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An Adaptive Sequential Experimentation
Methodology for Expensive Response Surface
Optimization – Case Study in Traumatic Brain
Injury Modeling
Adel Alaeddini,a*† Kai Yang,b Haojie Mao,c Alper Muratd

and Bruce Ankenmane
The preset response surface designs often lack the ability to adapt the design based on the characteristics of application and
experimental space so as to reduce the number of experiments necessary. Hence, they are not cost effective for applications
where the cost of experimentation is high or when the experimentation resources are limited. In this paper, we present an
adaptive sequential methodology for n-dimensional response surface optimization (n-dimensional adaptive sequential
response surface methodology (N-ASRSM)) for industrial experiments with high experimentation cost, which requires high
design optimization performance. We also develop a novel risk adjustment strategy for effectively considering the effect
of noise into the design. The N-ASRSM is a sequential adaptive experimentation approach, which uses the information from
previous experiments to design the subsequent experiment by simultaneously reducing the region of interest and
identifying factor combinations for new experiments. Its major advantage is the experimentation efficiency such that, for
a given response target, it identifies the input factor combination in less number of experiments than the classical response
surface methodology designs. We applied N-ASRSM to the problem of traumatic brain injury modeling and compared the
result with the conventional central composite design. Also, through extensive simulated experiments with different
quadratic and nonlinear cases, we show that the proposed N-ASRSM method outperforms the classical response surface
methodology designs and compares favorably with other sequential response surface methodologies in the literature in
terms of both design optimality and experimentation efficiency. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: adaptive sequential response surface optimization; simplex optimization; risk adjustment; fractional factorial design;
central composite design (CCD)
1. Introduction

R
esponse surface methodology (RSM) is an experimental method used to locate an improved set of conditions for a process or a
design. RSM was introduced by Box and Wilson1 and its essential elements have remained unchanged:

1. Perform a first-order design and fit linear model (often a fractional factorial design)
2. Follow the path of steepest ascent until an area of curvature is reached
3. Perform a second-order design (often a central composite design built from a new factorial design)
4. Fit a quadratic model to locate at least a local optimum where conditions are improved.

Figure 1(a) shows the RSM algorithm graphically in a two-dimensional example from Box et al.2. Here, RSM is used to find settings of
time and temperature that improve the yield of a chemical process. Each number on the plot represents an experiment and the resulting
observation of the process yield at that set of conditions. Initially, time is set near 74min and temperature is set near 130� with a resulting
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Figure 1. (a) The basic response surfacemethodology process illustrated for a two-dimensional chemical process example and (b) a central composite design in two dimensions
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yield of around 60–65. At the end of the RSM algorithm, a yield near 90 is achieved by setting time to 80min and temperature to 150�.
Slight additional improvement might be made by following the second-order surface higher in temperature and lower in time.

In two dimensions, the full second-order model only has six terms,

y ¼ b0 þ b1x1 þ b2x2 þ b12x1x2 þ b11x
2
1 þ b22x

2
2 (1)

and the central composite design (CCD) has only as nine design points. The central composite design is built by combining a factorial
design (the four corner points), with four star points on the axes and a center point as shown in Figure 1(b). In the chemical example,
the center point was replicated to estimate measurement variability. However, as dimensions increase, the number of terms in the
quadratic model and the number of design points in the central composite design become infeasible (Table I).

There are many approaches for decreasing the experimental effort for the fitting of the quadratic model including reducing the
size of the central composite design to support only second-order terms3 or using the more efficient Box–Behnken design (BBD).4

Other methods use an optimality criterion for building an experimental design that optimally supports the fitting of the quadratic
model. To locate the optimum, most of these methods require that an experimental design be built that will support the estimation
of all terms in the second-order model and thus must have at least that many design points. Typically the design is built in two steps,
the first fits first-order model and the second fits the second-order model. However, most methods do not use a sequential design
that places new design points adaptively in a way that may locate the optimum before the second-order model is estimable.

The purpose of this study is to provide a new, adaptive, and extremely data efficient method for accomplishing the last two steps
of RSM. More specifically, the goal is to find an optimum in a local region of interest where a quadratic model is a reasonably good
approximation. The method is intended to be highly efficient, locating the optimum with as few observations as possible – often
before the second-order model is fully estimable. The algorithm is sequential, adaptive, and recursive with the following steps: (i) split
up the feasible region into hyper-rectangular subregions; (ii) eliminate subregions that are unlikely to contain the optimum; and then
(iii) iterate back to step one to subdivide the remaining feasible regions into smaller hyper-rectangular sub-subregions. Eventually, the
remaining feasible subregion is small enough to declare it the optimum.

In what follows, we briefly review the literature on advancements in RSM with special emphasis on the adaptive experimentation
methodologies in Section 2. Section 3 presents the proposed n-dimensional adaptive sequential response surface (N-ASRSM)
methodology in detail. In Section 4, we present the results of applying the N-ASRSM method to the stylized and real world experiments
and compare with those of the optimal designs, classical BBD and CCD, and some sequential design in the literature. Finally, Section 5
discusses results and presents future research directions.
Table I. The increase in the number of terms in the quadratic model and number of design points in central composite design as
the dimensions increases

Number of dimensions Terms in second-order model Design points in central composite design

3 10 15
4 15 25
5 21 43
6 28 77
7 36 143
8 45 273
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2. Response surface methodology literature

This section presents the relevant literature for the proposed adaptive experimental design methodology. We first review the classical
response surface methodologies and then more advanced methods including optimal design, Bayesian design, and incomplete
design strategies. Finally, we briefly describe other adaptive design methodologies such as steepest ascent, simplex-based methods,
evolution operation methods, adaptive one-factor-at-a-time (AOFAT) methods, adaptive RSM, sequential RSM, and sequential and
adaptive approximation methods from the engineering design domain.

Response surface methodology has been used as one of the most effective tools for process and product development since its
introduction by Box and Wilson1. RSM consists of statistical and numerical/mathematical optimization techniques for examining
the relationship between one or more response variables and a set of quantitative experimental variables or factors. Because the
literature on RSM is vast, we herein refer the reader to a number of good review studies. Box5 provides a retrospective on the origins
of RSM with a general philosophy of sequential learning. Myers et al.6 present a thorough discussion of RSM from 1966 to 1988.
Myers7 discusses the RSM state in late 1990s and gives some directions for future research. Myers et al.8 presents a retrospective
and literature survey on RSM.

Central composite design and BBD are the most popular class of designs used for fitting second-order model.4 Generally, the CCD
consists of a factorial or fractional factorials of resolution with runs, axial or star runs, and center points. There are usually two
parameters in CCD that must be specified: the distance of the axial runs from the design center and the number of center points.
It is common to set a= (nF)

1/4 to make the design rotatable. Also three to five runs are recommended in the literature.9 The number
of runs in CCD increases exponentially with the number of design variables and hence, becomes inefficient for high dimensional
design problems. One alternative to CCD is small composite designs that consist of a fraction of CCD points.10 However, the small
composite design has significant difficulty in estimating linear and interaction coefficients.11 BBD is another design approach, which
requires n ≥ 3.4 BBD is formed by combining 2n factorials with incomplete block designs. This design does not contain any points at
the vertices of the region created by the upper and lower limits for each variable.

Optimal design methodologies select designs, which are best with respect to some criterion. This selection process includes:
specifying the model; determining the region of interest, selecting the number of runs to make, specifying the optimality criterion,
and choosing the design points from a set of candidate points spaced over the feasible design region. Kiefer 12,13 and Kiefer and
Wolfowitz14 greatly contribute to the development of the idea of optimal designs. D-optimal design is the most widely used criterion
in optimal designs. A design is said to be D-optimal if |(X ’ X)� 1| is minimized. This is equivalent to minimizing the volume of the joint
confidence region of the vector of regression coefficients. Andere-Rendon et al.15 use D-optimal design for mixture experiments.
There are also other types of optimal designs such as A-optimal design, which deals with only the variance of the regression
coefficients, G-optimal design that minimizes the maximum scaled prediction variance over the design region, and V-optimal design
that minimizes the average prediction variance over the set of m points of interest.

Box and Wilson1 suggest a two-stage sequential CCD where the first stage is a two-level factorial or fractional factorial design, and
the axial points constitute the second stage. The axial points are then used if the lack-of-fit test indicates curvature in the system. The
method of steepest ascent1 is another adaptive sequential experimentation approach in which the experimental points move
sequentially along the gradient direction. Joshi et al.16 applied a deflected conjugate gradient approach to improve the performance
of RSM. Kleijnen et al.17,18 combine mathematical statistics and mathematical programming techniques to overcome two problems of
steepest ascent algorithm in RSM, that is, scale-dependent steepest ascent as well as intuitive selection of step size. Evolutionary
operation, another adaptive experimental approach, iteratively builds a response surface around the optimum from the previous
iteration by drifting factorial experiments with center points.19,20 Both these approaches are primarily used for shifting the region
of interest close to the optimum and replicate the same experimental design iteratively in different regions of the factor space.
Spendley et al.21 discuss the sequential application of simplex designs in optimization and evolutionary operation. They propose
using a simplex pattern instead of a factorial pattern as in Box 19. A simplex is an n+1 dimensional form in n dimensions, for example,
a triangle in two dimensions and a tetrahedron in three dimensions. They present a simplex search method where a sequence of
experimental designs in the form of a regular or irregular simplex is used.

One-factor-at-a-time (OFAT) can be considered as the earliest adaptive sequential experimentation approach proposed.22 OFAT
changes one variable at a time while keeping others constant at fixed values to find the best response. Once a factor is changed,
its value is fixed in the remainder of the process. This process is repeated until all the variables are tried. However, OFAT
experimentation is generally discouraged in the literature on the experimental design in comparison with factorial design and
fractional factorial design. Box et al.2 and Montgomery9 talk about advantages of factorial experiment over OFAT experimentation.
Czitrom23 write in favor of factorial experiment over OFAT experiments in terms of finding the behavior of the system. Frey et al.24

introduce AOFAT experimentation method. They compare AOFAT technique with orthogonal arrays through computer simulations
and concluded that AOFAT technique tends to achieve greater gains than those of orthogonal arrays when experimental error is small
or the interactions among control factors are large. Frey and Jugulum25 investigate the mechanisms by which AOFAT technique led to
improvement. The parameters that they investigated were conditional main effect, exploitation of an effect, synergistic interaction,
antisynergistic interaction, and overwhelming effect. Frey and Wang26 present the models of AOFAT and factor effects and illustrate
with theorems that AOFAT method exploits main effects if interactions are small and exploits two-factor interactions when two-factor
interactions are large.

Wang et al.27 develop an adaptive RSM methodology, called adaptive response surface method (ARSM). ARSM is a sequential
experimentation method, where at each iteration, ARSM discards portions of the design space that correspond to the response
values worse than a given threshold value. Such elimination reduces the design space gradually to the neighborhood of the global
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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design optimum. ARSM performs a CCD experiment at each iteration, and thus the number of required design experiments
increases exponentially with the number of design variables. Further ARSM does not inherit any of the previous runs and requires
a completely new set of CCD points. Wang 28 proposes a modified ARSM where the CCD is substituted with Latin hypercube
design. Standler 29 proposes the successive RSM method, which uses a region of interest, a subspace of the design space, to
determine an approximate optimum. A range is chosen for each variable to determine its initial size. Then a new region of interest
is centrally built on each successive optimum. The improvement in response is attained by moving the center of the region of
interest as well as reducing its size through panning and zooming operations, respectively. At each subregion, a D-optimal
experimental design is used to best utilize the number of available runs together with over sampling to maximize the predictive
capability. Moore et al.30 suggest an algorithm, known as Q2, for optimizing the expected output of a multi-input noisy continuous
function. Q2 is designed to need only a few experiments and avoids strong assumptions on the form of the function.
Their algorithm uses instance-based determination of a convex region of interest for performing experiments. To define a
neighborhood, they use a geometric procedure that captures the size and shape of the zone of possible optimum location/s. Their
algorithm also tries to optimize weighted combinations of outputs and finds inputs to produce target outputs. Anderson et al.31

develop a nonparametric approach called pairwise bisection for optimizing expensive noisy function with few function
evaluations. Their algorithm uses nonparametric reasoning about simple geometric relationships to find minima efficiently. They
use nonparametric statistics because for its independence from the traditional assumptions of continuousness and Gaussian noise.
They also used pairwise bisection as an attempt to automate the process of robust and efficient experiment design. Alaeddini
et al.32 develop a methodology of adaptive sequential experiment for two-dimensional responses, which uses previous
experiments information for determining the factor settings of new experiments, and shrinks the factor space to a smaller region
toward the optimal point. Their proposed methodology combines an extension of golden section search method in nonlinear
optimization and classical response surface optimization for reducing the number of required experiments for estimating the
optimal point. Alaeddini et al.33 propose an adaptive methodology, which integrates typical optimal design of experiments with
a nonparametric strategy for efficient estimation of optimal point in high-dimensional response surfaces. They also show that their
methodology performs acceptable on quadratic and nonlinear responses.

Another adaptive and sequential experimentation research stream emerges from the engineering design community. In the
engineering design, computation-intensive design analyses are commonly expensive computer experiments and thus require
experimental optimization for design optimization. The response surface models based on computer experiments are called
surrogates and commonly used in multidisciplinary design optimization. Sobieszczanski-Sobieski34 proposes concurrent subspace
optimizations (CSSO) where the multidisciplinary systems are linearly decoupled for concurrent optimization. Renaud and Gabriele
35 modify this algorithm to build response surface approximations of the objective function and the constraints. Rodríguez et al.36

introduce a general framework for surrogate optimization with a trust region approach. Jones et al. 37 propose an efficient global
optimization (EGO) of expensive black-box functions. Alexandrov et al.38 develop a trust region framework for managing the use of
approximation models in optimization. Chang et al.39 suggest a stochastic trust-region response-surface method. Gano and Renaud40

introduce a kriging-based scaling function to better approximate the high-fidelity response on a more global level. Rodríguez et al.41

present two sampling strategies, for example, variable and medium fidelity samplings. Jones 42 presents a taxonomy of existing
approaches for using response surfaces for global optimization. Other review studies in this field include Sobieszczanski-Sobieski
and Haftka43, Kleijnen44, Kleijnen et al.45, and Simpson et al.46 and Chen et al.47.
3. Proposed methodology

This section presents the detailed elements of the N-ASRSM. We start the section with a description of the terminology and
assumptions followed by an overview of the methodology. Next, we describe the two core strategies embedded in N-ASRSM:
(i) nonparametric approach in Sections 3.1–3.5 and (ii) parametric approach in Section 3.6. Finally, in Section 3.7, we describe how
these two strategies are integrated within N-ASRSM.

The definitions and terminology used in the proposed N-ASRSM methodology is shown in Table II. Some of the notation is
illustrated in Figure 2 for a three-dimensional factor space with five initial experiments in each run.

As in most RSM approaches, the proposed N-ASRSM methodology relies on a number of simplifying assumptions. The extensions
due to the relaxation of these assumptions are beyond the scope of this paper and some of these extensions discussed in the
conclusion. For the proposed methodology, we consider the following assumptions:

1. The region of interest contains the real optimum of the function. We assume that the region of interest is shifted close to the
optimum a priori using an efficient method (e.g., steepest descent).

2. The underlying relation between a single response, and two factors can be represented by a quadratic model. RSM models are
usually employed in a sufficiently small region around the optimal region. As a result, it is quite common in RSM applications
to assume that the underlying model can be approximated via a quadratic function. Such assumption also holds for this study.

3. The factor space in the region of interest is feasible.

Figure 3 illustrates the general scheme of the proposed methodology. The procedure is initialized with the region of interest, for
example, a factor space which assumed to contain the optimum. For ease of discussion, it will be assumed here that O is a minimum,
but maximization is directly comparable. The goal is reach to the vicinity of O in a finite set of runs (R).
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 2. An illustration of terminology on a three-dimensional factor space

Table II. Notations and related description used in this study

Notation Description

FSr Factor space at run r and expressed as Cartesian product of factor ranges in run r
D Design of most current run
n Number of dimensions
r Index of runs, for example, r= 1, 2, . . ., R, where R is the total number of runs
e Index of experiments in a given run, for example, e= 1,2,. . .,E, where E is the total number of experiments
B The experiment with the best response level in a given run
Nk The experiment with the kth best response level in a given run (2 ≤ k ≤ E� 1)
W The experiment with the worst response level in a given run
ORr Optimal region in run r containing the estimated optimal experiment, ORr FSr
NOR Nonoptimal region
O Optimal experiment, for example, best experiment in the initial factor space
EOr Estimated optimal experiment in run r, for example, best incumbent estimation of the optimal experiment
sb Index of subregions in a given factor, where the total number of subregions is 2n

c Minimum number of required points to estimate quadratic regression parameters (c= (n2 + 3n+4)/2)
Pl Probability of incorrect elimination of OR using ranking strategy
a Bound on the error of incorrect elimination of OR

A. ALAEDDINI ET AL.
Each run is setup with a modified version of the factorial design augmented with a center point. Once the experimentation is
completed, the approach follows two concurrent strategies, for example, nonparametric ranking strategy and parametric model
fitting strategy. Based on the ranking of experiments and the estimated optimal point from quadratic model fitting, a reduced factor
space containing the estimated optimal experiment is determined for the next run. This procedure continues until the convergence
criteria based on estimated optimal experiment or coefficient of determination of the fitted model is attained. The justification for the
dual strategy is that, whereas the information from ranking strategy is accurate but not precise, the information from model fitting is
precise but not accurate.
3.1. Design structure of the first and subsequent runs

The design D structure of the factor space FSr in the proposed approach is adapted from the minimum resolution fractional factorial
design augmented with a center point. This design may be further augmented with few more experiments on the empty corners of
FSr, which will be discussed in Section 3.6. The justification for choosing the location of the experiments based on fractional factorial
design with a center point is that according to Walters et al.48 none of the existing methods for setting the initial point in sequential
optimization procedures is superior to the corner point as in fractional factorial design. On the other hand, central points are essential
for modeling the curvature of the underlying function.9

The factor space of each run (FSr) in the proposed approach can be expressed as a mapping (’r) of the factor space of the
preceding run (FSr� 1) maintaining similar design structure. In most general form, the proposed methodology generates a series of
factor spaces, which are nested, for example, FSr=’r(’r� 1(. . .’0(FS1))). The output of this mapping ’r depends on the current factor
space, the experimentation design (D), the outcome of ranking of experiments as well as the result of parametric strategy described in
the next subsection. The latter two, the ranking and the parametric strategies, are described in Sections 3.4–3.7, respectively.
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 3. The general scheme of n-dimensional adaptive sequential response surface methodology

A. ALAEDDINI ET AL.
Regarding the FS size, given that we usually code/normalize factors (variables) in response surface optimization, in the traditional
CCD and BBD approached, the corner points are taken at � 1 unit distance from the center point (0,0). In contrast, in the proposed
methodology, it is suggested to start with a broader initial region around the center point in comparison with the classic approached,

for example, �2
n�f
4 unit distance from the center where 2n� f the number of points is in the chosen fractional factorial design (above

relation is based on the calculation axial points in rotatable CCD with a single replicate at all designated points.9. Although beginning
with a larger space is initially disadvantageous, experimental results demonstrate that the reduction in the factor space with the same
number of experiments far exceeds initial difference. An additional benefit is that this modification may decrease the effect of random
error on the initial results. Let’s consider the diagonal cross section of these two designs in at one dimension as illustrated in Figure 4
(b) and assume that the noise is identically distributed on this cross section. Then, it can be shown that the impact of the noise on
prediction of the optimal experiment point is less with the proposed methodology’s factor space. Figure 4 compares the initial factor
space of the traditional CCD and the proposed.

3.2. Nonparametric approach: ranking strategy

At each run r of the proposed N-ASRSM approach, we first rank the experiments (e.g., kth point fractional factorial and one center
points) as N1 (we would call) B,N2 . . .,N(k� 1) and N(k� 1) (we would call W) according to their response levels. The experiment
called B is the best location observed so far and W is the worst location observed since the goal is to minimize the response. Based
on the ranking, we identify the implied optimal region, which contains the EOr. This region is a polygon contained in FSr and can be
convex or nonconvex in the space of factors. We then identify a hyper rectangle, which contains the implied optimal region and
denote it as the optimal region (ORr), which determines the factor space of the next run.

This process of encapsulating the implied optimal region with a hyper rectangle is a form of relaxation and is not efficient in terms
of factor space reduction. However, there are valid reasons, which motivate this relaxation. The foremost reason is the reduced need
for new experiments due to the inheritance of experiments from the previous run. Secondly, the hyper-rectangular FS preserves the
orthogonality of factorial experimental design. Further, this hyper-rectangular form facilitates the recursive characterization of the
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013



Figure 4. (a) Initial factor space and design structure and (b) diagonal cross-section of the traditional central composite design and proposed n-dimensional adaptive
sequential response surface methodology approach.
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same rectangular structure throughout the process. In addition, we can use the same experimental design structure, for example,
factorial with a center point. Specifically, with hyper-rectangular envelope, the mapping across runs will be identical, for example, ’(�)
’r(�) for 8 r. This is because we maintain the same experiment design structure, and there is a finite number of estimated optimal
region through different runs as a result of ranking outcomes. Lastly, the relaxation reduces the risk of selecting an optimal region,
which excludes the optimal experiment.

An alternative to the hyper-rectangular envelope is the convex hull of implied optimal region. Due to its convexity, it also allows for
easier tessellation of the FS. Although the convex hull reduces the optimal region more than the hyper-rectangular envelope, it does
not reduce the number of new experiments as much. Furthermore, the experimental design used in each run will be different because
the convex hulls of the implied optimal regions will vary in shape. Clearly the choice of the right form is a trade-off between the rate of
contraction of the optimal region and the total number of experiments conducted.

To better illustrate this trade-off, let’s consider the implied optimal region in Figure 5(a). The convex hull of this implied optimal
region is identified in Figure 5(b) with 10 vertices (corner points). In contrast, we adopted the rectangular envelope, which is
illustrated in Figure 5(c). Comparison between Figure 5(b) and (c) reveals that, while convex hull-based optimal region (OR) leads
to the greatest factor space reduction, it also leads to an increased number of new experiments (10 vs. 7 corners for new
experiments). In other words, in Figure 5, the implied OR in (b) is smaller than the rectangular envelope in (c), hence the reduction
is more in (b); but this does not facilitate the re-use of previous points in the next iteration, hence we compromise the efficiency
in region reduction with the efficiency of eliminating the need to take new points.

In what follows, we first present the methodology used to reduce the factor space. Next, we describe how to choose additional
experiments for characterizing a hyper-rectangle OR (last step in the nonparametric approach part of the algorithm).
3.3. Reducing factor space

The reduction of the factor space to a subregion containing O is achieved through the ranking of experiments of the current run. This
reduction is performed by elimination of those subregions that do not contain the optimal point, for example, nonoptimal regions
(NOR). The determination of such subregions would be exact if there were no noise and the assumptions stated in Section 3.1 held.
In the presence of noise and deviations from the quadratic model, it is approximate. Intuitively, the subregions in the vicinity of high
and low ranking experiments are more simply characterized as a NOR or OR. In particular, the vicinity of B has a higher probability of
Figure 5. (a) Implied optimal region, (b) convex hull envelope of the implied optimal region, and (c) rectangular envelope of the implied optimal region

Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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containing O, whereas the other regions, for example, the vicinity of W, have considerably less chance of containing O. Such
confidence decreases in the vicinity of less extreme points. This intuition can be formalized in a procedure as follows:

Procedure 1
NORs elimination

Step 1. Divide FS into 2n subregions of the same size and structure by bisecting the FS using n hyperplanes orthogonal to the each
n factors (dimensions) (Figure 6(a)).

Step 2. For each of the 2n subregions, repeat:
2.1. Identify a hypothetical optimal point Ô in the current subregion (Figure 6(b)).
2.2. For each experiment 1≤ e≤E, express the responsemodel in a canonical formasZe ¼

Xn

i;j¼1
Ai;j Xe

i � XÔ
i

� �
Xe
j � XÔ

j

� �
þ R,

where Ai,j2 R and R is a constant term (Figure 6(c)).
2.3. Sort the parametric canonical forms of the experiments in ascending order ZeB < ZeN2 < . . . < ZeW

� �
. (Because the canonical

form should comply with empirical ranks of the experiments (B<N2< . . .<Nk<W). (Figure 6(d))
2.4. Rewrite the sorted canonical forms of the experiments in the form of a system of inequalities with E E�1ð Þ

2 pairwise
comparisons of experiments as follows (Figure 6(e)):

ZeB � ZeN2 ¼
Xn

i;j¼1
Ai;j XeB

i � XÔ
i

� �
XeB
j � XÔ

j

� �
�
Xn

i;j¼1
Ai;j X

eN2
i � XÔ

i

� �
X
eN2
j � XÔ

j

� �
< 0

ZeN2 � ZeN3 ¼
Xn

i;j¼1
Ai;j X

eN2
i � XÔ

i

� �
X
eN2
j � XÔ

j

� �
�
Xn

i;j¼1
Ai;j X

eN3
i � XÔ

i

� �
X
eN3
j � XÔ

j

� �
< 0

ZeNk � ZeW ¼
Xn

i;j¼1
Ai;j X

eN2
i � XÔ

i

� �
X
eN2
j � XÔ

j

� �
�
Xn

i;j¼1
Ai;j XeW

i � XÔ
i

� �
XeW
j � XÔ

j

� �
< 0

8>>><
>>>:

(2)

(In the previous system Ai,j and XÔ
j are the unknowns, where XÔ

j is bounded by the boarders of the current subregions)

2.5. Check the feasibility of the previous system by looking for a negative solution of the following Max–Min optimization
model: (Figure 6(f))
Figure 6. Graphical representation of step 1 and 2 of the nonoptimal regions elimination algorithm on a sample three-dimensional factor space
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Min Max Z ¼ ZeB � ZeN2 ; ZeB � ZeN2 ; . . . ; ZeNk � ZeW

� �
Subjected to :

Ai;j 2 R; XÔ
j 2 Current Subregion

(3)

(Positive solution of previous optimization model is equivalent to nonexistence of a feasible solution for previous system of
quadratic inequalities and vice versa; Figure 6(f)).

Feasible solution of previous system of quadratic inequalities in (2) simply means the real optima (O) can occur in the subregion
stated by step 2.1, otherwise that subregion is not feasible and can be eliminated from the OR. It can be shown that the previous
procedure eliminates only those subregions not containing the optimal point by contradiction as per the assumptions stated in
Section 3.1. In particular, we first assume that there exists a subregion containing the optimal point, which leads to an inconsistent
ranking of at least one experiment pair. Next, we show that the Ai,j= 1,. . .,n determined for the experiment pair contradicts the
convexity assumption of the quadratic response forms. It should be noted that the main reason for using the canonical form of
response models in step 2.2 of previous procedure is to reduce the number of parameters to be estimated.

The NOR elimination steps are repeated for all subregions until those subregions not eliminated or not checked form a hyper-
rectangular region inside the FS. When such a hyper-rectangular region is obtainable, we then designate it as the FS of the next
run. Appendix B provides an estimate of NOR reduction rate of nonparametric approach for different number of dimensions (number
of variables). The computational complexity of nonparametric approach is also discussed in Appendix C. If a hyper-rectangular region
is not available upon the checking of all subregions for NOR elimination, then additional corner experiments are necessary. The next
section discusses how those additional experiments are determined.

3.4. Design augmentation: selecting additional corner points

When the NOR elimination procedure terminates without a candidate hyper-rectangular FS or very small eliminated subregion, then
additional points are needed. These additional points enable eliminating more of the subregions in a few ways. First, they increase the
number of pairwise-ranking comparisons of experiments such that the likelihood of a previously noneliminated subregion becoming a
NOR is increased. Second, with these additional points, the new ranking of the experiments leads to a better coverage of FS. Finally
additional points generally result in more reliable ranking of the experiments that potentially allow elimination of more subregions.
However, because one of the goals of N-ASRSM is to reduce the total number of experiments, the number of additional points should
be kept as small as possible. This can be achieved by selecting the additional points that providemaximum potential for eliminatingNORs.

We select additional points one at a time until the next FS as a hyper-rectangle can be inferred. The selection strategy employed is
based on the simplex optimization method in Walters et al.48 and aims at maximizing the potential of eliminating more NORs. This
strategy is executed by using the current ranking information of the experiments and subsequently identifying those directions with
most improvement of response based on the current experiments. Clearly, the lowest ranking experiment (W) is an ideal candidate for
identifying such direction for two reasons. First, the most opposite corner projection of W provides valuable information on the
orientation of the diagonals of the underlying function. The second reason is, as in the simplex optimization method, the projection
in the opposite of least favorable (W), is likely to produce a new ranking with a more precise range of response orientation. Once the
opposite projection of W is taken as additional points, we continue taking additional points in the opposite reflections of next low-
ranking experiment, for example, NE� 2 and NE� 3, and so on. Figure 7 illustrates an example of two additional points taken in a three
dimensional FS as the opposite projections of first W and then N5.

The most opposite projection of an experiment is determined according to the cosine similarity measure.49 To illustrate, the most
opposite corner projection of the worst experiment W can be is found by:

Ck ¼ arg minCk cos að Þ (4)

where a is the angle between Cw and Ck; vectors connecting and the candidate empty corner to the center point (projection of B can
be carried out in the same way). Previous procedure works while the candidate experiment is a corner points. If the candidate
experiment, for example, W, happens to be a center point, then opposite projection of the next candidate experiment, for example,
NE� 1, should be considered.
Figure 7. An example of eliminating nonoptimal regions in a three-dimensional factor space using the ranking strategy based on two additional points
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3.5. Risk adjustment

Reducing factor space is exact when there is no noise; however, when the data have error, there is some probability that two or more
of the rankings are incorrect and the selected feasible region may be inaccurate (Figure 8).

Knowing the probability of incorrectly ranking the experiments can help to change the size of the OR to adjust the risk of not
containing the O. The challenge is that the variance of the noise is unknown and the number of experiments is usually not enough
(especially in the early runs) to estimate the variance. In the rest of this section, we present a novel approach for finding a (pessimistic)
estimate of variance when there is not enough data to estimate the model parameters and suggest how this might be used to reduce
the risk of not containing the O in OR.

3.5.1. Estimating the variance with insufficient data When the number of experiments is not enough to estimate all parameters of the
model, we design a system of two equations for obtaining the pessimistic estimate of variance. The first equation decomposes total
sum of square (SST) into sum of square regression (SSR) and sum of square error (SSE):

SST ¼ SSE þ SSR (5)

The second equation is derived based on minimum significance level of the meaningfulness of the regression of the hypothesis
testing regression analysis. The test statistic is

F ¼
SSR=k�1
SSE=n�k

, where k is the number of parameters in the canonical form of response

model discussed in Section 3.5 and is the total number of experiments. The main reason for using the canonical form of the
response model for calculating k is to reduce the number of parameters to be estimated; because we assume O is known, canonical
modeling can reduce the number of parameters to be estimated. The critical value of the hypothesis test is Fa,k� 1,n� k, so at the
significance level a considering the minimum value of the statistics, which makes the regression meaningful the following
equation can be written as:

SSR

k � 1
� Fa;k�1;n�k :

SSE

n� k
¼ 0 (6)

In (5) and (6), SST, k� 1, n� k, and Fa,k� 1,n� k are known and SSR and SSE are unknown, so combining (5) and (6) will result in a
system of two equations and two unknowns. One of the solutions of previous system would be SSE, which can be used for estimating

the variance through Mean Squared Error (MSE) ^Var ¼ MSE ¼ SSE

n� k

� �
. Of course, if there is sufficient data or replications are made, a

more traditional estimate of MSE should be used. With a bound on the error, error in ranking the design points can be considered and
used to properly determine how to expand the OR to account for these errors. Next section provides an intuitive procedure for risk
adjustment of NOR using MSE.

3.5.2. An intuitive method for nonoptimal region risk adjustment Having E ranked experiments in a way that e1 to eE represents B toW,
respectively, using the (pessimistic) estimate of variance from Section 3.5.1, for each pair of experiments (ei,ej), (i< j) the probability of
incorrect ranking can be approximated using normal density function:

p ej < ei
� � ¼ ’

Zei � Zejffiffiffiffiffiffiffiffiffiffiffi
2MSE

p
� �

(7)

where Zei and Zej are the observed values for experiments ei and ej, MSE is the (pessimistic) estimate of variance, and ’ is the
cumulative density function of standard normal distribution. The following procedure incorporates Equation (7) to formalize an
algorithm for estimating the probability of incorrect elimination of OR:
Figure 8. An example of the effect of incorrect ranking on the nonoptimal region: (a) nonoptimal region identified on the basis of noisy data (incorrect ranking ofW and N4),
(b) nonoptimal region identified on the basis of noise free (correct ranking)
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Procedure 2
For estimation the probability of incorrect elimination of OR

Step 1. Set r=1.
Step 2. For each experiments, ei2 {e1, . . .,eE} change the rank with the next inferior experiments (ei↔ ei+1).
Step 3. If changing the ranks modifies NORs, find the probability of incorrect ranking using (7) and go to step 4. Otherwise go

to step 5.
Step 4. From all possible rank changes, which result in modification of NORs (in step 3), find the one with maximum probability of

incorrect ranking (Pl) as the estimated probability of incorrect elimination of OR
Step 5. Set r= r+ 1 and go to step 2

The previous procedure is based on OFAT analysis and has computational complexity of O(n). Nonetheless, it has shown good
performance comparing to exhaustive search with O(n2) complexity in the numerical examples we conducted.

Procedure 2 states that when data are noisy, there is a risk of Pl in the elimination of NORs from FS using ranking strategy. And that
is the risk of incorrect elimination of OR instead of NOR (Figure 9). It is also clear that there is no risk in no elimination (keeping NOR).
Therefore, with a bound on the error of incorrect elimination of R (a), the correct rate of reduction in NOR (PR), that is, expansion in OR,
which account for risk of incorrect elimination of OR can be approximated by solving the logistic function50 shown in Equation (8) for
Y(PR) = a, which results in the PR (Percent of Reduction) value presented in (9):

Y PRð Þ ¼ Pl
1þ e� B0þB1:PRð Þð Þ (8)

PR ¼ ln a= Pl � að Þð Þ � B0
B1

(9)

In Equations (8) and (9), B0 and B1 are the shape parameters of the function. These parameters are chosen to limit the function
range to (0,1) (in this study, we use B0 = 10 and B1 = 100). The main reason for using the generalized logistic function (instead a typical
logistic function) is the extra shape parameter, which provides additional flexibility. Figure 9 illustrates how the generalized logistic
function applies to NOR reduction.
Figure 9. Application of the generalized logistic function nonoptimal region risk adjustment: (a) nonoptimal region identified on the basis of noisy data, (b)the generalized
logistic function with specified a and related PR rate, and (c) the effect of different values of PR on the size of nonoptimal region

Figure 10. Expansion of optimal region when the estimated optima EO falls outside
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3.6. Parametric approach: model fitting strategy

We use a parametric approach based for model fitting concurrent to the nonparametric ranking approach described in Section 3.4.
This strategy not only allows us to increase the precision of EOr but also supports backtracking through the expansion of ORr to
contain estimated optimal EOr. Beginning with the completion of all first run experiments, this parametric approach is used after each

experiment. In this approach, we fit a quadratic model: Z ¼
Xn

i;j¼1
Qi;jxixj þ

Xn

i¼1
Pixi þ Rþ e, with e~N(0,s2), to the experimental

data to analyze the underlying function and efficacy of conducted experiments. In fitting the quadratic model, two objectives are
being sought in particular: (i) finding the estimated optimal experiment (EOr); and (ii) calculating the adjusted coefficient of

determination R2adj

� �
. EOr, the minimum of the fitted model, not only shows the predicted optimal solution but also used for the

expansion of ORr. Furthermore, the change in the EOr in consecutive runs is also used as a stopping criterion. R2adj shows how well

the information gained from the experiments explain the behavior of the underlying system.51 This measure can be used as an
additional stopping rule in the proposed N-ASRSM methodology.

3.7. Designing next run factor space: expansion of optimal region to contain estimated optimal

As described in the N-ASRSM algorithm in Section 3.2, we check the consistency of the EOr obtained from the parametric approach
and the estimated optimal region ORr obtained from the nonparametric strategy. When the EOr is found to be outside ORr, we then
expand the ORr to contain EOr while preserving its hyper-rectangular structure. The resulted region will then be used as the FS of the
next runs. This expansion is illustrated in Figure 10.
4. Simulated experiments and case studies

In this section, we first illustrate the results of a rat brain trauma case study comparing the proposed N-ASRSM and tradition CCD
approach. Next, we report on the results of two sets of extensive simulation experiments performed to evaluate the performance
Table III. The experiments of the brain trauma case study: (a) central composite design and (b) n-dimensional adaptive sequential
response surface methodology

Experiment
no. (Exp no.)

Controllable factors/impact parameter (coded) Random factor Response

Run
Experiment
no. (Exp. no)

Impact
depth

Impactor
diameter

Impact
velocity

Impactor
shape

Brain size
variation (%)

Brain
injury

1 �1 �1 �1 �1 0 694.95 1 1
2 1 �1 �1 �1 1 3.46 2
3 �1 1 �1 �1 �2 281.96 3
4 1 1 �1 �1 0 46306.31 4
5 �1 �1 1 �1 1 58.49 5
6 1 �1 1 �1 1 1462.11 6
7 �1 1 1 �1 1 1500.08 7
8 1 1 1 �1 0 77150.12 8
9 �1 �1 �1 1 0 822.78 9
10 1 �1 �1 1 �1 823.36 10
11 �1 1 �1 1 1 699.20 11
12 1 1 �1 1 2 327.05 12
13 �1 �1 1 1 �2 537.74 13
14 1 �1 1 1 1 793.37 14
15 �1 1 1 1 0 3.03 15
16 1 1 1 1 0 7313.50 16
17 �2 0 0 0 1 900.00 2 1 (17)
18 2 0 0 0 0 13452.45 2 (18)
19 0 �2 0 0 1 102.94 3 (19)
20 0 2 0 0 �2 8112.84 4 (20)
21 0 0 �2 0 0 448.04 5 (21)
22 0 0 2 0 1 2468.18 6 (22)
23 0 0 0 �2 �1 5139.05
24 0 0 0 2 0 6.19
25 0 0 0 0 0 145.26

N/A: not applicable.
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of the proposedN-ASRSM approach. In the first set of simulations N-ASRSM is comparedwithwell-known classical methods including CCD,
BBD, and A-optimal, D-optimal, and V-optimal designs on different quadratic responsemodels with varying variance of errors. The second
set of simulations study the performance of the proposed approach along with classical models, optimal designs, optimal adaptive
sequential response surface methodology (O-ASRSM) method,33 and four global optimization methods including: Standler et al.29,
Wang et al.28, EGO,37) a radial basis function (RBF) method52 on a number of nonlinear response models with various errors.

4.1. Traumatic brain injury: design of controlled cortical impact model

Traumatic brain injury (TBI) continues to be a serious societal problem that affects 1.7 million Americans each year.53 In the European
Union, brain injury accounts for 1 million hospital admissions per year.54 Fatality due to TBI can occur in children and adults during
their most productive years, and the associated society and economic costs are enormous. Direct medical cost and indirect costs such
as lost productivity of TBI totaled an estimated $60 billion in the USA in 2000. Additionally, there are many survivors with severe brain
damage and many more with moderate or mild impairment, which require continuous medical attention.53,55

Controlled cortical impact (CCI) is one of the mostly used laboratory TBI experiments for studying mechanisms and treatment of
brain injuries using rodent subjects (e.g., 8, 9, 10). Briefly, to induce CCI injuries, a craniotomy was performed over the skull and a
metal tip was driven to compress exposed dural tissue to a predefined depth at controlled velocity. As summarized from 235 papers
on CCI, various impact depths, impact velocities, impactor sizes, and impactor shapes were used by different laboratories to have
desired brain injury.56 Numerical analysis was adopted to systematically analyze how external impact parameters (such as depth
and velocity) affect brain injury intensity56 finding that impact depth was the leading factor followed by, surprisingly, impactor shape,
which was not fully considered by experimentalists. Furthermore, the effect of CCI parameters on regional injury intensity at different
components was numerically analyzed. All these numerical studies provide guidance to have desired injury level by carefully
assembling different external parameters. Still, an efficient methodology is needed given the complexity of CCI experiments, which
are not only expensive but also very time consuming.

4.1.1. Method selection The range of impact parameters were defined based on the range of laboratory CCI experiments,56 ranging
from mild to severe brain injuries. The impact depth ranged from 0.7mm to 3.0mm. The impactor diameter ranged from 1.8mm to
7.5mm. The impact velocity ranged from 2m/s to 7m/s. The impactor shape was also continuously varied, with 0 representing pure
flat shape and 1 representing hemispherical shape. All CCI simulations were performed using LS-DYNA MPP 971 (LSTC, Livermore, CA).
The percent of increase/decrease in size of rat brain, which contributes to variances observed in post-impact tissues is considered as
noise; because typically the effect of this external parameter is largely unknown. An in-house written program was used to calculate
the volume of elements, which experienced maximum principal strains above 0.3 during the whole simulation. In other word, the
objective of the case study is to find the specific levels of the impact parameter that result in 30% of injury in animal brain.
Controllable factors/impact parameter (coded) Random factor Response

Percent of FS reduction
(before risk adjustment; %)

Impact
depth

Impactor
diameter

Impact
velocity

Impactor
shape

Brain size
variation (%)

Brain
injury

�2 �2 �2 �2 1 900.00 N/A
2 �2 �2 2 2 682.18 N/A

�2 2 �2 2 �1 900.00 N/A
2 2 �2 �2 1 58,407.63 N/A

�2 �2 2 2 0 889.19 N/A
2 �2 2 �2 1 3,610.40 N/A

�2 2 2 �2 1 4,250.04 N/A
2 2 2 2 2 170,415.48 N/A
0 0 0 0 �1 130.66 0
0 �2 0 0 1 102.94 0
0 2 0 0 �2 8,112.84 0

�2 �2 �2 2 �1 900.00 0
2 2 �2 2 2 35,088.07 6

�2 0 0 0 1 900.00 6
�2 2 2 2 0 705.72 6
�2 2 �2 �2 �1 811.66 44
1 �1 �1 �1 1 3.46 63

�1 1 �1 �1 �2 281.96 44
�1 �1 1 �1 1 58.49 44
1 1 1 �1 0 77150.12 69

�1 �1 �1 1 0 822.78 81
1 1 �1 1 2 327.05 ’100
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In this case study, we used the proposed approach along to find the parameter setting that result in 30% injury in the rat brain. We also
conducted CCD experiments to compare the performance with the proposed approach. More technical details of the experiments can be
found in Mao et al.55. Table III(a) and (b) shows the conducted experiments of CCD along with the percent of change in the rat brain
(comparing with the standard case) and amount injury to the rat brain (the response) due to the impactor. Using Table III(a) data, CCD
Table IV. Response models used in the simulated experiments

No. of
variables Exp. no. Response relation Error (e)

Response
type

Two
variable
response

1.1 W= x2 + 2y2� 2y+ e N(0,1) Convex
1.2 W=� 2x2 + 3y2 + 2x� y+ 2xy� 1 + e N(0,2) Nonconvex
1.3 N(0,2) Convex

Three
variable
response

2.1 W=2 x2 + 3y2 + 5z2 + x+2y+ 1z� 5xy+ 1xz+ 1yz+ 1+ e N(0,3) Convex
2.2 W=� 1.5 x2� 3.5y2 + 3z2 + 0.5x� 3.5y� 1.5z� 3xy+ 1.3xz+ 1.4yz+ 2+ e N(0,2.5) Nonconvex

Six
variable
response

3.1 W= (t� 0.55)2 + (u+ 0.7)2 + (v� 0.33)2 + (x� 1.55)2 + (y+ 0.9)2 + (z� 0.3)2 N(0,1) Convex
3.2 W= (t� 1.65)2 + (u+ 1.7)2 + (v� 1.45)2 + (x� 2.11)2 + (y+1.91)2 +

(z� 2.01)2 + (t� 2)(u� 2.2) + (u� 1.54)(v� 0.02) + (u� 0.34)(z� 2.33) +
(v� 0.34)(y� 1.33) + (y� 0.53)(z�.65)

N(0,2) Convex

Table V. R2adj for trials 7, 8, and 9 of the responses with two variables; trials 11, 12, and 13 of the responses with three variables; and
trials 34, 35, and 36 of the responses with six variables

Exp. no.

Number of
observations
(No obs.)

Adjusted R2

CCD
(%)

BBD
(%)

N-ASRSM
(%)

D-Opt.
(%)

V-Opt.
(%)

A-Opt.
(%)

O-ASRSM
(%)

1.1 7 92.69 N/A 93.67 95.01 94.85 90.69 98.74
8 92.48 N/A 95.97 89.20 95.86 86.86 98.42
9 92.00 N/A 97.94 90.42 95.42 86.58 97.15

1.2 7 69.77 N/A 79.57 92.96 72.11 97.71 92.95
8 70.60 N/A 89.53 91.06 74.92 79.86 94.59
9 88.48 N/A 93.91 89.02 80.89 82.00 95.55

1.3 7 35.45 N/A 86.08 85.31 85.08 50.38 86.09
8 43.17 N/A 86.84 78.71 86.04 57.23 86.78
9 49.40 N/A 89.95 67.65 82.05 64.49 89.06

Avg. 7 65.97 N/A 86.44 91.09 84.01 79.59 92.59
8 68.75 N/A 90.78 86.32 85.61 74.65 93.26
9 76.63 N/A 93.93 82.36 86.12 77.69 93.92

2.1 11 80.64 79.93 91.44 94.33 97.16 87.40 92.42
12 86.42 81.86 93.40 93.39 81.34 90.36 92.81
13 86.93 81.16 95.48 94.03 77.13 88.66 93.78

2.2 11 89.02 53.12 99.38 89.25 84.88 90.50 98.39
12 87.06 56.04 94.99 92.93 86.88 91.76 97.37
13 86.50 49.48 94.27 91.74 88.27 90.12 95.36

Avg. 11 84.83 66.53 95.41 91.79 91.02 88.95 95.41
12 86.74 68.95 94.20 93.16 84.11 91.06 95.09
13 86.72 65.32 94.88 92.89 82.70 89.39 94.57

3.1 34 80.21 70.00 94.61 90.20 96.49 90.20 98.63
35 79.61 70.10 99.83 91.84 96.76 91.84 98.94
36 79.82 64.18 99.83 92.73 97.26 92.73 99.05

3.2 34 99.56 98.27 99.50 97.80 99.93 99.82 99.92
35 99.55 98.27 99.94 99.81 99.94 99.85 99.94
36 99.55 98.27 99.96 99.82 99.94 99.81 99.95

Avg. 34 89.89 84.14 97.06 94.00 98.21 95.01 99.28
35 89.58 84.19 99.89 95.83 98.35 95.85 99.44
36 89.69 81.23 99.90 96.28 98.60 96.27 99.50

Avg.: average; CCD: central composite design; BBD: Box–Behnken design; N-ASRSM: n-dimensional adaptive sequential response
surface methodology; D-Opt.: D-optimal; V-Opt.: V-optimal; A-Opt.: A-optimal; O-ASRSM: optimal adaptive sequential response surface
methodology; N/A: not applicable.
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estimate fit a quadratic regression with R2adj =45.63 and the estimated optimal impactor setting of EO= [�1.88, �2.00, 1.88, �2.00] (Also

see the fitted quadratic surfaces of CCD in A.1). Table III(b) also illustrates the conducted experiments of proposed N-ASRSMmethod along
with the percent of reduction in the factor space after each additional experiment. As can be seen from Table III(b), after 16 experiments,
N-ASRSM reduces the size of initial factor space by 44% and, after 22 experiments, it reaches the shrinkage rate of around 100%, which
clearly demonstrates the convergence rate of the proposed method. Using the 22 experiments in Table III(b), N-ASRSM fit a quadratic
regression with R2adj =75.32 and the estimated optimal impactor setting of EO= [�1.47, �2.00, 2.00, �2.00] (Also see the fitted quadratic

surfaces of CCD in A.2). To check the credibility of the comparing methods results, we put all the experiments in Table III(a) and (b)
Table VI. Optimality gap trials 7, 8, and 9 of the responses with two variables; trials 11, 12, and 13 of the responses with three
variables; and trials 34, 35, and 36 of the responses with six variables

Exp. no. No obs.

Optimality gap

CCD BBD N-ASRSM D-Opt. V-Opt. A-Opt. O-ASRSM

1.1 7 70.52 N/A 0.01 0.00 0.61 40.19 0.07
8 70.52 N/A 0.72 0.53 0.76 29.94 0.06
9 70.52 N/A 0.00 7.69 0.83 8.24 0.01

1.2 7 909.82 N/A 0.31 0.31 0.31 1260.68 0.23
8 909.82 N/A 0.31 0.31 0.31 492.09 0.25
9 909.82 N/A 0.30 0.31 0.31 5.00 0.30

1.3 7 874.36 N/A 30.79 16.50 16.50 790.25 16.50
8 756.48 N/A 16.50 16.50 16.50 3583.36 16.50
9 900.70 N/A 16.50 696.57 16.50 779.73 16.50

2.1 11 25.00 25.46 21.89 23.99 26.16 32.82 23.16
12 25.05 23.51 22.10 24.06 26.51 33.21 22.13
13 27.84 22.44 22.03 23.17 26.19 32.92 22.02

2.2 11 19.30 20.28 0.90 6.39 1.40 1.43 2.51
12 19.30 20.64 1.03 6.37 1.37 1.41 1.02
13 19.53 19.75 1.08 6.40 1.39 1.43 1.06

3.1 34 3.94 2.06 0.96 0.46 0.17 0.46 0.57
35 6.65 2.00 0.17 0.17 0.23 0.17 0.17
36 6.67 4.20 0.13 0.19 0.23 0.19 0.15

3.2 34 4.94 4.24 0.06 0.19 0.09 0.04 0.06
35 4.63 4.24 0.04 0.07 0.09 0.04 0.04
36 4.63 4.24 0.02 0.07 0.05 0.03 0.02

CCD: central composite design; BBD: Box–Behnken design; N-ASRSM: n-dimensional adaptive sequential response surface
methodology; D-Opt.: D-optimal; V-Opt.: V-optimal; A-Opt.: A-optimal; O-ASRSM: optimal adaptive sequential response surface
methodology; N/A: not applicable.

Table VII. Nonlinear response models used in the simulated experiments

No. of variables Res. no. Response relation Error

Two variable
response

1.1 W ¼ y � 1
8p2 x

2
� �þ 10

p

� �
x � 2ð Þ2 þ 10 3� 1

12p

� �
cos xð Þ þ e N(0,3.5)

1.2 W= 0.75(x� 0.15)2 + 0.25(x� 0.15)4 + 1.3(x� 0.15)6 + 1.8(x� 0.15)(y� 1)2�
2.66 (y� 1)2 + 1.9(y� 0.15)2 + e

N(0,2)

Three variable
response

2.1 W= (x� 0.55)2 + (y+ 0.7)2 + (z� 0.33)2� cos(18(x� 0.55)) � cos(18(y+ 0.7))�
cos(18(z� 0.33)) + e

N(0,2)

2.2 W= (x� 1)3� 3(y� 1)3 + (z+1)3� 2(x� 1)2� 2(y� 1)2 + (z+1)2� (x� 1) +
5(y� 1) + 6(z+ 1) + 2(x� 1)(y� 1) + (x� 1)(z+ 1)�
4(y� 1)(z+ 1) + 1+ e

N(0,1)

2.3 W ¼ x2 þ exp y
10 þ 10
� �þ sin zyð Þ þ e N(0,3)

Six variable
response

3.1 W ¼ 6:6 t � 2ð Þ4 u� 1:1ð Þ2 þ 3:6 v�1:35ð Þ6
x�2:3ð Þ2þ1ð Þ þ 1:5 x � 2:3ð Þ y � 1:1ð Þ2 z � 0:25ð Þ4 + e N(0,2)

3.2 W=� exp(�1(10(t� 0.1312)2 + 3(u+0.1696)2 + 17(v� 0.5569)2 + 3.5
(x� 0.0124)2 + 1.7 * (y+ 0.8283)2 + 8(z� 0.5886)2))� exp(�1(.05(t� 0.2329)2 +
10(u+0.4135)2 + 17(v� 0.8307)2 + 0.1(x� 0.3736)2 + 0.8(y+ 0.1004)2 +
14(z� 0.9919)2)) + e

N(0,1)
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together and use RBF neural nets to fit a surrogate model as represented in Figure A.3. We also used genetic algorithm (GA) to find the
minimum of the surrogate model O= [�1.1526, �2.00, 2.00, 2.00], which is considerably closer to the estimate of N-ASRSM.

4.2. Quadratic response models

We now describe the simulated experiments performed to compare the performance of the proposed N-ASRSM approach with those
of CCD, BBD, A-optimal, D-optimal, and V-optimal designs, and O-ASRSM method33 on quadratic response models. We have
considered three problems with two variables, three problems three variables, and two problems with six variables. These problems
cover different type functions and a range of standard deviation for the error (Table IV). As noted earlier, all response models have a
quadratic relation with a normal error term e~N(0,s2).

Whereas the N-ASRSM and O-ASRSM are adaptive sequential methods, the CCD, BBD, A-optimal, D-optimal, and V-optimal designs
are essentially preset designs. To evaluate the effect of this difference, we initially fixed the number of design points at 7 for cases with
two variables, 11 for cases with three variables, and 34 for the cases with six variables and then incrementally added two more design
points one at a time. For optimal designs, the initial set of design points is optimally generated by optimizing the optimality criteria
over the starting factor space with a fine grid system spaced with 0.01 intervals. Next, each of the additional points is generated by
optimizing the optimality criterion given the existing design points and the response model. For the CCD and BBD, we initially used 7,
11, or 34 of the full design by excluding some of the points and then re-including them one at a time. For fair comparison, the location
of additional points in CCD and BBD are chosen based on their closeness to the direction of maximum improvement.

For the analysis, we have studied the performances in terms of average R2adj and average optimality gap (i.e., deviation from the

optimal response). All simulated experiments are repeated four times, and average results are reported. The starting factor space is
considered with the range of [�3,3] in all dimensions for both two and three variable examples. Table V presents the average R2adj
performances for the consecutive trials.

Table V shows that N-ASRSM is competitive in R2adj performance with the rest of the methods. In particular, when the number of

experiments is limited, N-ASRSM along with O-ASRSM are consistently the best methods in terms of R2adj . Table VI presents the

optimality gap results of the consecutive trials of the comparing methods. The optimality gap is measured as the deviation of the
response at the final EO from the response at true optimal experiment O. The experiments show that the optimality gap performance
of the proposed N-ASRSM is almost the same as O-ASRSM and the most competitive among all methods.

4.3. Nonlinear response models

Here, we compare the performance of the proposed N-ASRSM approach with four global optimization methods including: Standler et
al.29, Wang et al. 28, EGO,37 a RBF method,52 and O-ASRSM method,33 and classical methods CCD, BBD, and A-optimal, D-optimal, and
V-optimal designs on five nonlinear response models with two and three variables, with different variance and function type. These
response models are presented in Table VII.

For the following analysis, we have examined the performances based on average optimality gap and Euclidian distance of the
estimated optima to the real optimal point. All simulated experiments are repeated three times, and average results are reported.
To keep the consistency with the preceding section, the result of trials 7, 8, 9 of the cases with two variables, trials 11, 12, and 13
of the cases with three variables, and trials 33, 34, and 35 of cases with six variables have been reported. Table VIII shows the average
optimality gap results of the consecutive trials of the comparing methods. The results demonstrate that N-ASRSM is almost as
competitive as the best of global optimization approaches, namely EGO and RBF, and better than Standler et al.29, and Wang et al.
28. Another interesting observation is that, as expected, the rate of improvement (by adding new observations) in the N-ASRSM is
more than any other methods in general.

Table IX shows the average Euclidean distance of the estimated optima to the real optima of the underlying function for different
methods. Interestingly, the comparison of results in Tables VIII and IX reveals that some of the estimated optima (EOs) that are further
away from the real optima (Os) attain better responses than those EOs closer to the Os. Our subsequent analyses indicate that whereas
some EOs can be further away from O, they attain better average response due to curvature variation of the response around the O.
5. Conclusions

In this paper, we have developed and presented an adaptive methodology for n-dimensional quadratic response surface
optimization. The proposed approach combines concepts from nonlinear optimization, design of experiments, and response surface
optimization. The N-ASRSM is a sequential adaptive experimentation approach and uses the information gained from previous
experiments to design the subsequent experiment by simultaneously reducing the region of interest and identifying factor
combinations for new experiments. Its major advantage is the experimentation efficiency such that, for a given response target, it
identifies the input factor combination (or containing region) in a smaller number of experiments than the classical single-shot
RSM designs. It differs from earlier studies in its optimality (under certain assumptions), inheritance of results from previous
experiments, and robustness due to experiment ranking-based reduction of the region of interest. Through large set simulated
experiments, we showed that in modeling quadratic responses it outperforms the popular CCD, BBD, and optimal designs in terms
optimality. Based on another set of simulations, we also showed that N-ASRSM performs well in comparison with global optimization
Copyright © 2013 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2013
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approaches in estimating the optima of nonlinear responses. For future studies, the proposed methodology could be extended to
higher order of response functions.
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Appendix A. Traumatic brain injury: injury level graphs estimated using radial basis function,
central composite design, and n-dimensional adaptive sequential response surfacemethodology
Figure A.1. The fitted surface using radial basis function based on all data together
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Figure A.2. The fitted surface based on central composite design
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Figure A.3. The fitted surface based on n-dimensional adaptive sequential response surface methodology design

A. ALAEDDINI ET AL.
Appendix B. Convergence analysis of nonparametric approach

Here, we study the convergence the nonparametric approach for various dimensions (given that the result of ranking of experiments
is correct). Because the proposed approach provides the exact amount of shrinkage in the factor space (FS), to find the overall
performance of nonparametric strategy, we can simply consider all possible (ranking) scenarios and have the average. However, as
the dimension increases, the numbers of possible scenarios rise drastically, which makes it very difficult to check all scenarios in
higher dimensions (Table B1).
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To address this problem we use bootstrapping (Varian57) from the vast number of possible ranking permutations to find the
empirical estimate of the shrinkage rate of the nonparametric strategy.

To implement bootstrapping, we take the following steps: (i) take a large random sample (with replacement) from the pool of all
possible ranking scenarios (for each choice of dimensionality, e.g., n= 2, 3, . . .) and use that sample as the base dataset of bootstrap
sampling; (ii) construct a number of bootstrap samples of the same size of the base dataset, by random sampling with replacement
from the base dataset; (iii) find the average rate of shrinkage in each bootstrap sample; and (iv) use the mean of shrinkage rates from
different bootstrap samples as the estimated rate of shrinkage of the proposed nonparametric approach for different dimensions.
Table B2 illustrates the result of bootstrapping over different dimensions.
Table B2. The result of bootstrap sampling for different number of dimensions

No. of dimensions Experiment Percentage of reduction (%)

2 5 62
6 62
7 80
8 91
9 91

3 5 1
6 8
7 16
8 26
9 52

10 67
11 84
12 93
13 94
14 98

4 9 40
10 45
11 47
12 41
13 45
14 30
15 44
16 64
17 81
18 89
19 94
20 99
In Table XI, when the ranking of the experiments is correct which can usually happen when error size is not very significant, the
convergence rate of the proposed approach is considerable. Indeed the proposed nonparametric strategy is often able to find an
acceptably small optimal subregion within the initial factor space (FS1), before completing the full factorial design. It should be
mention that the very appealing convergence rate of the proposed approach is at the expense of higher computation complexity
comparing to typical RSM methodologies which is discussed in detail in Appendix C.
Appendix C. Computational complexity of the proposed methodology

The computational complexity of the proposed methodology has many folds; however, the most contributing components
include: (i) nonparametric approach; (ii) parametric approach; and (iii) risk adjustment. Figure B.1 illustrates the structure of the
main components of the N-ASRSM.
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Figure C.1. The structure of the components adding to the complexity of the n-dimensional adaptive sequential response
surface methodology

A. ALAEDDINI ET AL.
Nonparametric approach complexity

In Figure B.1, nonparametric approach has two major parts: (i) NOR elimination procedure and (ii) selection of additional point.
The core step in NOR elimination procedure is solving a cubic polynomial min–max (continuous) optimization problem for each
subregion to decide if it contains RO or not. This problem can be solved by efficient polynomial order algorithms.58–62 However,
the number of subregions investigated by min–max optimization is 2n, where n is the number of dimensions (factors). As a result,
the overall complexity of the NOR elimination procedure is exponential in time.

When NOR elimination procedure terminates without a candidate hyper-rectangular FS or very small eliminated subregion, then
additional points are selected based additional point selection procedure to enable eliminating more of the NOR subregions.
Additional point selection procedure first uses cosine similarity measure to calculate the similarity of un-experimented corners to
the worst point (W), which is linear time algorithm and next identify the most dissimilar un-experimented corner to W, which is
again a linear time algorithm.

Parametric approach complexity

The main part of parametric approach is quadratic regression fitting. For a least squares regression with E training examples and n
variables (factors), using least square technique, the vector of regression coefficients B can be gained as B= (XTX)� 1XTY, where X is
the data matrix of experiments’ settings and Y is the vector of associated measurements of the experiments. Calculation of B includes
matrix multiplication and LU (or Cholesky) factorization operations, both of them are polynomial time algorithms.

Risk adjustment complexity

Risk adjustment has two major parts: (i) estimation of variance (when there is not enough experiments) and (ii) calculating the
probability of incorrect ranking. Estimation of variance is carried out by solving a system of two linear equations in two variables that
requires SST calculation as prior, resulting in a linear time complexity. Estimation of the probability of incorrect ranking is performed
using Procedure 2, which is again a linear time algorithm.

As a result, the complexity of the N-ASRSM methodology is exponential due to the nonparametric approach complexity. Indeed,
O-ASRSM trades off between the total number of experiments and the computational complexity of the algorithm. Considering
the fact that in most practical cases, the required computational effort is negligible, either due to the existence of powerful
computational resources (e.g., parallel computing facilities) or due to experiments being too costly vis-à-vis the computational
effort; N-ASRSM can be effectively applied in practice.
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