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In the interpretation of the geometry of second-order response surface models, standard errors and 
confidence intervals for the eigenvalues of the second-order coefficient matrix play an important 
role. In this article, we propose a new method for estimating the standard errors, and hence ap- 
proximate confidence intervals, of these eigenvalues. The method is simple in both concept and 
execution. It involves the refitting of a full quadratic model after rotating the coordinate system 
to coincide with the canonical axes. The estimated standard errors of the pure quadratic terms 
from this refitting are then used as approximate standard errors of the eigenvalues. Because this 
approach is based on the canonical form, it is geometrically intuitive and easily taught. Our method 
is intended as a way for practitioners to get quick estimates of the standard errors of the eigenval- 
ues. In our justification of the approach, we show that it is equivalent to using the delta method 
proposed by Carter, Chinchilli, and Campbell. 

KEY WORDS: Canonical analysis; Confidence intervals; Delta method; Response surface meth- 
odology. 

Response surface methodology, first introduced by Box 
and Wilson (1951), is frequently used to find conditions that 
either maximize or minimize a given quality characteristic 
or, more broadly, explore near-stationary conditions includ- 
ing ridges. When near-stationary conditions are reached, 
second-order polynomial models are typically fit to the data 
using ordinary least squares (OLS). Using matrix notation, 
the standard quadratic model is 

E(y) =o + x' + x'Bx, (1) 
where x = (xl,x2,...,xk) ' is a vector of k factors, /3 = 
(31, 32, ..., k)', and 

P11 

2 12 

B- 

2/31k 

1/012 ... * /31k 

/322 * * * 32k 

2 32k .. * * kk 

To distinguish between (1) and its estimated equivalent, we 
use the conventional hat notation for estimated parameters. 

If (1) contains three or fewer factors, contour plots of 
the fitted surface can aid in the geometric interpretation 
of the response surface. Many textbooks, including that of 
Box and Draper (1987, pp. 347-351), provide examples of 
such plots and discuss their practical significance. For ex- 
ample, by studying the contour plot, the experimenter can 
determine if the fitted surface has a maximum, minimum, 
or saddlepoint close to the experimental region or whether 
it describes some type of ridge system. When there is a 
unique optimum, it is easy to determine its location from 
the plot. If there is a rising ridge in the surface, the plot 
can be used to find the ridge and to decide the direction for 
future experiments. 

A stationary ridge system, in which there is a line or 
plane of optimal or nearly optimal points, is a case of par- 
ticular interest. Because all of the points on the stationary 
ridge optimize the quality characteristic under study, we can 
choose a point on the ridge that is most cost-effective or op- 
timize some secondary criteria. It is this potential ability to 
produce high quality at reduced cost that makes the iden- 
tification and exploration of ridge systems so important. In 
two or three dimensions, a stationary ridge can be easily 
identified and exploited using a contour plot like those just 
discussed. 

When more than three factors are involved, plots are diffi- 
cult to make and other methods are needed. Box and Wilson 
(1951) pointed out that the shape of the response surface 
locally can be interpreted by performing a canonical analy- 
sis in which the signs and magnitudes of the eigenvalues of 
B, the matrix of second-order parameters in (1), are consid- 
ered. In particular, when all of the eigenvalues are positive, 
the stationary point is a minimum, whereas eigenvalues that 
are all negative indicate a maximum. If the eigenvalues have 
mixed signs, it indicates a saddlepoint. An eigenvalue of 0 
indicates the presence of a ridge in the surface. Canonical 
analysis was discussed in detail by Box and Wilson (1951), 
Box and Hunter (1954), and Box and Youle (1955), and in 
many textbooks including those by Box and Draper (1987), 
Khuri and Cornell (1987), and Myers (1976). 

Because response surface models are typically based on 
experimental data, the eigenvalues of the estimated coeffi- 
cient matrix B are subject to error. This further complicates 
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the determination of the shape of the response surface. To 
provide standard errors and large-sample confidence inter- 
vals for the eigenvalues of B, Carter, Chinchilli, and Camp- 
bell (1990), referred to hereafter as CCC, suggested using 
the delta method. They furthermore produced simulation 
results showing that their approximate confidence intervals 
using the delta method are accurate under a fairly wide 
range of conditions. 

The method presented by CCC for finding confidence 
intervals for the eigenvalues involves a significant amount 
of vector and matrix manipulation, which may not be fa- 
miliar to many practitioners. The purpose of this article is 
therefore to present and justify an alternative and very sim- 
ple method. Our approach, which we call the double linear 
regression (DLR) method, involves two successive linear 
regressions, each fitting a full quadratic model. The first re- 
gression is used to fit a standard quadratic model followed 
by a determination of the canonical axes. In the second re- 
gression a full quadratic model is fit based on a new set 
of coordinates rotated to match the canonical axes. After 
this rotation and refitting, the standard errors of the pure 
quadratic terms that are produced as standard output from 
regression routines are used to approximate the standard 
errors of the eigenvalues. The method's simple geometry 
makes it easy to explain and use. It is also of theoretical in- 
terest because, as we will show in Section 5, our approach 
is equivalent to the delta method proposed by CCC. 

In the remainder of the article, we will first briefly dis- 
cuss some previously proposed methods for constructing 
confidence intervals for the eigenvalues of B. As a way of 
defining our notation, we then, in Section 2, provide a short 
summary of the canonical form of a second-order response 
surface model. Following that, we present the DLR method 
in Section 3 and use an example from Box (1954) in Sec- 
tion 4 to demonstrate its usefulness and simplicity. Finally, 
in Section 5 we show that the confidence intervals obtained 
by the DLR method are identical to those obtained by the 
delta method. 

1. PREVIOUSLY SUGGESTED APPROACHES 
The most accessible method for supplying confidence 

statements for the eigenvalues of B was suggested by Box 
and Draper (1987, p. 354). They simply argued that, if the 
experimental design is approximately rotatable, then it fol- 
lows that the variance of the estimated eigenvalues is ap- 
proximately equal to the variance of the diagonal elements 
of B. The advantage of the Box-Draper approach is that 
it requires no further calculations beyond those already as- 
sociated with fitting of the original second-order model. It 
is applicable only to approximately rotatable designs, how- 
ever. 

A more general approach, suggested by Carter, Chin- 
chilli, Myers, and Campbell (1986), for finding confidence 
intervals for the eigenvalues of B is based on the observa- 

puter intensive, however, CCC later suggested an alternative 
approach using the delta method. The resulting intervals 
are therefore based on first-order approximations and are 
supported by large-sample theory. Although this latter ap- 
proach is less computer intensive, it involves a fair amount 
of vector and matrix manipulation that may be discouraging 
to practitioners. We will provide more details in Section 5. 

In a recent article, Peterson (1993) discussed the related 
problem of inference for the eigenvalues when the response 
surface is constrained, as in mixture experiments and ridge 
analysis. In summary, he used a polar coordinate transfor- 
mation of the linear model to produce what he calls con- 
servative and approximate confidence band (CB) intervals 
for both the mean response at the stationary point and the 
maximum or minimum eigenvalue of B. He also showed 
that the conservative CB intervals are easier to find than 
the ST intervals. The CB intervals, however, are at least 
as large as the already conservative ST intervals. To com- 
pensate for this conservatism, Peterson (1993) proposed an 
approximate CB interval that is based on work by Clarke 
(1987). He showed that, in the case of rotatable designs, 
this approximate CB interval for the maximum (minimum) 
eigenvalue is identical to that of Box and Draper (1987) 
and CCC. 

Both CCC and Peterson (1993) provided simulation re- 
sults that suggest that the approximate confidence intervals 
that they propose for the eigenvalues may be adequate for 
many situations, including the case of relatively small sam- 
ple sizes. Unfortunately, except for the method suggested 
by Box and Draper, which is restricted to rotatable designs, 
none of the methods currently available are readily acces- 
sible to the average industrial practitioner. The need for a 
simple yet general method is therefore the motivation for us 
to suggest the DLR method. Before presenting the details 
of this method, however, we will, in Section 2, provide a 
short review of the canonical form of a quadratic response 
surface model. 

2. THE CANONICAL FORM OF A RESPONSE 
SURFACE 

Geometrically, the canonical form of a second-order re- 
sponse surface model (1) amounts to rotating the basis vec- 
tors of a new coordinate system so that they coincide with 
the normalized eigenvectors of B, the matrix of second- 
order coefficients from the fitted surface. In other words, the 
new axes are parallel to the main axes of the second-order 
response surface. If we denote the ith normalized eigenvec- 
tor of B by di, then the matrix 

(3) 

defines this rotation and the new canonical variables z can 
be expressed as functions of the original variables x as fol- 
lows: 

tion that the eigenvalues are functions of the parameters in 
B. They then proceeded to use a computer-intensive search 
method to produce conservative Scheffe-type (ST) intervals. 
Because the ST intervals are conservative as well as com- 

z = D'x. (4) 

If we now let Ai be the eigenvalue corresponding to di, then 
in the rotated coordinate system the fitted surface is given 

TECHNOMETRICS, AUGUST 1996, VOL. 38, NO. 3 

239 

- [d,, d2,...,dk] 

This content downloaded from 129.105.32.228 on Thu, 07 Aug 2014 16:15:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


S0REN BISGAARD AND BRUCE ANKENMAN 

by 

-= + z'b + z'Az, (5) 

where X = (01,92,. .,k)) = D'k 3 and A = D'BD = 
diag(Ai, A2,..., Ak). Notice that, because A is a diagonal 
matrix, the canonical model does not contain any cross- 
product terms, hence simplifying its interpretation. As ex- 
plained in the Introduction, the signs and magnitudes of the 
eigenvalues of B, which are the pure quadratic terms in the 
canonical model, enable the experimenter to interpret the 
amount of curvature along each canonical axis and hence 
to understand the shape of the surface. 

3. THE DOUBLE LINEAR REGRESSION METHOD 
As an algorithm, the first step of the DLR method for 

finding the standard errors of the eigenvalues of B is to fit 
a standard full quadratic model (1). Using the parameter es- 
timates from this fitting, we then calculate D, the rotation 
matrix of eigenvectors of B. Next, as in standard canon- 
ical analysis, the original variables x are replaced by the 
canonical variables z using (4). The final step, which is the 
only step beyond standard canonical analysis, is to again 
use linear regression to refit the followingfull second-order 
model using the new rotated coordinates z as a basis: 

E(y) = o + z'3* + z'B*z, (6) 

where 3* = (/1/ . .., ,3) and , 2 k) n 
l *1 ? 13* 1 2 12 .. Ik 

/12 /222 2 2k 
B* = 

231k 2,32k ... Pkk 

It can be shown (Bisgaard and Ankenman 1994) that B* 
is diagonal up to numerical rounding and that the diagonal 
elements of B* are equal to the eigenvalues of B from the 
first regression, again up to numerical rounding. The stan- 
dard error of the ith diagonal term, *,, then provides us 
with an approximate standard error for Ai, the ith eigen- 
value of B. Thus, estimates of the standard errors of the 
eigenvalues will be calculated by any linear regression rou- 
tine used to perform this second regression. We now de- 
scribe the DLR method in step-by-step detail. 

Suppose that, for a given experiment, there is a sin- 
gle response, y, and k explanatory variables denoted x - 
(x1, x2,... Xk)'. If there are n observations, the design ma- 
trix, XD, is an n x k matrix such that the (i, j)th element of 
XD is the level of xj in the ith observation. The full second- 
order model for this problem has p = (k + 1)(k + 2)/2 
parameters. The steps of the DLR method are as follows: 

1. Fit a full second-order model, E(y) = Po+x'/+x'Bx, 
using OLS to get the estimates /o, /, and B. 

2. Calculate the eigenvalues, Ai for i = 1, 2,..., k, and 
the corresponding eigenvectors of B. The matrix of eigen- 
vectors is the rotation matrix, D, from the standard canon- 

ical relationships (a) Ai is the ith eigenvalue of B and (b) 
D = [d1, d2,..., dk], where di is the ith normalized eigen- 
vector of B. 

3. Rotate the coordinate basis vectors and redefine the 
design points in the new coordinate system, z = D'x = 
(Zl, Z2,..., Zk)'. This step is conveniently accomplished for 
the entire dataset by postmultiplying the original design ma- 
trix by D to produce a new design matrix: ZD = XDD. 

4. Using the new design matrix, ZD, again fit a full 
second-order model, E(y) = -/3 + z'/* + z'B*z, with OLS. 

5. For i f j, the /3^'s from step 4 will be very close to 0. 
For i = 1, 2,..., k, /* will be equal to A, up to numerical 
rounding, and se(%i), the standard error of /* provided by 
a standard linear regression routine, is used as an approxi- 
mate standard error for the Ai. 

6. As in standard linear regression, the following equa- 
tion can then be used to produce an approximate 100(1 - 
a)% confidence interval for Ai: 

Ai + tl-a/2,n-pSe(3zi), (7) 
where n is the number of observations, p is the number 
of parameters in the model, and tl-a/2,n-p is the 1 - a/2 
quantile of Student-t distribution with n-p df. Note that, if 
all of the eigenvalues are to be tested individually, simulta- 
neous confidence interval adjustment of (7) might be con- 
sidered. For example, the Bonferroni adjustment replaces 
tl-a/2,n-p with tlc-/2k,n-p, when there are k eigenvalues 
being compared to 0. 

At first glance, the estimates of the parameters obtained 
in the regression of step 4 may appear to be conditional 
on the rotation matrix estimated in step 2. If this were so, 
the standard-error estimates would be overly optimistic. Be- 
cause afull quadratic model including all the cross-product 
terms is fit in the second regression, however, the fit is un- 
conditional. Hence we are using only a fixed rotation, which 
"incidentally" is chosen to correspond to the canonical axes 
of the fitted response surface. Our approach is therefore no 
more controversial than the standard practice of centering 
and scaling regression models or the use of stepwise regres- 
sion modeling (e.g., see Draper and Smith 1981). A more 
theoretical justification showing the exact equivalence be- 
tween our approach and the delta method used by CCC is 
provided later in the article, however. 

In Section 4 we will show a detailed example of the use of 
the DLR method. Let us first retrace the final steps of the 
second regression, however, and review how the standard 
errors of the 3*i's in step 4 are estimated. The matrix of 
regressor columns for fitting (6) with linear regression is 
an n x p matrix as follows: 

Z = [1, , ..., Zk, Z12, ..., Z(k-1 )kz, Zll,..., Zk], (8) 
where 1 is a column of n ones, zl,z2,.. ,zk are the k 
columns of the rotated design matrix ZD, and the other 
k(k + 1)/2 columns are generated through element-by- 
element multiplication of all possible pairs of columns 
of ZD. Thus, for any r = 1,2,... ,k and s = r(r + 
1,..., k), Zrs is generated by the element-by-element multi- 
plication of Zr and zs. Note that, for convenience, we have 
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permuted the columns of Z so that the columns associ- 
ated with the pure quadratic terms appear in the far right 
columns of the matrix. Assuming additive independent and 
identically distributed N(0, a2) errors, the standard error of 
B., and thus the approximate standard error of Ai, is the 
square root of the ith diagonal element of the lower k x k 
submatrix of s2(Z'Z)-l, where s2 is the estimate of the 
residual variance. 

We notice in passing that the DLR method has been pre- 
sented using the A-canonical form involving only a rotation 
of the coordinate axes. The alternative B-canonical form in- 
volves a rotation of the axes and a shift of the origin of the 
coordinate system to the stationary point. It can be shown 
(Ankenman 1994) that the DLR method will provide the 
same estimates of standard error for the eigenvalues if the 
B-canonical form is used. The A-canonical form, however, 
requires fewer calculations and thus is recommended for 
most situations. 

Because the DLR method produces the same standard 
errors as those produced by the delta method of CCC, the 
advantage that we claim for the DLR method is not in- 
creased accuracy but ease of calculation and geometric in- 
tuition. With reference to ease of calculation, one of the 
referees pointed out that certain software packages, includ- 
ing SAS, allow for the estimation of the variance of lin- 
ear combinations of the linear model coefficients. If we 
treat the elements of the eigenvectors as constants as we 
do in the DLR method, then each eigenvalue estimate can 
be written as a linear combination of the vector of second- 
order coefficients (q = (/11, /12,., /1 k l22, /23, ... , P2k 

... kk)'. Specifically, using the matrix-to-vector opera- 
tor, vech, which is defined later in Section 5, we find that 
Ai = vech'(did')/q. Estimating the variance of this expres- 
sion will lead to the same confidence intervals as the DLR 
method and the delta method. The ease of this calculation 
will depend on the user's familiarity with the software pack- 
age. The DLR method relies only on standard matrix op- 
erations and linear regression, however, and thus can be 
performed in almost any regression package. In addition, 
because it is based on the geometrically intuitive idea of 
rotation, it is easily taught and retained. In fact, once a prac- 
titioner has used and understands the DLR method, there 
should be no need to refer to the steps provided previously 
even when switching from one software package to another. 

4. AN EXAMPLE 
In this section we will provide a detailed example of the 

steps of the double linear regression approach using an ex- 
periment originally published by Box (1954). The objective 
of the experiment was to maximize the yield of a chemi- 
cal reaction. It involved five factors-stage one temperature 
(x1), stage one reaction time (x2), stage one concentration 
(x3), stage two temperature (x4), and stage two reaction 
time (X5). The experimental design is quite unusual because 

periment led the experimenters to believe that the optimum 
was likely to be near a certain corner of the design. Based 
on this, they decided to add enough design points to esti- 
mate a second-order surface but to add the points near that 
corner. Thus, after two steps they had a noncentral compos- 
ite design with 21 design points. They were now estimating 
21 parameters with 21 observations, however, so they felt 
it was necessary to add some confirmatory design points 
in a third step. Because they had estimates of the station- 
ary point and the canonical axes of the fitted surface, they 
decided to add the final 11 experimental points as center 
and starpoints around this estimated stationary point and 
on the canonical axes. This, of course, makes the levels in 
the original variables for step 3 quite nonstandard. 

The design matrix for all three steps taken as one large 
experiment, XD, and the vector of observed yields, y, are 
shown as follows: 

XD = [X1,X2,X3,x4,X5] 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 
3 
1 
1 
1 
1 

1.23 
.77 

1.69 
2.53 
-.08 

.78 
1.68 
2.08 

.38 

.15 
2.30 

it was actually run as three sequential experiments in which 
the experimental design for each step was determined by 
the analysis from the previous step. The initial step was a 
standard 25-1 fractional factorial. The analysis of this ex- 

-1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 

-1 
-1 
-1 

-.56 
-.82 
-.30 

.64 
-1.75 
-.06 

-1.06 
-2.05 

.93 
-.38 
-.74 

-1 
-1 
-1 
-1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 

1 
1 
1 

-3 
-1 
-1 

-.03 
1.48 

-1.55 
-.10 

.04 

.47 
-.54 
-.32 

.25 
-1.20 

1.13 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 

.69 
1.88 

-.50 
1.51 

-.13 
-.12 
1.50 
1.00 
.38 

1.76 
-.38 

1 
-1 
-1 

1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 
1 

-1 
-1 

1 
1 
1 
1 
1 
3 

.70 

.77 

.62 
1.12 
.27 

2.32 
-.93 
1.63 

-.24 
1.24 
.15 
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eigenvectors, D = [da, d2, 3, 4, a5] to be 

The matrix of regressor 
quadratic model is 

49.8 
51.2 
50.4 
52.4 
49.2 
67.1 
59.6 
67.9 
59.3 
70.4 
69.6 
64.0 
53.1 
63.2 
58.4 
64.3 
63.0 
63.8 
53.5 
66.8 
67.4 
72.3 
57.1 
53.4 
62.3 
61.3 
64.8 
63.4 
72.5 
72.0 
70.4 
71.8 

columns 

-4.46 
0 
0 
0 
0 

0 
-2.62 

0 
0 
0 

0 
0 

-1.78 
0 
0 

0 
0 
0 

.40 
0 

0 
0 
0 
0 

-.04 

and 

-.28 
-.14 

.74 

.59 

.03 

for fitting the full 

X == [1,Xl,X2,X3,X4,X5,Xll,X12,X13,X4,X15, 

X22, X23, X24, X25, X33, X34, X35, X44, X45, X55], 

where, for example, xi is the column associated with stage 
one temperature and x12 is the column associated with the 
interaction between stage one temperature and stage one 
reaction time. Using OLS to fit the model in (1) to the data, 
we find that 

B= 

-1.61 
-.95 
1.05 

-.18 
-.02 

-.95 
-1.35 

.30 
-.08 
-.55 

1.05 
.30 

-2.58 
-1.77 

-.38 

3.26 
1.58 

a/= 1.16 
3.47 
1.49 

-.18 
-.08 

-1.77 
-2.34 

.20 

-.02 
-.55 
-.38 

.20 
-1.42 

A0 = 68.72. 

With these estimates, we find the matrix of eigenvalues 
of B, A = diag(A1, A2, A3,A4, A5) and their corresponding 

.64 

.60 

.00 

.43 

.21 

.25 

.25 

.23 
-.38 
.82 

.37 

.73 

.19 

.22 

.50 

-.56 
.16 

-.60 
.52 
.19 

In this experiment the stationary point of the fitted sur- 
face is x, = -B-1 = (2.52, -1.10,1.27, -.32, .53)' and 
the estimated response at this point is = /30 + x'/3 = 
72.51. When the stationary point is within the experimen- 
tal region, as it is in this case, the B-canonical form is 
often fit for model simplification. We can write out the B- 
canonical model as follows: = 72.51 - 4.46w2 - 2.62w2 - 
1.78w3 - .40w2 -.04w5, where w = (wi, W2, W3, W4, W5)Y 
D'(x - x,) and the coefficients of the equation are the 
eigenvalues of B. In Box's original analysis of the exper- 
iment, he concluded that A4 and X5 are small and thus that 
there is stationary ridge with a maximum on the plane that 
includes the fourth and fifth canonical axes. With this con- 
clusion, the model is reduced to y = 72.51 - 4.46w - 
2.62w2 - 1.78w2. He then produced a table of nearly alter- 
native conditions for maximal yield, which could be used 
to maintain high yield while increasing throughput of the 
reaction or decreasing cost in some other way. 

We now apply the DLR method to this example and ob- 
tain approximate confidence intervals for the eigenvalues. 
This will allow us to determine if the model reduction pro- 
posed previously is supported by statistical evidence. The 
first regression of the DLR method has already been done, 
and we are now ready to put the model into canonical form 
and perform the second regression. In both the A-canonical 
form and the B-canonical form, the eigenvalues of B are the 
second-order coefficients. Because the DLR method pro- 
vides the same standard errors for both canonical forms 
and the A-canonical form requires less manipulation, we 
will use the A-canonical form for calculating confidence 
intervals for the eigenvalues. 

For the A-canonical form, the transformation z = D'x is 
applied to each trial in the design matrix XD by postmul- 
tiplying XD by D. Thus the design matrix for the second 
regression in the DLR method is 

TECHNOMETRICS, AUGUST 1996, VOL. 38, NO. 3 

and 

242 

This content downloaded from 129.105.32.228 on Thu, 07 Aug 2014 16:15:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


STANDARD ERRORS FOR THE EIGENVALUES IN SECOND-ORDER RESPONSE SURFACE MODELS 

Table 1. The Estimated Eigenvalues, Their Approximate Standard 
Errors Calculated Using the DLR Method and the Associated 

Approximate 95% Confidence Intervals for the 
Chemical Experiment of Box (1954) 

Approx. 95% 
Canonical DLR regression Standard confidence 
parameter parameter Estimate error interval 

A ,1 1 -4.46 .25 (-5.02, -3.90) 
A2 322 -2.62 .24 (-3.15, -2.10) 
A3 /33 -1.78 .26 (-2.36, -1.20) 
A4 344 -0.40 .15 (-.73, -.07) 
A5 355 -0.04 .24 (-.57, .48) i55 

XDD = [Zl,Z2,Z3,Z4,Z5] 

-.89 -1.46 .98 
-1.50 -.61 -1.17 
-1.21 -.69 -.15 
-1.73 1.01 .98 

.55 -1.88 -.21 

.03 -.18 .92 

.33 -.26 1.94 
-.29 .59 -.21 

.24 -1.02 -1.43 
-.27 .68 -.30 

.02 .60 .72 
-.60 1.45 -1.43 
1.78 -.59 .66 
1.16 .26 -1.49 
1.45 .18 -.47 
.94 1.89 .66 

-.84 1.96 -.81 
.00 -.51 -.81 

-1.76 .68 -.75 
.91 1.55 -1.06 

-.22 1.11 1.34 
.13 .90 -.15 

2.12 .99 -.16 
-1.87 .81 -.16 

.04 2.89 -.16 

.22 -1.10 -.15 

.13 .91 1.84 

.13 .89 -2.16 

.09 .88 -.17 

.17 .91 -.15 

.19 .89 -.06 

.07 .90 -.25 

.82 

.57 
-1.63 

.10 
-.55 
1.19 

-1.01 
-1.27 

.28 
2.01 

-.19 
-.45 

.89 

.64 
-1.56 

.17 
2.74 
3.47 
2.38 
2.45 
3.00 
1.37 
1.40 
1.33 
1.38 
1.35 
1.37 
1.37 
3.35 
-.62 
1.56 
1.17 

.67 
-.82 

.61 
-.13 
-.90 

-1.65 
-.22 

-1.71 
1.33 
.59 

2.02 
.53 
.50 

-.98 
.45 

-.30 
-.53 

.28 
1.79 
1.63 
.96 

-.27 
-.33 
-.20 
-.26 
-.27 
-.36 
-.17 
-.47 
-.06 
1.72 

-2.25 

After this coordinate rotation, we now fit the following 
full quadratic model in the new coordinate system: 

E(y) = 3 + zl + /+2*Z2 +/33Z3 +/34Z4+/35Z5 

+ 1/32Z12 + /1*3Z1Z3 + /14Z1Z4 + /15 Z1 Z 

+ /23z2Z3 + /324z2z4 + /325Z2Z5 /34Z3Z4 

+ 335Z3Z5 + /345Z45 + /31Z2 + 222 

+ 2 3 + 4342 + *52 - /P33*Z3 q/44 Z4 3 4 J55 Z5' 

The regressor matrix, defined in (8), for fitting this model 
with linear regression is formed by element-by-element 
multiplication of the appropriate columns of ZD to get 

Z = [1, Z, Z2, Z3, Z4, Z5, Z12, Z13, Z14, Z15, Z23, Z24, Z25, 

Z34, Z35, Z45, Z11, Z22, Z33 Z44, Z55]. 

The pure quadratic coefficients from this regression, 
311, /222* 33*, /44, and /55, are equal to the eigenvalues of B 

from the first regression. Now let Sx denote the usual OLS 
estimate of the covariance matrix for these pure quadratic 
coefficients. Then Sx is the lower 5 x 5 submatrix of 
s2(Z'Z)-1, where s2 = 2.04 is the estimate of the residual 
variance. The standard errors of the eigenvalues are then 
approximated by taking the square root of the appropriate 
diagonal element of Sx. For this example, 

.064 

.028 

.030 

.016 

.028 

.028 

.058 

.028 

.017 

.028 

.030 

.028 

.069 

.016 

.027 

.016 

.017 

.016 

.023 

.015 

.028 

.028 

.027 

.015 

.057 

Using S\, we can produce an approximate 100(1 - a)% 
confidence interval for Ai by Ai ? t1-a/2,n-p(eSei)1/2, 
where ei is a vector consisting entirely of zeros except for 
a one in the ith position and tl_-/2,n-p is the 1 - a/2 
quantile of Student-t distribution with n - p df. Notice that 
this computation is already provided by standard regression 
programs. For this example, we use t.975,11 = 2.201 to con- 
struct the confidence intervals. The estimated eigenvalues, 
their standard errors, and the approximate 95% confidence 
interval for each are summarized in Table 1. The individual 
confidence intervals for the eigenvalues are then plotted in 
Figure 1. 

The confidence intervals for the first three eigenvalues 
show that they are clearly negative. The confidence interval 
for A5 includes 0 and thus indicates that there may be a 
stationary ridge in the surface with a maximum along the 
fifth canonical axis. The confidence interval for A4 is the 
most interesting because it comes very close to, but does not 
include, 0. In Box's original analysis of the experiment, he 
concluded that A4 is small and thus that the stationary ridge 
is most likely a plane. The DLR method shows, however, 
that, although A4 is indeed small with respect to the first 
three eigenvalues, the standard error of A4 is also small and 
hence A4 may be significant. At a 95% confidence level, the 
DLR method shows significant curvature along the fourth 

Figure 1. The Individual Approximate Confidence Intervals for the 
Eigenvalues in the Final Example Calculated by the DLR Method. 
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Table 2. The Estimated Eigenvalues, Their Approximate Standard 
Errors Calculated Using the DLR Method and the Associated 

Approximate 95% Bonferroni Intervals for the 
Chemical Experiment of Box (1954) 

Approx. 95% 
Canonical DLR regression Standard confidence 
parameter parameter Estimate error interval 

A1 - 1 -4.46 .25 (-5.24, -3.68) 
A2 I/22 -2.62 .24 (-3.37, -1.88) 
A3 P33 -1.78 .26 (-2.59, -.97) 
A4 /44 -.40 .15 (-.87, .07) 
A5 355 -.04 .24 (-.78,.70) 

canonical axis and thus suggests that the optimal response 
can be found only along the fifth canonical axis, not on an 
entire plane. 

An alternative is to use the Bonferroni adjustment for 
multiple comparisons. In that case we use 

Ai ? tl-a/2k,n-p(eSAei)1/2 Vi, 

where t-la/2k,n-p is the 1 - a/2k quantile of a Student-t 
distribution with n-p df. For this example, we use a = .05, 
so t.995,11 = 3.106. The estimated eigenvalues, their stan- 
dard errors and the approximate 95% confidence interval 
for each are summarized in Table 2. The individual confi- 
dence intervals for the eigenvalues are then plotted in Fig- 
ure 2. 

As before, the confidence intervals for the first three 
eigenvalues show that they are clearly negative, and the 
confidence interval for A5 includes 0. The confidence in- 
terval for A4, however, now covers 0 by a small margin. In 
view of this small margin and the conservative nature of the 
Bonferroni approximation, doubt may still remain about the 
significance of A4. 

In cases in which there is doubt about the statistical con- 
clusions, the practitioner must decide the best course of 
action based on knowledge of the context of the experi- 
ment. If the amount of curvature along the fourth canoni- 
cal axis is not of practical importance despite being statis- 
tically significant, then the experimenter can conclude that 
there is an approximate plane of optimal points and pro- 
ceed accordingly. If the experimenter is attempting to make 
a conclusion about the physical mechanism involved in the 
experiment or if small changes in the response along the 
canonical axis are potentially important, however, it would 
be unwise to conclude that A4 can be removed from the 
model. 

^ ^ ^__ ^5 _ Xi - i 7 . X , 

I I I I3 I2 I I I I I3 
-6 -5 -4 -3 -2 -1 0 1 2 3 4 

Figure 2. The Individual Approximate 95% Bonferroni Intervals for the 
Eigenvalues in the Chemical Example Calculated by the DLR Method. 

In Section 5 we show that the DLR method, despite its 
simplicity, provides the same confidence intervals as the 
delta method. A more detailed proof was given by Bisgaard 
and Ankenman (1994). 

5. EQUIVALENCE TO THE DELTA METHOD 
The delta method is a method for approximating the ex- 

pected value and the variance of functions of random vari- 
ables. Suppose that a vector of random variables, Wn = 
(Wnl,..., Wnr)l, has mean vector u with covariance ma- 
trix E. Furthermore, for any vector w = (wl,... ,wr), let 
g(w) = (gl(w),...,gm(w))' be a vector-valued function 
with real-valued component functions, gj (w), and nonzero 
differential at w = p. Now let U = 9g/9w, which is to say 
U = {Uij}rxm, such that, for i = 1,..., r and j = 1,..., m, 

09gj 
Uo - awi W=, 

(9) 

Then the expectation of g(Wn) is approximately given by 
g(p/) and the covariance matrix of g(Wn) is approximately 
given by U'EU. Furthermore, Rao (1973, p. 388) showed 
that, if Wn is asymptotically normally distributed-that is, 
Wn ~ AN(,, E)-then g(Wn) AN(g(u), U'EU). 

In the response surface context presented earlier, the 
eigenvalue estimators represented on the diagonal of A are 
the roots of the characteristic polynomial of B. Thus they 
are functions of the estimators of the second-order coeffi- 
cients of (1): 

3q = (1 1, 112,... ,lk :122,v23,..., 32k. i 

(10) 
Hence using the mean and covariance matrix of 3q pro- 
vided by a standard OLS fit of (1), we can in principle use 
the delta method to find approximate standard errors of the 
estimators in A. 

This is in essence what was done by CCC. Specifi- 
cally, they first used corollary 3.2.1 of Anderson (1984) 
to show that, because the transformation from B to 
(A1,..., Ak,t d1,..., dk) is one-to-one when each di vector 
is required to have a positive first element and Ai < Ai+1 
for all i, then (A1,... , Ak, dl,..., dk) is the maximum like- 
lihood estimator of (A1,..., Ak, d1,... , dk). They used this 
result to show that the Ai's are asymptotically distributed 
as a k-variate normal distribution with mean vector A = 
(A1,A2,. ..,AAk). They also provided a procedure, involv- 
ing the matrix-to-vector operator of a symmetric matrix 
for calculating large-sample confidence intervals for spe- 
cific eigenvalues. 

To ease the discussion of matrix-to-vector operators, we 
will now review pertinent material from Henderson and 
Searle (1979). The vech operator is defined for an arbitrary 
symmetric matrix, 

C1i sym. 
C21 C22 

C= . . . 

pl Cp2 * pp 
Cp1 Cp2 *- Cpp 
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as vech C = (c1l,C21,..., Cpl : C22,.. .,Cp2 * .. Cpp)l' 
Note that the standard vec operator, as defined by Hender- 
son and Searle (1979) and others, stacks the columns of 
any m x n matrix below each other to form an mn x 1 
vector. The vech operator, on the other hand, takes into ac- 
count the redundancy of a symmetric matrix. In their pro- 
cedure, CCC used the notation "vec" for what Henderson 
and Searle (1979) referred to as the vech operator. To avoid 
confusion, we will consistently use the more common no- 
tation of Henderson and Searle (1979). 

We now define two matrices that relate the two matrix-to- 
vector operators. Recalling that k is the number of factors 
under study, the matrices G and L are such that, for any 
k x k symmetric matrix C, 

vec C = G vech C (11) 
and 

L = (G'G)-1G'. (12) 
Henderson and Searle (1979) showed that G is unique and 
that vech C = L vec C. For further useful properties of the 
vec and vech operators, see Magnus and Neudecker (1988), 
Graybill (1983), Searle (1982), and Graham (1981). 

We now apply the delta method to obtain standard er- 
rors for the estimated eigenvalues. First note that, for G as 
defined in (11), 3q from (10) can be written as q = G' vec 
B. Because A - D'BD, it follows from Henderson and 
Searle (1979, eq. 5) that vec A = (D' 0 D')vec B, where ( 
indicates the standard Kronecker product. 

If we now define the vector Aq = G' vec A = vech A, 
the eigenvalue estimators are specific elements of Aq as 
follows: ,q = (i1,0,...,0 ' A2,0,..., 0 .. Ak)'. Be- 
cause Henderson and Searle (1979, eq. 24) showed that 
G'(D' 0 D') = G'(D' 0 D')L'G', then 

G' vec A = G'(D' 0 D')vec B 

= G'(b' D')L'G' vec B. 

We differentiate to find that 

9Aq G' vec A 
d9q OG' vec B 

We then apply the delta method to get the estimated covari- 
ance matrix for Aq as follows: 

Oq ) q = G( ' )LVx( )G 
9/3q /(13q 

(13) 
where Vx is the estimated covariance matrix of 3q and 
thus is the lower [k(k + 1)/2] x [k(k + 1)/2] submatrix of 
s2(X'X)-1, from the initial fitting of (1). By partitioning 
X, the regressor matrix from the first regression of the DLR 
method, as follows: 
X=[X1 X2]= [[1, Xl...,Xk] 

[X1,X12, ..,Xlk X22,X23, ... ,X2k : . Xkk]], (14) 

we can get an expression for Vx as follows: Vx = 
s2[X'X2 - XX1 [XIXi]-1XX21]-1 

We now use the DLR method to find an estimated co- 
variance matrix for ,q. It will be convenient here to leave 
Z, the regressor matrix for the second DLR regression, in 
its natural order; thus 

Z = [, Z1, . . .,Zk Zll, .. ., Zlk Z22, * - ,Z2k, ... Zkk]? 

(15) 

For X1 and X2 as defined in (14), Appendix 1 shows that 

Z- [XiM X2F], (16) 

where 

1 0 
o D 

and F = G'(D ? D)L'. 
Let us denote the estimated covariance matrix for the 

second-order terms of the secopd regression as Sq, which 
is the lower [k(k + 1)/2] x [k(k + 1)/2] submatrix of 
s2(Z'Z)-l. Using (16) and some manipulation, Sq can be 
reduced as follows: 

Sq = s2[F'[XX2 - XX1[X X1]-XX2]F]-1 

= F-lVx(F-1)'. 

It follows from Magnus and Neudecker (1988, p. 50, eq. 
12) that F-1 = G'(b' 0 D')L'. Thus 

Sq = F-1Vx(F-1)' = G'(D' D')L'VxL(D 0 D)G. 

Therefore, Sq, the estimated covariance matrix of all the 
second-order terms of the second regression of the DLR 
method, is identical to the estimated covariance matrix 
for Aq using the delta method (13) and hence the two 
methods are equivalent. Note that, when CCC applied the 
delta method, they used the vector vech B instead of 3q 
= G' vec B. These two vectors differ only by some con- 
stants, and thus the results are the same. 

6. CONCLUSIONS 
The DLR method introduced in this article provides a 

simple new approach for estimating the standard error of 
the eigenvalues in the canonical form of a second-order 
response surface model. Its key advantage, beyond being 
simple to execute, is that it is based on the simple idea of 
rotating the original coordinate system such that the new 
axes coincide with the canonical axes of the response sur- 
face, thus providing a simple geometric understanding of 
the method. It is intended to provide quick estimates of 
the standard error of the eigenvalues using standard linear 
regression software packages. The approximate confidence 
intervals of the eigenvalues constructed using these standard 
errors can be used to interpret the shape of the response 
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surface. In this article we have shown that the method is a 
linear approximation and is equivalent to the delta method 
used by Carter et al. (1990). Because of its simple geom- 
etry, however, our method is substantially more accessible 
to the average practitioner. 
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APPENDIX: A USEFUL MATRIX RESULT 

Lemma 1. Let G and L be as defined in (11) and (12), 
respectively. Moreover, let D be as in (3) and let X be 
defined and partitioned as in (14). Then Z, as defined in 
(15), can be partitioned as follows: Z = [X1M : X2F], 
where 

1 0 
- D 

andF - G'(D D))L'. 
Proof: From the definition z = D'x, it follows that the 

first k + 1 columns of Z are 
1 O 

X1 0 b =X1M, 
and thus we only need to show that the last k(k + 1)/2 
columns are X2F. 

Let XD = [xi,x2,...,xk] be the n x k design matrix 
from the original model in (1), and let ei be the n-length 
basis vector of all zeros except for a one in the ith position. 
It is readily verified that, if K = 1 ei 0 ee, then the 
matrix X in (14) can be formed by X = [1: XD K'(XD 0 
XD)L']. For X - [X1 

' 
X2] as partitioned in Equation (14), 

we note that X1 = [1 : XD] and X2 = K'(XD 0 XD)L'. 
Similarly, in the z-coordinate space the design matrix is 
XDD and thus Z = [1 

' XDD K'(XoD XDD)L]. As 
we did with X, we partition Z = [Z1 Z2], where Z1 = 
[1 XDD] and Z2 K'(XoD 0 XDD)L'. 

Because X2 = K'(XD 0 XD)L', using the properties of 
the Kronecker product and Henderson and Searle (1979, eq. 
24), we find that 

Z2= K'(XD o XDD)L' 
=K'(XD 0 XD)(b 0 b)L' 

K'(XD 0 XD)L'G'(Do D)L' 
=X2F, 

where F = G'(D D)L'. Thus, the statement of the lemma 
follows. 

[Received March 1994. Revised February 1996.] 
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