 3.6 concludes
the section with the description of Algorithm 1 that facilitates the implementation of the
presented results.

The following Section 4 extends our analysis and results to the obstacle-avoiding fastest-
path finding problems in anisotropic domain. Similarly to our discussion of the obstacle-free
domain, we first find an optimal path for the case of a convex linear path attainable region
(Subsection 4.1) and then relax the convexity assumption to find a path for an arbitrary speed
function (Subsection 4.2). Algorithms 2 and 3 describe the fastest-path finding procedures
corresponding to each of the cases.

Section 5 concludes this paper with an example of application of our results to the vessel
routing problem and summarizes the findings and contribution of the presented work.
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2 Notation and Problem Statement

In this section, we introduce the notation and a precise description of the fastest-path finding
problem that we analyze in this paper.

The problem of interest is to find a fastest path from one given point to another for a
direction-dependent speed function. We consider two separate scenarios of the problem:
(i) an obstacle-free domain where all the feasible paths must lie in R2; and (ii) a domain
containing a set of polygonal obstacles that must be avoided. We are given a direction-
dependent speed function, which characterizes the movement within the domain. The speed
is assumed to only depend on the heading direction, implying a time and space homogeneous
domain (with the exception of obstacles). Next, we introduce the notation to be used
throughout the paper.

Let P denote a set of open polygonal obstacles, such that their closures do not intersect, or
in other words, the distance between any two obstacles is assumed to be greater than zero.
Note that since each obstacle is assumed to be an open set, the movement along its edges
is permitted. All the feasible paths, including a starting points s and a target point t, are
assumed to lie in the free space, denoted by F , which we define as the compliment of the
obstacles, or F := R2\P . For consistency, we use this notation and terminology for both
aforementioned scenarios, including the obstacle-free case where we set P = ∅.

We define Pst to be the set of all continuous and rectifiable feasible paths from the start
point s to the target point t. That is, Pst = {p : [0, 1] → F such that p(0) = s, p(1) = t, p
is continuous and rectifiable}. Then, for any p ∈ Pst, let t(p) denote the travel time required
to traverse the path p.

Let V (θ) for 0 ≤ θ ≤ 2π denote the maximum attainable speed for a given heading θ.
Unless otherwise specified, we assume that V (θ) > 0 for all θ ∈ [0, 2π]. Allowing the speed
function to take on a value of zero for some headings might result in an infeasible problem.
Consequently, this case requires special attention and is discussed separately in Section 3.5.
It is worth noting, that time and space homogeneous nature of our problem, allows us to
assume, without loss of optimality, that one always travels at the maximum attainable speed,
since voluntary speed reduction would never result in a faster path.

We define Lδ(x) to be the linear path attainable region (LPAR) for a given point x ∈ R2

and time δ > 0. That is, Lδ(x) is the set of all points that can be reached in a fixed time
period, δ > 0, from point x along a straight line path. In other words, Lδ(x) = {y ∈ R2 :
‖y− x‖ ≤ δV (θy−x)}, where θy−x and ‖y− x‖ denote the angle and length of a vector y− x,
respectively. Note that V (θ) uniquely defines Lδ(x) for a given x and δ, and vise versa. In
the presence of obstacles (i.e., P 6= ∅) it is assumed that x /∈ P , and δ is too small to reach
any obstacles from x. An alternative way to define Lδ(x), is to introduce an elementary
LPAR, L, uniquely defined by V (θ) as L = {y ∈ R2 : ‖y‖ ≤ V (θy)}. Then from time and
space homogeneity we have Lδ(x) = x + δL. Note that L is equivalent to a region enclosed
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by a polar graph of the speed function V (θ), and is often referred to as the ‘speed polar plot’
in some literature.

Let Aδ(x) be the attainable region (AR). That is, Aδ(x) is the set of all points that can
be reached in a fixed time period, δ > 0, from point x ∈ R2. We can give a more precise
definition of Aδ(x) as follows, Aδ(x) = {y : ∃p ∈ Pxy such that t(p) ≤ δ}. Note that in
the definition of Aδ(x), we do not restrict a path to be the straight line path, that is, Aδ(x)
represents the set of all points that can be reach in time δ following any rectifiable path from
point x. Similarly to the definition of LPAR, we assume that x /∈ P , and δ is too small to
reach any obstacles from x, if P 6= ∅.

Finally, we let the function τ(x, y) : R2 × R2 → R+ denote the travel time from point x to
point y following the straight line path connecting these two points. We assume that τ(x, y)
is only defined if the straight line segment xy does not intersect the set of obstacles P . Then
τ(x, y) = min{δ : y ∈ Lδ(x), δ > 0}. The value of τ(x, y) can be also computed explicitly
using the speed function V (θ) as τ(x, y) = ‖y − x‖/V (θy−x). Note that τ(x, y) is not well
defined if V (θy−x) = 0, in which case we set τ(x, y) =∞.

Now, we can give the formal statement of our problem.

Problem statement: For a given speed function V (θ) : [0, 2π]→ R+, a starting point s ∈ F ,
and a target point t ∈ F , find a fastest path from s to t that lies in F . That is, our objective
is to find p∗ ∈ Pst such that t(p∗) ≤ t(p) for all p ∈ Pst.

3 Fastest-Path Finding for an Anisotropic Speed Func-

tion in an Obstacle-Free Domain

In this section we study the fastest-path finding problems in an obstacle-free domain, that
is, P = ∅ and F = R2 for the entire Section 3.

3.1 Fastest Path for a Convex Linear Path Attainable Region

We first analyze a problem restricted to the convex linear path attainable region (LPAR),
as this special case gives an intuitive and insightful analysis of the problem, and it then can
be extended to a general case. Therefore, throughout Section 3.1, we assume that Lδ(x) is
convex for all x and δ; in other words, the convex combination of any two points in the set
Lδ(x) is contained by that set (see Figure 1). Note that from the time and space homogeneity
of the speed function V (θ), we know that if Lδ(x) is convex for some specific x and δ, then
it is convex for all x ∈ R2 and all positive δ.
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Lσ(x)

Figure 1: An example of a convex linear path attainable region Lδ(x).

x
τ(x,y)

τ(x,z)

τ(z,y)
y

z

Figure 2: Illustration of the inequality from Lemma 1, τ(x, y) ≤ τ(x, z) + τ(z, y).

Let m(x) denote the smallest non-negative scalar such that Lm(x)(0, 0) contains point x. We
can also write m(x) := inf{r : x

r
∈ L1(0, 0), r > 0}. Observe that since L1(0, 0) is a closed

set, the infimum is achieved and the definition can we rewritten as m(x) := min{r : x
r
∈

L1(0, 0), r > 0} as long as x 6= (0, 0). Also, note that since L1(0, 0) = Lm(x)(0, 0)/m(x) is
a convex set in R2 and (0, 0) is its interior point, we conclude that m(x) is the Minkowski
functional. We then know from [14] that the Minkowski functional m(.) satisfies the inequal-
ity m(x1 + x2) ≤ m(x1) + m(x2) for all x1, x2 ∈ R2. A couple of algebraic manipulations
lead to the fact that m(x) reduces to the straight line travel time function τ(.), that is,
τ(x, y) = m(y − x) for all x, y ∈ R2. We now show that the equivalent inequality holds true
for the travel time function τ .

Lemma 1. For any x, y, z ∈ R2, we have τ(x, y) ≤ τ(x, z) + τ(z, y). That is, traveling time
along the straight line path from x to y is never greater than the time it takes to travel along
straight lines from x to z and then from z to y. (See Figure 2)

Proof. see A.1.

We now can use the inequality from Lemma 1 to show that the straight line path between
two points is a fastest path for a convex LPAR, Lδ(x). Recall that p ∈ Pst is an arbitrary
continuous and rectifiable path from s to t, and that t(p) denotes the travel time along the
path p. Then we can state the following lemma.
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Lemma 2. For a convex Lδ(x) and an arbitrary continuous and rectifiable path p ∈ Pst, we
have τ(s, t) ≤ t(p). In other words, in the case of a convex LPAR, the travel time along the
straight line path is never greater than that of any other path.

Proof. [sketch] Since the length of any continuous and rectifiable path p, in the limit, equals
to the length of a piecewise-linear approximation, we can iteratively apply the inequality
from Lemma 1 to obtain the desired result. See A.2 for the complete proof.

Lemma 2 above provides the fastest path between two points for a convex LPAR. Further-
more, the following theorem adds that convexity of an LPAR is also a necessary condition
for the straight line path to be optimal.

Theorem 3. A fastest path in R2 from an arbitrary start point s ∈ R2 to any other point
in R2 is a path along the straight line connecting the two points if and only if the linear
path attainable region Lδ(x) is a convex set for all x ∈ R2.

Proof. Lemma 2 concludes that a fastest path from an arbitrary start point s ∈ R2 to any
other point in R2 is a path along the straight line connecting the two points if the linear
path attainable region Lδ(x) is a convex set for all x ∈ R2.

Now, we prove the only if statement of the theorem by contradiction.

Select an arbitrary start point s ∈ R2 and assume that Lδ(s) is not convex. Then, there
exist x1, x2 ∈ Lδ(s) and λ ∈ [0, 1] such that λx1 + (1 − λ)x2 /∈ Lδ(s), and we set point
y = λx1 + (1− λ)x2.

Since x1, x2 ∈ Lδ(s), we have τ(s, x1) ≤ δ and τ(s, x2) ≤ δ. Then, consider the following
path p: from point s, we first travel following the vector λ(x1 − s) and then continue on
following the vector (1−λ)(x2−s) (Figure 3). Our path p starts at point s and ends at point
s+λ(x1−s)+(1−λ)(x2−s) = λx1+(1−λ)x2 = y. Note that time and space homogeneity give
us that traveling time for this path, t(p) = λτ(s, x1) + (1−λ)τ(s, x2) ≤ λ · δ+ (1−λ) · δ = δ.
However, τ(s, y) > δ since y /∈ Lδ(s). We reach a contradiction that the straight line path
from s to any point in R2 is not necessarily the fastest path if the attainable region is not
convex. Thus, Lδ(s) has to be convex.

It is important to acknowledge that earlier work on ‘convex distance functions’ [3, 5, 4] have
stated some results similar to Lemma 1 and Theorem 3. However, none of the found litera-
ture provides a rigorous proof in its entirety, compelling us to include our proofs developed
independently of the cited literature.

Next, we analyze optimal path finding for a general LPAR, which may or may not be convex.
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Lσ(s)
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x1
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Figure 3: Theorem 3 counter example for a non-convex linear path attainable region.

3.2 Properties of an Attainable Region and the Corresponding
Linear Path Attainable Region

From this point on, we relax the convexity assumption for the linear path attainable region,
Lδ(x), and analyze the problem for a general time and space homogeneous speed function.
In this section, we provide a series of lemmas, theorems and propositions stating supporting
properties of LPARs and the corresponding attainable regions, ARs. Lemmas represented
here are the building blocks for our main results presented in the following sections.

Proposition 4. Lδ(x) = Aδ(x) if and only if Lδ(x) is convex.

Proof. [sketch] From Theorem 3 we know that a convex Lδ(x) implies the optimality of a
straight line path, therefore Aδ(x) = Lδ(x). On the other hand, if Lδ(x) were not convex,
then there would exist a point y /∈ Lδ(x) as constructed in the proof of Theorem 3 (see
Figure 3). Consequently, y ∈ Aδ(x), which would imply a contradiction Lδ(x) 6= Aδ(x). See
A.3 for the complete proof.

3.2.1 Comparison of Two Distinct LPARs and Their Corresponding ARs.

Consider two arbitrary maximum attainable speed functions V 1(θ) and V 2(θ) defined on
θ ∈ [0, 2π]. Recall that each speed function uniquely defines the linear path attainable
region for a given time interval, and vise versa. Thus, let L1

δ(x) and L2
δ(x) be the linear path

attainable regions corresponding to the speed functions V 1(θ) and V 2(θ), respectively. Then
we can make the following observations about L1

δ(x) and L2
δ(x).

Lemma 5. L1
δ(x) ⊆ L2

δ(x) if and only if V 1(θ) ≤ V 2(θ) for all θ.

Proof. see A.4.

Lemma 6. Let A1
δ(x) and A2

δ(x) be the attainable regions corresponding to linear path at-
tainable regions L1

δ(x) and L2
δ(x), respectively. Then, L1

δ(x) ⊆ L2
δ(x) implies A1

δ(x) ⊆ A2
δ(x).
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Proof. see A.5.

3.2.2 Attainable Region Corresponding to a Given Linear Path Attainable Re-
gion.

The problem discussed in our work assumes that a maximum attainable speed function
V (θ) is given for all θ ∈ [0, 2π]. Since the speed function uniquely defines the linear path
attainable region for a given x and δ, Lδ(x), one can always use the definition of the LPAR
to find Lδ(x) corresponding to a given function V (θ). Theorem 3 establishes the fact that a
straight line is not necessarily the fastest path for a non-convex Lδ(x), and from Proposition
4 we know that Lδ(x) 6= Aδ(x) if Lδ(x) is not convex. Thus, finding the attainable region,
Aδ(x), corresponding to a given speed function is not always a straight forward task. In this
section, we establish how one can find the attainable region corresponding to a given Lδ(x).

Lemma 7. The convex combination of any two points in Lδ(x) is contained in Aδ(x), i.e.,
∀x1, x2 ∈ Lδ(x) and ∀λ ∈ [0, 1], λx1 + (1− λ)x2 ∈ Aδ(x).

Proof. For any point y = λx1 + (1− λ)x2 we can construct a path p analogous to the path
described in the proof of Theorem 3. Since the travel time for such path p is less than or
equal to δ, we conclude that y ∈ Aδ(x). See A.6 for the complete proof.

Theorem 8. Attainable region, Aδ(x), is the convex hull of the corresponding linear path
attainable region, Lδ(x), i.e., Aδ(x) = conv(Lδ(x)).

Proof. The statement conv(Lδ(x)) ⊆ Aδ(x) follows directly from Lemma 7. It is worth
noting, that path p constructed in the lemma’s proof is not necessarily a fastest path from
x to y, it is just a path that reaches point y in time less than or equal to δ.

Next, we show that Aδ(x) ⊆ conv(Lδ(x)). Consider a new linear path attainable region
L′δ(x) = conv(Lδ(x)). Since our linear path attainable region L′δ(x) is convex, from Proposi-
tion 4 we know that the corresponding attainable region A′δ(x) = L′δ(x). Since Lδ(x) ⊆ L′δ(x),
from Lemma 6 it follows that Aδ(x) ⊆ A′δ(x). And since A′δ(x) = conv(Lδ(x)) ⇒ Aδ(x) ⊆
conv(Lδ(x)). Hence, Aδ(x) = conv(Lδ(x)).

3.3 Bound on the Optimal Travel Time

From Theorem 3, we know that sometimes a straight line path is not necessarily a fastest
path for a given speed function V (θ). In particular, a straight line is the fastest path for a
convex linear path attainable region, but not necessarily so for a non-convex region. Here,
we calculate a bound on the shortest travel time error if the straight line path is implemented
for a non-convex LPAR. A lower bound on the minimum travel time is not only important
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Figure 4: Computing a bound on the decrease in travel time for a non-convex linear path
attainable region, L1

δ(x).

for assessing the penalty for deviating from the optimal path by following a straight line,
but the bound also plays a significant role in the proof of our key result: by showing that in
some cases the travel time for our proposed path is equal to the lower bound, we prove its
optimality.

Consider a non-convex linear path attainable region, L1
δ(x), corresponding to some speed

function V 1(θ). Then, we can calculate a bound on a decrease in the travel time from point
x to point y by following an optimal path instead of the straight line path, without actually
knowing the optimal path. Consider a new linear path attainable region defined as the convex
hull of the original LPAR, that is, L2

δ(x) = conv(L1
δ(x)). And let V 2(θ) be the maximum

attainable speed function associated with the new LPAR. From Theorem 3, we know that
for L2

δ(x), the fastest path from x to y is along the straight line segment connecting these
two points, lxy, with the total travel time τ2(x, y) = ‖y−x‖/V 2(θy−x). Since L1

δ(x) ⊂ L2
δ(x),

from Lemma 5 we know that V 1(θ) ≤ V 2(θ) for all θ. Then, the smallest travel time from x
to y for the linear path attainable region L1

δ(x), denoted by t∗
L1
δ(x)

(x, y), is at least as much

τ2(x, y), i.e., t∗
L1
δ(x)

(x, y) ≥ τ2(x, y).

Define k to be the point of intersection of the line connecting points x and y, and the
boundary of the linear path attainable region L1

δ(x), i.e., k := lxy ∩ bd(L1
δ(x)). Similarly, we

define k′ := lxy∩ bd(L2
δ(x)) (see Figure 4). Note that the sets L1

δ(x) and L2
δ(x) are closed and

therefore contain their boundaries. Also note that the travel time along the straight line path
from x to y corresponding to the linear path attainable region L1

δ(x) is τ1(x, y) = δ ‖y−x‖‖k−x‖ .

Set β := ‖k−x‖
‖k′−x‖ ≤ 1. Then, we have the following bounds on t∗

L1
δ(x)

(x, y).

τ2(x, y) ≤ t∗
L1
δ(x)

(x, y) ≤ τ1(x, y)

δ
‖y − x‖
‖k′ − x‖

≤ t∗
L1
δ(x)

(x, y) ≤ δ
‖y − x‖
‖k − x‖

βδ
‖y − x‖
‖k − x‖

≤ t∗
L1
δ(x)

(x, y) ≤ δ
‖y − x‖
‖k − x‖

βτ1(x, y) ≤ t∗
L1
δ(x)

(x, y) ≤ τ1(x, y) (1)

From inequalities (1), we deliver the following proposition.
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k=k

Lσ(x)

Figure 5: Illustration of Theorem 10 scenario 1: k = k′.

Proposition 9. The optimal travel time for a non-convex LPAR is at most β times shorter
than following a straight line path from x to y, where β := ‖k−x‖

‖k′−x‖ . That is, the traveling time

would at most decrease by 100(1− β) percent, if one were to follow an optimal path instead
of traveling along the straight line.

This lower bound is next used to show that a proposed path is, in fact, optimal.

3.4 Fastest Path for an Arbitrary Linear Path Attainable Region

In the earlier Section 3.1 we solved an instance of our fastest-path finding problem for a
convex linear path attainable region (LPAR). In this section, we describe a closed form
solution to our fastest path problem in R2 for any speed function, even when corresponding
Lδ(x) fails to be convex. The following theorem is one of the key results of this paper.

Theorem 10. Consider a linear path attainable region Lδ(x). For two arbitrarily given
points x, y ∈ R2, let k denote the intersection point of the line connecting x and y, lxy, and the
boundary of the set Lδ(x), i.e., k := lxy∩bd(Lδ(x)). Similarly, let k′ := lxy∩bd(conv(Lδ(x))).
Then, the fastest path from x to y is described by one of the following two scenarios.

1. If k = k′, the fastest path from x to y is the straight line segment connecting these two
points (Figure 5).

2. If k 6= k′, the fastest path from x to y consists of two line segments: the straight
line segment from point x to point z = x + αλ∗(x1 − x) and the second line segment

from point z to point y, where α = ‖y−x‖
‖k′−x‖ and x1, x2 ∈ Lδ(x) s.t. ∃λ∗ ∈ [0, 1] : k′ =

λ∗x1 + (1− λ∗)x2. (See Figure 6, and note that (y − z)‖(x2 − x)).

Proof. 1. Consider the case where k = k′. From inequalities (1), we have βτ(x, y) ≤
t∗Lδ(x)(x, y) ≤ τ(x, y), where β := ‖k−x‖

‖k′−x‖ and t∗Lδ(x)(x, y) is the minimum travel time

from x to y. Since k = k′, we have β = 1, and τ(x, y) ≤ t∗Lδ(x)(x, y) ≤ τ(x, y) ⇒
t∗Lδ(x)(x, y) = τ(x, y). This means that the travel time from x to y along the straight

12
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Figure 6: Illustration of Theorem 10 scenario 2: k 6= k′.

line path equals the minimum travel time, and hence, straight line path is a fastest
path from x to y.

2. Now, we consider the case where k 6= k′. From definition of k′, we have that k′ ∈
conv(Lδ(x)). Then, ∃λ∗ ∈ [0, 1] and ∃x1, x2 ∈ Lδ(x), such that λ∗x1 + (1− λ∗)x2 = k′.
Note, that since x1, x2 ∈ Lδ(x), we know that τ(x, x1) ≤ δ and τ(x, x2) ≤ δ.

From inequalities (1), we have t∗Lδ(x)(x, y) ≥ δ ‖y−x‖‖k′−x‖ = δα, where t∗Lδ(x)(x, y) is the
minimum travel time from x to y. Now, consider the following path p: from point x
we follow vector αλ∗(x1−x), and then, continue on following vector α(1−λ∗)(x2−x).
Note, that the first part of the path is equivalent to following a straight line segment
from point x to point x + αλ∗(x1 − x) = z. And the second part of the path ends at
point x+ αλ∗(x1 − x) + α(1− λ∗)(x2 − x) = x+ α((λ∗)(x1 − x) + (1− λ∗)(x2 − x)) =
x+α(k′− x) = y. Hence, the proposed path p is the same path as in the statement of
the theorem. This proves the existence of the path described in the theorem.

Next, we want to find the travel time along this path p, t(p). From the space and time
homogeneity property, we have t(p) = αλ∗τ(x, x1)+α(1−λ∗)τ(x, x2) ≤ αλ∗ ·δ+α(1−
λ∗) · δ = αδ. Since travel time for path p is less than or equal to the lower bound on
the minimum travel time from x to y (i.e., t(p) ≤ t∗Lδ(x)(x, y)), t(p) must be equal to
the minimum travel time from x to y. Hence, our path p is, in fact, a fastest path from
x to y.

It is worth noting that in the case when k 6= k′ (corresponding to scenario 2 of Theorem
10) the fastest path constructed in the theorem is not uniquely optimal. It is only one of
the infinitely many feasible paths with the same minimum travel time. Note that any zigzag
path from x to y restricted to the traveling directions of the vectors x1−x and x2−x would
correspond to the same minimum travel time. Furthermore, the straight line path in the
case of k = k′ might also not be uniquely optimal. Depending on the structure of the speed
function, it is possible that a piecewise-linear path would have the same optimal travel time
as the straight line.

13
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Figure 7: Example of a convex LPAR where V (θst) = 0; there is no feasible path from s to
t.

3.5 Problem Feasibility and Fastest-Path Finding for a Non-negative
Speed Function

All the analysis and results presented above assume that V (θ) > 0 for all θ ∈ [0, 2π]. However
in practice, the speed function V (θ) can take on the value of zero for some headings, i.e.,
leading to a ‘stall’. For example, a vehicle traveling across some hilly terrain might encounter
impermissible headings due to overturn danger or power limitations [25]. On another hand,
a sailing boat can not travel in head sea corresponding to a zero speed for that heading [22].
In this section, we discuss how allowing V (θ) to take on zero values for some headings can
change the results presented in the previous sections and in particular, its possible effects on
problem feasibility. Consequently, we will allow V (θ) ≥ 0,∀θ ∈ [0, 2π] for the discussion in
this section. To avoid the trivial case, we assume that there always exists some θ such that
V (θ) > 0.

3.5.1 Feasibility and Optimal Path Finding for a Convex LPAR.

Similar to a positive speed function case, convexity of a linear path attainable region (LPAR)
is a useful property that simplifies the optimal path finding task. Therefore, we first analyze
the case where LPAR, Lδ(s), is convex. In the following section, we look at a more general
case where Lδ(s) does not have to be convex. Lemma 11 below helps establish the existence
of a feasible path from s to t.

Lemma 11. If V (θ) = 0 for some θ ∈ [0, 2π], and the corresponding linear path attainable
region, Lδ(s), is convex, then there exists a line passing through the starting point s such
that none of the points belonging to one of the half-planes created by this line can be reached.
See Figure 7.

Proof. see A.7.
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Next, Theorem 12 describes an optimal path from s to t for a convex LPAR.

Theorem 12. Assume that LPAR, Lδ(s), corresponding to some speed function V (θ) ≥ 0,
is convex. Then,

1. if V (θst) = 0, a feasible path from s to t does not exist; and

2. if V (θst) > 0, a fastest path from s to t is along the straight line path st.

Proof. see A.8.

3.5.2 Feasibility and Optimal Path Finding for an Arbitrary LPAR.

We now relax the convexity assumption for a linear path attainable region and analyze
optimal paths for a general Lδ(s). Note that results presented below apply to a convex as
well as a non-convex LPAR cases. However, if one knows that the linear path attainable
region is convex, application of Theorem 12 would be more straight forward.

Recall that θst denotes the heading angle of the vector t−s. It is apparent that if V (θst) > 0,
then the optimal path finding problem is feasible. We are interested in describing necessary
and sufficient conditions for the problem to be infeasible. Assuming V (θst) = 0, we can
define θ

¯
and θ̄ as given below.

θ = inf{θ∗ : V (θ) = 0,∀θ ∈ [θ∗, θst]} (2)

θ̄ = sup{θ∗ : V (θ) = 0, ∀θ ∈ [θst, θ
∗]} (3)

Note that infimum and supremum in equations (2) and (3) might not be actually achieved.
Also note that in defining θ

¯
and θ̄ we extend the domain of the speed function to [−π, 3π], by

observing that V (θ) = V (θ+ 2π),∀θ. This extension is necessary to guaranty the continuity
of the interval at the boundary points θ = 0 and θ = 2π. Now, we are ready to state our
problem feasibility theorem.

Theorem 13. A feasible path from s to t does not exist if and only if V (θst) = 0 and
θ̄−θ

¯
≥ π.

Proof. see A.9.

Next, Theorem 14 delivers an optimal path from s to t for a general linear path attainable
region.

Theorem 14. Consider V (θ) ≥ 0 for all θ ∈ [0, 2π], and let Lδ(s) be the corresponding
linear path attainable region. Then,
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Figure 8: An optimal path from s to t, szt.

1. if V (θst) = 0 and θ̄−θ
¯
≥ π, a feasible path from s to t does not exist; and

2. if V (θst) > 0 or θ̄−θ
¯
< π, then a fastest path from s to t is characterized the same way

as in Theorem 10, where x = s, y = t and if V (θst) = 0 we set k = s. (See Figure 8.)

Proof. 1. Proof of the first statement follows directly from Theorem 13.

2. [Sketch] The proof of this statement is analogous to the proof of Theorem 12 part 2.
The optimality of a path characterized in Theorem 10 has been only proven for the
positive speed function, where s is an interior point of the corresponding LPAR. Thus,
we first define the new speed function V ′(θ) as given by equation (7), then we apply
Theorem 10 to the new speed function, and finally, we show that the found path is
also feasible and has the same travel time for the original speed function V (θ), making
it an optimal path for our problem.

3.6 Fastest-Path Finding Algorithm

Sections 3.1-3.5 characterize an optimal path between any two points in R2 for an arbitrary
speed function V (θ). In this section, we discuss the implementation of the presented results
and provide an algorithm that can be implemented by a computer program (e.g., on-board
autonomous navigation system) to find a fastest path from a given start point s ∈ R2 to
a given target point t ∈ R2. The presented algorithm checks the feasibility of the problem
as discussed in Section 3.5 and then implements the results of Theorem 10 in the case of a
feasible problem.

Since, in practice, the direction-dependent speed is usually evaluated by a computer pro-
gram, we assume that the values of a speed function V (θ) is given for a discrete set of
equally spaced heading angles, θ, which we denote by the set of polar coordinates S =
{(θ0, V (θ0), ..., (θn, V (θn)}. (The speed values for the intermediate heading angles are as-
sumed to be equal to the linear interpolation within a polar coordinate system, see Figure
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Figure 9: L1(s) and its convex hull: ∠ost = θst, ∠osg = θL, ∠osh = θU , ∠osa = θ′L, and
∠osb = θ′U .

9 for example.) Note that in the case when an analytical function of V (θ) is available, we
still have to discretize the speed function in order to be able to implement the fastest-path
finding procedure by a computer.

Our first step is to check the feasibility of the problem. Theorem 13 states the necessary
and sufficient condition for a problem to be infeasible. If those conditions are not satisfied,
we know that an optimal path exist and we can proceed to finding such a path.

The first step in finding a fastest path is to construct a convex hull of the linear path
attainable region. Construction of a convex hull of a finite number of points in R2 is a well
studied problem, and its details are omitted. However, we recommend the use of Graham’s
Scan algorithm [11, 6] to accomplish this task. The advantage of this algorithm is that it
uses a technique called “rotational sweep,” processing vertices in the order of polar angles
they form with a reference vertex. The polar nature of our LPAR makes Graham’s Scan a
favorable choice as it forgoes the sorting procedure required for other algorithms.

After the construction of a convex hull, we obtain a subset S ′ ⊆ S corresponding to the
extreme (corner) points of the resulting convex hull. Furthermore, the convex combination
of two consecutive points in S ′ is part of the boundary of conv(L1(s)). (Just like, all convex
combinations of pairs of consecutive points in S is the boundary of L1(s).) Let lst denote
the straight line passing through points s and t, and θst the heading angle of the vector
t − s. Then, to apply Theorem 10, we need to find the point of intersection of lst with the
boundary of L1(s), denoted by k, and the point of intersection of lst with the boundary of a
convex hull of L1(s), denoted by k′. To do so, we find between which two headings in sets S
and S ′ our θst falls. We label such headings as θL and θU , and θ′L and θ′U , respectively (See
Figure 9, L and U stand for the lower and upper headings).

We know that k lies on the line segment connecting points (θL, V (θL)) and (θU , V (θU)), and
k′ lies on the line segment connecting points (θ′L, V (θ′L)) and (θ′U , V (θ′U)). Based on that, we
can use the found θL, θU , θ

′
L and θ′U to determine whether k = k′ without actually finding

the points k and k′. Note that if points (θL, V (θL)), (θU , V (θU)), (θ′L, V (θ′L)) and (θ′U , V (θ′U))
(corresponding to points g, h, a and b on Figure 9) are all collinear, then k must equal k′, and
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k 6= k′ otherwise. If k = k′, we conclude that line segment st is the fastest path as proven in
scenario 1 of Theorem 10. If k 6= k′, our problem reduces to scenario 2 of the theorem, and
we need to compute the values of α and λ∗, as defined in Theorem 10. After some algebraic
manipulations omitted here, we find that

αλ∗ =
‖t− s‖ sin(θ′U − θst)
V (θ′L) sin(θ′U − θ′L)

. (4)

Then, we know that a fastest path is piecewise-linear with a single waypoint z = s +
αλ∗(cos(θ′U), sin(θ′U)).

The following algorithm outlines a step-by-step procedure of finding the fastest path from s
to t.

Algorithm 1. Fastest Path from s to t in an Obstacle-Free Domain.

Step 1. Find θ
¯

and θ̄ using equations (2) and (3).
If V (θst) = 0 and θ̄−θ

¯
≥ π, STOP. The problem is infeasible.

Else, go to step 2.

Step 2. Find the convex hull of the linear path attainable region L1(s).

Step 3. Find the heading angle θst and compute the values of θL, θU , θ
′
L and θ′U .

Step 4. If points (θL, V (θL)), (θU , V (θU)), (θ′L, V (θ′L)) and (θ′U , V (θ′U)) are collinear (i.e., if
k = k′), STOP. Straight line path st is an optimal path.
Else (i.e., if k 6= k′), go to step 5.

Step 5. Compute αλ∗ using equation (4).
Set z = s+αλ∗(cos(θ′U), sin(θ′U)) ∈ R2. A fastest path from s to t is the two consecutive
straight line segments sz and then zt.

4 Obstacle-Avoiding Fastest-Path Finding for an Anisotropic

Speed Function

In this section we discuss obstacle-avoiding fastest-path finding by relaxing the assumption
made in Section 3 that P = ∅. Throughout this section, P is a nonempty set of polygonal
obstacles that are not permitted to be intersected by any feasible path.

4.1 Fastest Path for a Convex Linear Path Attainable Region

Similarly to our analysis of path finding problems in an obstacle-free domain, we first restrict
our attention to problems with speed functions corresponding to the convex linear path
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attainable regions (LPARs). The analysis of this special case demonstrates an interesting
insight into the structure of the solution for the problems with arbitrary speed functions.
In the following subsection, we relax the convexity assumption and show how the results
presented here are extended to the unrestricted time and space homogenous anisotropic
speed functions.

The visibility graph search method, used to solve Euclidean shortest-path finding problems,
exploits the triangle inequality property of the distance function and restricts the optimal
path search to the set of ‘taut strings’ connecting the points of origin and destination. Similar
properties can be established for the fastest-path finding problem at hand. Our Theorem 10
states that in the case of a convex LPAR a fastest path between any two points in an obstacle-
free anisotropic domain is the connecting straight line segment. Consequently, the triangle
inequality, restated in Corollary 15 for completeness, also holds true for our anisotropic cost
function (travel time). We use this property to develop a fastest-path finding algorithm
analogous to the one used for Euclidean shortest path problems.

Corollary 15. If a speed function V (θ) corresponds to a convex linear path attainable region,
then the travel-time function τ(.) has the ‘triangle inequality’ property, that is, τ(a, b) ≤
τ(a, c)+τ(c, b), ∀a, b, c ∈ F = R2\P, as long as neither one of the linear paths are obstructed
by obstacles.

Proof. Follows directly from Lemma 1.

The triangle inequality stated in Corollary 15 provides the grounds for a direct extension of
the earlier mentioned visibility graph search method to our anisotropic problem. In the case
of minimizing Euclidean distance, “an easy geometric argument shows that in general the
shortest path between two points must be a polygonal chain whose vertices are vertices of
obstacles” [2]. A similar observation is true for our anisotropic medium, which validates the
search of a modified visibility graph as an appropriate solution approach for our problem.

Theorem 16. If a linear path attainable region Lδ(x) is convex, then there exists a fastest
path from s to t in F , which is piecewise-linear with all its waypoints (vertices) corresponding
to the vertices of obstacles in P.

Proof. see A.10.

Theorem 16 implies that when a given speed function corresponds to a convex linear path at-
tainable region, a fastest-path search can be restricted to a directed visibility graph with the
edge cost defined to be the travel time along the straight line connecting its nodes. Hence-
forth, we adapt the shortest path visibility graph approach to develop the algorithm below,
which finds an obstacle-avoiding fastest path for an anisotropic speed function corresponding
to a convex LPAR.
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Figure 10: Construction of a visibility graph.

Algorithm 2. Obstacle-Avoiding Fastest Path for a Speed Function V (θ) Corresponding to
a Convex LPAR.

Step 1. Construct a visibility graph VGV as follows.

• The set of VGV vertices is composed of all the vertices of the obstacles in P, as
well as points s and t.

• The set of VGV edges consists of all the straight line edges interconnecting these
vertices such that they do not intersect any of the obstacles in P.

• The cost associated with an edge (i, j) is equal to the travel time τ(i, j) = ||j −
i||/V (θj−i). (Note that unlike the case of Euclidean metric, our visibility graph
has to be directed since the cost of an arc (i, j) does not generally equal to the cost
of an arc (j, i).)

Figure 10 provides an example of constructing a visibility graph by illustrating all the
visibility graph nodes and edges.

Step 2. Apply Dijkstra’s algorithm [7] to find an optimal path in the constructed network
VGV from node s to node t. The resulting path is an obstacle-avoiding fastest path.

Published work discussing Euclidean shortest path problems notes that in some cases the
visibility graph has quadratic size (i.e., the construction time of a graph with n vertices is
O(n2)), and is not the most efficient approach for such problems [16]. An alternative method,
referred to as continuous Dijkstra, involves simulating the effect of a ‘wavefront’ propagating
out from the source s and constructs the linear-size shortest path map directly [17, 18]. While
this method was originally developed for the Euclidean shortest-path problems, applications
to other scenarios have been also considered (e.g., L1 shortest paths in the plane [15], and
construction of Voronoi diagrams for convex distance functions [5]). We thus note that
Algorithm 2 is not the only possible method to address our problem, and the extension of
a continuous Dijkstra algorithm to an anisotropic medium with a convex LPAR is also a
plausible approach.
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Figure 11: Example of Lδ(x) and L′δ(x) := conv(Lδ(x)).

4.2 Fastest Path for an Arbitrary Anisotropic Speed Function

Subsection 4.1 discusses a direct extension of the shortest-path visibility graph approach
to the obstacle-avoiding fastest-path finding problems with convex LPAR. However, the
proposed algorithm does not apply to a general speed function V (θ) in the case when the
correspond Lδ(x) is not convex. In Theorem 3 we have shown that a straight line path
between a pair of points is not necessarily optimal for an arbitrary direction-dependent
speed function. Therefore, in general, the triangle inequality does not hold true for the
travel time function τ(.), and we cannot restrict our fastest-path search to the set of taut
strings connecting s and t. In this subsection, we relax the convexity assumption of an
LPAR, and analyze fastest-path finding problems for a general anisotropic speed function.

Consider an arbitrary speed function V (θ) and the corresponding linear path attainable
region Lδ(x) which may or may not be convex. We introduce an augmented speed function
V ′(θ), such that, its corresponding LPAR, L′δ(x), is the convex hull of Lδ(x), i.e., L′δ(x) :=
conv(Lδ(x)) (see Figure 11). Note that the set L′δ(x) and the speed function V ′(θ) are unique,
due to the uniqueness of a convex hull. By definition, a linear path attainable region L′δ(x)
is convex. Therefore, by constructing the visibility graph VGV ′ as described in Algorithm
2, we can find an obstacle-avoiding fastest path from s to t corresponding to the new speed
function V ′(θ). We let pV ′ represent this optimal path and tV ′(pV ′) denote the travel time
along the path pV ′ while traveling with speed V ′(θ). Then, Proposition 17 below states that
the minimum travel time from s to t corresponding to the original speed function V (θ) has
to be greater than or equal to tV ′(pV ′).

Proposition 17. The traveling time along a fastest path corresponding to an arbitrary speed
function V (θ) has to be greater than or equal to the travel time along a fastest path corre-
sponding to the speed function V ′(θ), where L′δ(x) = conv(Lδ(x)).

Proof. see A.11.

Proposition 17 concludes that if we let pV denote an obstacle-avoiding fastest path for speed
V (θ), then tV (pV ) ≥ tV ′(pV ′). This provides a lower bound on the minimum travel time for
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Figure 12: Fastest path corresponding to the speed function V ′(θ) is shown in bold. Its
travel time tV ′(pV ′) = τ ′(s, i) + τ ′(i, j) + τ ′(j, t).

our original problem, which is an important component to characterizing an optimal path.
We use this bound to demonstrate that the travel time for a path proposed below is equal
to its lower bound, consequently proving the path’s optimality.

Since path pV ′ lies in the visibility graph VGV ′ , it is piecewise-linear with the waypoints
corresponding to the vertices of P , and points s and t. Consequently, the total travel time
of the path can be written as the sum of travel times along each individual link. Recall that
the travel time for each linear link (i, j) of the path pV ′ is equal to τ ′(i, j) = ‖j−i‖

V ′(θj−i)
(see

Figure 12). From Theorem 10, our obstacle-free analysis describes a fastest path from i to j
for an arbitrary speed function V (θ) with the optimal travel time equal to τ ′(i, j). Applying
the theorem to each linear link of the path pV ′ and then combining them together results in
a path corresponding to the original speed function V (θ) with the travel time equal to the
lower bound tV ′(pV ′).

Recall that an optimal path described in the second scenario of Theorem 10 is not unique;
it is just one of infinitely many paths with the same minimum travel time. In fact, as we
attempt to implement the one-waypoint path along each linear link of the path pV ′ we might
intersect the obstacle space P . However, due to time and space homogeneity of the cost
function, i.e., V (θ), we can construct a zigzag path with the same travel time by alternating
the traveling directions between headings corresponding to vectors x1 − x and x2 − x as
many times as needed. Our problem statement assumes that the distance between any two
obstacles is always greater than zero. Therefore, we can always construct a zigzag path close
enough to the line xy, such that it does not intersect with the neighboring obstacles. (See
Figure 13.)

We now introduce an algorithm for finding an obstacle-avoiding fastest path for an arbitrary
speed function.

Algorithm 3. Obstacle-Avoiding Fastest Path for an Arbitrary Speed Function V (θ).

Step 1. Find V ′(θ) for θ ∈ [0, 2π] such that L′δ(x) = conv(Lδ(x)).
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Figure 13: A feasible zigzag path from x to y with the total travel time equal to τ ′(x, y).

s

ti j

Figure 14: Example of a fastest path for speed function V ′(θ) (dashed line), and an optimal
path for speed V (θ) (solid line).

Step 2. Use Algorithm 2 to find an optimal path corresponding to the speed function V ′(θ).
Let pV ′ denote the determined path, and let (k0, k1, k2, ..., kn) be the sequence of vertices
path pV ′ is traversing. Note that k0 = s and kn = t. Then the corresponding travel
time along the path pV ′, denoted by tV ′(pV ′), can we written as

tV ′(pV ′) = Σn
i=1τ

′(ki−1, ki) (5)

Step 3. For each pair of consecutive points in (k0, k1, ..., kn), apply Algorithm 1 to find a
fastest path between the two points corresponding to the speed function V (θ). If a given
one waypoint path is infeasible due to the presence of obstacles, increase the number of
waypoints in a zigzag path as discussed above.

Step 4. Combine together the optimal paths found in Step 3. The resulting path has a travel
time equal to tV ′(pV ′) and is therefore a fastest obstacle-avoiding path for an arbitrary
speed function V (θ). (See Figure 14.)
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Figure 15: “An example of linear path attainable regions for the S-175 corresponding to
voluntary speed loss at Sea State no.7” [8].

5 Applications and Conclusion

5.1 Application: Optimal Short-Range Routing of Vessels in a
Seaway

A fastest-path finding problem for the direction-dependent speed functions arises in a wide
range of applications. For example, the speed of a sail boat depends on the traveling heading
angle it makes with wind, and a vehicle speed varies as the agent traverses up and down a
hill. Airplanes have to deal with an anisotropic speed due to wind, while motor boats have
similar effects caused by waves. To demonstrate an application in more details, we analyze
optimal short-range routing of vessels in a seaway.

Any vessel traveling at a seaway encounters waves which add drag and affect the vessel’s
performance. In our collaboration with colleagues working on Optimal Vessel Performance
in Evolving Nonlinear Wave-Fields project [8], we evaluate the added drag by computing
the time average wave force acting on the vessel in the longitudinal direction. Then, by
superimposing the added drag on the steady drag experienced by the moving ship in calm
waters, we compute the maximum mean attainable speed for each given sea state (which
describes the distribution of the waves) and the heading angles in the range from 0◦ to 180◦.
Figure 15, borrowed from [8], illustrates an example of the linear path attainable region for
the S-175 containership at Sea State no.7. Here, heading is measured as the angle a vessel
makes with the dominant wave direction, which is assumed to be in the southerly direction.

For the given LPAR, we can use Theorem 10 to find a fastest path; Algorithm 1 describes
the step-by-step procedure to construct such an optimal path. As an example, we consider
two scenarios. In first case, let the target point t1 lie directly east from the starting point
s. This example corresponds to the scenario 1 of Theorem 10, since the straight line st1

24



s t1

t2
z

Lσ(s)

k
k

Figure 16: Illustration of the fastest paths from point s to points t1 and t2, paths st1 and
szt2, respectively.

intersects the boundary of the linear path attainable region Lδ(s) and the boundary of its
convex hull at the same point. Hence, we can conclude that the straight line path st1 is a
fastest path from s to t1, illustrated in Figure 16.

In the second example, let the target point t2 lie south-west from the starting point s. Then,
the intersection points of the line st2 with the boundary of Lδ(s) and the boundary of Lδ(s)’s
convex hull are not the same (i.e., k 6= k′), corresponding to the scenario 2 of Theorem 10.
From the theorem we can conclude that a fastest path from s to t2 is piecewise-linear with
one waypoint. Thus, to reach the point t2 as fast as possible, the vessel should first travel
SSE, or 30◦ clockwise from the south direction, and then complete the travel heading 75◦

clockwise from south. This corresponds to the path szt2, illustrated on the Figure 16.

In addition to finding a fastest path from s to t2, we can use equations (1) to calculate
how much improvement in travel time a vessel observes as it follows the optimal path szt2
instead of following a straight line path st2. By dividing the length of sk by the length of
sk′, we find that β = 0.688, which implies that by following an optimal path we can decrease
our travel time at most by approximately 31.2%. This kind of information is particulary
useful in evaluating the tradeoffs between following an optimal path as opposed to following
a straight line.

In some applications seaway regions might be restricted for vessel’s use due to severe weather,
presence of land, other vessels, or imposed regulations. For such problems we approximate
the restricted regions with polygonal obstacles and apply Algorithm 3 to find an optimal
obstacle-avoiding path to the destination. In other applications the vessel’s speed is often
maintained constant by utilizing a greater amount of fuel and varying the engine thrust
level. Our solution approach easily extends to such problems. We redefine the linear path
attainable region to represent the set of points one can reach consuming a single unit of fuel.
Then, by using the algorithms presented in this paper we can find a path minimizing fuel
consumption instead of traveling time.
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5.2 Conclusion

In this paper, we find the solution to a fastest-path finding problem for a direction-dependent
time and space homogeneous speed function. We demonstrate that in an obstacle-free do-
main an optimal path is piecewise-linear with at most two line segments, regardless of the
underline structure of the speed function. This analytical character of our results provides
a computationally fast method for finding an optimal path, making it suitable for online
applications. We also provide a tight bound on the improvement in travel time by following
an optimal path as opposed to traversing a simpler straight line path. Algorithm 1 presented
in the paper facilitates a simple implementation of these results.

We also use these results to address the obstacle-avoiding fastest-path problems in anisotropic
media. We use the properties of speed functions with the convex polar plots to adapt the
visibility graph search method, traditionally used for Euclidean shortest-path problems, to
find a solution for these types of problems. Algorithm 2 outlines the fastest-path finding
procedure for solving problems with the convex speed polar plots. We then address the case
of an arbitrary speed function, which may not correspond to a convex liner path attainable
region. For the general scenario, we introduce an augmented speed function such that its
polar plot is the convex hull of the original speed plot. Then, to find a lower bound on the
minimum travel time for our original problem we apply Algorithm 2 to the augmented speed
function. By applying a fastest piecewise-linear path between the nodes of the visibility
graph, we construct a path with the travel time equal to its lower bound, thus establishing
its optimality. Algorithm 3 gives the detailed steps to finding an optimal obstacle-avoiding
path for a general time and space homogeneous speed function.

We discuss the application of the results for optimal vessel routing in a seaway. The nu-
merical example demonstrates over 30% decrease in vessel travel time when our path-finding
algorithm is implemented instead of a straight line path.
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Figure 17: Polygonal path approximation.

A Proofs

A.1 Proof of Lemma 1

Proof.

τ(x, y) = m(y − x)

= m(y − x+ z − z)

= m((z − x) + (y − z))

≤ m(z − x) +m(y − z) = τ(x, z) + τ(z, y).

A.2 Proof of Lemma 2

Proof. To compute t(p) we apply polygonal approximation to the path p. Choose an arbi-
trary partition Π of interval [0, 1], i.e., let Π = (r0, r1, r2, ..., rk) such that 0 = r0 < r1 < r2 <
... < rk−1 < rk = 1. Let mesh |Π| be the maximum length ri − ri−1 of a subinterval of Π,
that is, |Π| = max1≤i≤k{ri − ri−1}. Then Π defines a polygonal approximation to p, i.e., the
polygonal arc from p(0) to p(1) having successive vertices p(r0), p(r1), ..., p(rk) (see Figure
17).

Then, the traveling time along the polygonal approximation of the path can be written as
η(p,Π) =

∑k
i=1 τ(p(ri−1), p(ri)). However, as we let |Π| approach zero, thus increasing the

number of vertices, the polygonal approximation in the limit is equal to path p; then so are
their travel times (this follows from the assumption that path p is rectifiable). Given this,

t(p) = lim
|Π|→0

η(p,Π). (6)

Note that for any arbitrary partition Π, η(p,Π) = τ(p(r0), p(r1)) + τ(p(r1), p(r2)) + ... +
τ(p(rk−1), p(rk)). After iteratively applying inequality from Lemma 1 we obtain η(p,Π) ≥
τ(s, t). Substituting this into equation (6) results in τ(s, t) ≤ t(p).
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A.3 Proof of Proposition 4

Proof. First, we prove the if direction of the proposition by contradiction.

Assume Lδ(x) 6= Aδ(x). From the definitions of Lδ(x) and Aδ(x), we know that Lδ(x) ⊆
Aδ(x). Then, Lδ(x) ⊂ Aδ(x), that is, ∃y ∈ Aδ(x), s.t. y /∈ Lδ(x). Hence, there exists a
non-linear path p from point x to point y, such that traveling time along this path is less
than traveling time along a straight line path from x to y. However, Theorem 3 states that
for a convex linear path attainable region, a straight line path is the fastest path between
any two points in R2. Thus, we reach a contradiction and conclude that if Lδ(x) is convex,
then Lδ(x) = Aδ(x).

Next, we prove the only if direction of the proposition by contradiction.

Assume that Lδ(x) = Aδ(x) but Lδ(x) is not convex. From Theorem 3 we know that if Lδ(x)
is not convex, then ∃x, y ∈ R2 such that the straight line path from x to y is not a fastest
path. Let δxy be the minimum travel time from x to y. Then y ∈ Aδxy(x) but y /∈ Lδxy(x)
since traveling time along the straight line segment from x to y will be greater than δxy.
This contradicts our assumption that Lδ(x) = Aδ(x). Hence, our assumption that Lδ(x) is
not convex was incorrect.

A.4 Proof of Lemma 5

Proof. We first show that if V 1(θ) ≤ V 2(θ) ∀θ then L1
δ(x) ⊆ L2

δ(x). Select an arbitrary
point y ∈ L1

δ(x). Then from the definition of L1
δ(x), we have ‖y − x‖ ≤ δV 1(θy−x). Since

V 1(θ) ≤ V 2(θ) ∀θ, we know that ‖y − x‖ ≤ δV 2(θy−x) as well. Hence, y ∈ L2
δ(x). Since

point y ∈ L1
δ(x) was chosen arbitrarily, we can conclude that L1

δ(x) ⊆ L2
δ(x).

Next, we prove the other direction of the lemma by contradiction. We need to show that
if L1

δ(x) ⊆ L2
δ(x) then V 1(θ) ≤ V 2(θ) ∀θ. Assume that V 1(θ) � V 2(θ) for some θ. Then,

∃θ∗ ∈ [0, 2π] such V 2(θ∗) < V 1(θ∗). Select y ∈ L1
δ(x) such that θ∗ = θy−x and ‖y − x‖ =

δV 1(θy−x). Then δV 2(θ∗) < δV 1(θ∗) = δV 1(θy−x) = ‖y − x‖ and y /∈ L2
δ(x). We reach a

contradiction, since L1
δ(x) ⊆ L2

δ(x). Hence, our assumption that V 1(θ) � V 2(θ) for some θ
was incorrect.

A.5 Proof of Lemma 6

Proof. From Lemma 5, we know that if L1
δ(x) ⊆ L2

δ(x) ⇒ V 1(θ) ≤ V 2(θ) ∀θ. Thus, for
any heading direction speed V 2(θ) is always at least as great as V 1(θ). Select an arbitrary
y ∈ A1

δ(x). From the definition of attainable region A1
δ(x), there exists a continuous path
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p : [0, 1] → R2 from point x to point y, such that if a mobile agent’s maximum speed
function is V 1(θ), the travel time from x to y is no greater than δ, i.e., tV 1(p) ≤ δ. Now,
consider following this path p with the maximum speed given by function V 2(θ). Since
V 1(θ) ≤ V 2(θ) ∀θ, we know that travel time along path p with speed corresponding to
function V 2(θ), tV 2(p), will be at most tV 1(p). Hence, tV 2(p) ≤ tV 1(p) ≤ δ and thus, point
y also belongs to set A2

δ(x). Since y ∈ A1
δ(x) was chosen arbitrarily, we can conclude that

A1
δ(x) ⊆ A2

δ(x).

A.6 Proof of Lemma 7

Proof. Select arbitrary x1, x2 ∈ Lδ(x) and λ ∈ [0, 1]. Note that λx1 + (1 − λ)x2 may not
lie in Lδ(x), since set Lδ(x) might not be a convex set. Let y = λx1 + (1 − λ)x2. Since
x1, x2 ∈ Lδ(x), τ(x, x1) ≤ δ and τ(x, x2) ≤ δ.

Now consider the following path p: from point x, we travel following the vector λ(x1 − x)
and then, continue on following the vector (1 − λ)(x2 − x) (This path is the same path as
the one constructed in the proof of Theorem 3 which can be seen in Figure 3.) Then, our
path p starts at point x and ends at point x + λ(x1 − x) + (1 − λ)(x2 − x) = λx1 + (1 −
λ)x2 = y. Using time and space homogeneity, we can find the travel time for this path:
t(p) = λτ(x, x1) + (1 − λ)τ(x, x2) ≤ λ · δ + (1 − λ) · δ = δ. Consequently, y ∈ Aδ(x). Since
x1, x2 and λ were chosen arbitrarily, we can conclude that the set of all convex combinations
of points from Lδ(x) lies in Aδ(x).

A.7 Proof of Lemma 11

Proof. If V (θ) = 0 for some θ, then s has to be a boundary point of the convex set Lδ(s).
Therefore, there exists a supporting line passing through s such that Lδ(s) lies on one side
of this line. Consequently, there is no linear combination of feasible headings that would
deliver us to any point belonging to the other half-space.

A.8 Proof of Theorem 12

Proof. 1. Proof of this statement follows from Lemma 11. We can construct a supporting
line to Lδ(s) at point s, that separates the LPAR and point t. Concluding, that no
feasible path from s to t exists (see Figure 7).

2. To prove the second statement, we select an arbitrary ε > 0, such that ε < minθ{V (θ) :
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Figure 18: Linear path attainable region corresponding to the speed function V ′(θ).

V (θ) > 0}. Then, define a new speed function V ′(θ) as follows (see Figure 18).

V ′(θ) =

{
V (θ), if V (θ) > 0
ε, if V (θ) = 0

(7)

By construction, V (θ) ≤ V ′(θ) for all θ ∈ [0, 2π]. Then, from Lemma 5 and Lemma 6
we know that a fastest path corresponding to the speed function V (θ) cannot be faster
than an optimal path corresponding to V ′(θ). Since V ′(θ) > 0 for all θ, we can apply
Theorem 10 to find a fastest path from s to t corresponding to that speed function.
Note that from ε < minθ{V (θ) : V (θ) > 0}, we know that the intersection point of
the line st with the boundaries of LPAR and the intersection point of line st with
LPAR’s convex hull are equal to each other, corresponding to scenario 1 of Theorem
10. Therefore, an optimal path for the speed function V ′(θ) is a straight line path
st. Since V ′(θst) = V (θst), the straight line path is also feasible for the original speed
function, and it has the same travel time. Hence, st is an optimal path for the original
speed function V (θ).

A.9 Proof of Theorem 13

Proof. To prove the if statement of the theorem, we observe that if V (θ) = 0,∀θ ∈ (θ
¯
, θ̄),

θ̄−θ
¯
≥ π and θst ∈ [θ

¯
, θ̄], then no linear combination of feasible headings would deliver you

from point s to point t. Figure 7 provides a visual example.

Next, we prove the only if direction of the theorem by contradiction. Assume that there
does not exist a feasible path from s to t, but either V (θst) 6= 0 or θ̄−θ

¯
< π. Recall that θ

¯
and θ̄ are not defined if V (θst) 6= 0, thus it is not possible for both conditions to be violated
simultaneously. Clearly, if V (θst) 6= 0 ⇒ V (θst) > 0, which would mean that the straight
line path from s to t is feasible. On the other hand, if θ̄−θ

¯
< π, then ∃ε1, ε2 ≥ 0 such that

V (θ
¯
−ε1) > 0, V (θ̄ + ε2) > 0 and (θ̄ + ε2) − (θ

¯
−ε1) < π. Therefore, ∃α ∈ [0, 1] such that
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Figure 19: Existence of a feasible path from s to t: path sxt.
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Figure 20: For a convex LPAR, the travel time along the piecewise-linear path sabcdt is not
greater than along the curve p.

θst = α(θ
¯
−ε1) + (1 − α)(θ̄ + ε2); and hence we can construct a feasible path from s to t by

first traveling in the direction θ
¯
−ε1 and then turning to the direction θ̄ + ε2. See Figure 19.

We reached a contradiction which proves that the original assumption of nonexistence of a
feasible path was incorrect.

A.10 Proof of Theorem 16

Proof. Corollary 15 and the polygonal structure of the obstacles imply that any continuous
path p ∈ F from s to t can be replaced by a piecewise-linear path from s to t such that
the travel time of the piecewise-linear path is not greater than that of the initial path p.
Therefore, there exists a piecewise-linear path which is a fastest path from s to t. (See Figure
20 for a visual illustration.)

Next, we show that there exists an optimal piecewise-linear path such that all its vertices
correspond to the obstacle vertices. Consider a piecewise-linear path with some vertex a not
equal to a vertex of any obstacle in P . Then, there exist two points b and c lying on each of
the two line segments of the polygonal path joined by vertex a, such that the line segment
bc does not intersect P . We construct a new path by replacing the bac part of the path with
a straight line segment bc. From the triangle inequality of Corollary 15 we know that the
travel time for the resulting path is not greater than the travel time for the original path. It
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Figure 21: For a convex LPAR, the travel time along the piecewise-linear path sbct is not
greater than along the path sat.

follows that there exists a fastest path which is piecewise-linear and its vertices correspond
to the vertices of obstacles in P . (See Figure 21.)

A.11 Proof of Proposition 17

Proof. [by contradiction] Let pV denote a fastest path from s to t corresponding to a
speed function V (θ), and tV (pV ) be the path travel time at speed V (θ). Assume that
tV (pV ) < tV ′(pV ′). From Lemma 5 we know that since Lδ(x) ⊆ L′δ(x), then V (θ) ≤ V ′(θ),∀θ.
Consequently, traveling along the path pV with the speed described by function V ′(θ) (de-
noted by tV ′(pV )), constrains the travel time to be less than or equal to tV (pV ). Hence, we
find a feasible path corresponding to the speed function V ′(θ) with the travel time less than
or equal to tV (pV ). Then, the travel time along an optimal path corresponding to the speed
function V ′(θ) will be less than or equal to the travel time along this feasible path. That is
tV ′(pV ′) ≤ tV ′(pV ) ≤ tV (pV ), implying that assumption tV (pV ) < tV ′(pV ′) is contradictory,
and thus proving the proposition.
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