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Northwestern University, US Department of Commerce, NIST
and Biostatistics, Novartis Pharmaceuticals

Abstract: The main objective of this paper is to provide experimental designs for the

estimation of fixed effects and two variance components, in the presence of nested

random effects. Random nested factors arise from quantity designations such as lot

or batch, and from sampling and measurement procedures. We introduce a general

class of designs for mixed-effects models with random nested factors, called assem-

bled designs, where the nested factors are nested under the treatment combinations

of the crossed factors. We provide parameters and notation for describing and enu-

merating assembled designs. Conditions for existence and uniqueness of D-optimal

assembled designs for the case of two variance components are presented. Specif-

ically, we show that, in most practical situations, designs that are most balanced

(i.e., where the samples are distributed as uniformly as possible among batches)

result in D-optimal designs for maximum likelihood estimation.
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1. Introduction

In many experimental settings, different types of factors affect the measured
response. The factors of primary interest can usually be set independently of each
other and thus are called crossed factors. For example in a welding operation,
clamp pressure and voltage level are crossed factors since each level of voltage
can be applied at each level of clamp pressure. These effects are often modeled as
fixed effects. Nested factors cannot be set independently because the level of one
factor has a different meaning when other factors are changed. Random nested
factors arise from quantity designations such as lot or batch, and from sampling
procedures that are often inherent in the experimentation. The variances of the
random effects of nested factors are called variance components since they are
components of the random variation.

The nested or hierarchical nested design (HND), used in many sampling and
testing situations, is a design where the levels of each factor are nested within
the levels of another factor. Balanced HNDs for estimating variance components
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have an equal number of observations for each branch at a given level of nesting.
Not only do these designs tend to require a large number of observations, but they
also tend to produce precise estimates of certain variance components and poor
estimates of others. Articles that address these issues are Bainbridge (1965),
Smith and Beverly (1981), and Naik and Khattree (1998). These articles use
unbalanced HNDs, called staggered nested designs, to spread the information in
the experiment more equally among the variance components. Goldsmith and
Gaylor (1970) address the optimality of unbalanced HNDs and Delgado and
Iyer (1999) extend this work to obtain nearly optimal HNDs using both a limit
argument and numerical optimization.

When the fixed effects of crossed factors and variance components from ran-
dom nested factors appear in the same model, many analysis techniques are
available for estimation and inference (see Searle, Casella and McCulloch (1992)
(hereafter SCM) or Pinheiro and Bates (2000)). However, only limited work has
been done to determine the experimental designs for such cases. Smith and Bev-
erly (1981) introduced the idea of a nested factorial, which is an experimental
design where some factors appear in factorial relationships and others in nested
relationships. They proposed placing staggered nested designs at each treatment
combination of a crossed factor design and called the resulting designs staggered
nested factorials. Ankenman, Liu, Karr and Picka (2001) introduced split fac-
torials, which split a factorial design into sub-experiments. The nested designs
in a split factorial only branch at a single level and thus the effect is to study a
different variance component in each sub-experiment.

This paper provides experimental design procedures for the estimation of
both fixed effects of crossed factors as well as variance components associated
with nested random factors. As an example, consider a concrete mixing exper-
iment where the size of the aggregate and the ratio of water to cement powder
are crossed factors and batch-to-batch and sample-to-sample variances are the
variance components of interest. The sizes of the variance components indicate
the variability of the properties of the concrete throughout concrete structures.

In the next section, we introduce a special class of nested factorials, called
assembled designs, where the nested factors are random and nested under the
treatment combinations of the crossed factors. This class of designs includes both
split factorials and staggered nested factorial designs. In Section 3, we describe a
linear mixed-effects model for the analysis of assembled designs. The fixed effects
and the variance components are estimated using maximum likelihood (ML). In
Section 4, we present the information matrix of the simplest assembled design. In
Section 5, we provide theorems which show that under most practical situations,
the most balanced design is D-optimal for estimating the fixed effects and two
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variance components. In Section 6, we show with examples how to obtain the D-
optimal design and how these designs compare to other alternatives. Conclusions
are presented in Section 7.

2. Assembled Designs with Two Variance Components

An assembled design (AD) is a crossed factor design with an HND placed
at each design point. The class of assembled designs is large and contains many
designs that are too complicated for practical use. We restrict our attention
to the case of ADs with two variance components and leave ADs with multiple
variance components for future research. The terms batch and sample will refer
to the higher and lower levels of random effects, respectively.

An AD with two variance components is described by various parameters.
The number of design points in the crossed factor design is denoted r and s is
the number of non-identical HNDs used. If the same number of observations is
taken at each design point, it is denoted n. Define BT as the total number of
batches, Bj as the number of batches in the jth HND, j = 1, . . . , s and rj as the
number of design points that contain the jth HND. Thus,

∑s
j=1 rjBj = BT .

A simplified version of the concrete mixing experiment in Jaiswal, Picka,
Igusa, Karr, Shah, Ankenman and Styer (2000) is used to illustrate the assembled
design. The objective of the experiment is to determine the effects of certain
crossed factors on the permeability of concrete and to estimate the variance
of the permeability from batch-to-batch and from sample-to-sample. The design
(Figure 1) has three two-level crossed factors, Aggregate Grade, Water to Cement
(W/C) Ratio, and Max Size of Aggregate. There are a total of 20 batches (BT =
20). In this application, as in most engineering applications and many other
applications, the higher quantity designation (batch) implies higher variance.
Thus, we assume that the batch-to-batch variance is at least as large as the
sample-to-sample variance.

Guide to Structures

Structure 1

Structure 2

Grade

W/C Ratio

Max Size

Level 2

Level 2

Level 2

Level 1
Level 1

Level 1

Figure 1. An assembled design (BT = 20, r = 8, n = 4, s = 2).
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In Figure 1, each vertex of the cube represents one of the eight possible
concrete recipes or design points (r = 8) that can be made using the two levels of
three factors. Thus, the front lower left-hand vertex represents a concrete recipe
with the low level of all three factors.

In the context of an assembled design, HNDs attached to the crossed factor
design points will be called structures. The structure at each design point repre-
sents the batches and samples to be made and tested from that recipe. There are
four samples tested per recipe (n = 4) and two non-identical structures (s = 2).
Structure 1 consists of three batches (B1 = 3) where two samples are cast from
one batch and one sample is cast from each of the other two. It appears at four
of the design points (r1 = 4). Structure 2 appears at the other four design points
(r2 = 4) and consists of two batches (B2 = 2) with two samples cast from each
batch. A vector-like notation for the two structures is shown in Figure 2, where
each element in the vector is the number of samples in a batch. For uniqueness
of equivalent structures, the elements are specified in descending order.

(2,2)(2,1,1)

Structure 1
batch;sam ple

Structure 2

Figure 2. Notation for the structures in the concrete experiment.

The notation is easily extended for any two-level HND. The number of unique
HNDs depends on n. For example, if n = 3 there are only three unique HNDs:
(1,1,1), (2,1) and (3). However, if n = 7 there are 15 unique HNDs. The number
of unique assembled designs increases even more quickly as n increases since there
are r design points each of which can have a different structure.

The notation for an AD is
∑s

j=1 Structure j@{design points with Structure
j}, where the design points must be ordered in some way. We choose to order
the design points so that all rows with the same structure are in adjacent rows.
This order is called design order. Figure 3 shows that structures in the concrete
experiment were assigned to the design points using the interaction ABC and
the comparison of design order and standard order (see Myers and Montgomery
(1995, p.84)) for a two-level factorial. These orderings are for convenience in
describing the experiment and in manipulating the expressions of the model and
analysis. When conducting the experiment, the order of the observations should
be randomly determined whenever possible.
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An assembled design has nr observations and thus nr degrees of freedom.
There are r degrees of freedom for estimating the fixed effects including the
constant. There are nr−r degrees of freedom for estimating variance components.
Let di be the degrees of freedom for estimating the ith variance component.
Hence, d1 =

∑s
j=1 rj(Bj − 1) = BT − r and d2 = nr − d1 − r = nr −BT .

Design
Order

Standard
Order A B C ABC Structure

1 1 - - - -
2 4 + + - -
3 6 + - + -
4 7 - + + -
5 2 + - - +
6 3 - + - +
7 5 - - + +
8 8 + + + +

,5,8}(2,2)@{2,3,4,6,7}(2,1,1)@{1:OrderStandardinNotation

,7,8}(2,2)@{5,6,2,3,4}(2,1,1)@{1:OrderDesigninNotation
+

+

Figure 3. Concrete Exp. (A=Grade, B=W/C Ratio, and C=Max Size);
Comparison of Standard and Design Order.

3. Analysis of Assembled Designs

3.1. Model and variance structure

The linear mixed-effects model used to represent the response in an AD with
nr observations and two variance components is

y = Xβ + Z1u1 + Z2u2, (1)

where y is a vector of nr observations, X is the fixed-effects model matrix,
β is a vector of r unknown coefficients including the constant term, Zi is an
indicator matrix associated with the ith variance component, ui is a vector of
normally distributed independent random effects associated with the ith variance
component such that ui ∼ N(0, σ2

i I). Let V be the nr×nr variance-covariance
matrix of the observations. Assume that the variance components do not depend
on the crossed factor levels. Then,

V = Var (y) = σ2
1Z1Z

′
1 + σ2

2Z2Z
′
2. (2)

In keeping with our previous terminology, σ2
1 is the batch-to-batch variance and

σ2
2 is the sample-to-sample variance.
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Let XD be the full rank r× r model matrix (including the constant column
and all estimable contrasts) for a single replicate of a crossed factor design, where
rows are ordered in design order. Also let the observations in X be ordered such
that X = XD ⊗1n, where 1n is an n-length vector of ones and ⊗ represents the
Kronecker product. This ordering in X gives rise to Z-matrices that have the
form Zi =

r⊕
t=1

Zit, where ⊕ refers to the Kronecker sum and Zit is the indicator

matrix related to the observations associated with variance component i for the
treatment combination (or design point) t. The Z1t matrix has n rows and as
many columns as the number of batches used with treatment combination t.
Hence, the batch indicator matrix, Z1, has as many rows as the total number of
samples (nr) and as many columns as the total number of batches (BT ). The
sample indicator matrix, Z2, is the identity matrix of order nr. For example,
recall that in the concrete experiment (introduced in Section 2) there are eight
design points (r = 8), two structures (s = 2), where Structure 1 is (2,1,1) and
Structure 2 is (2,2), and four observations at each design point (n = 4). Using
design order, Z2 = I32,

Z11 = Z12 = Z13 = Z14 =




1 0 0
1 0 0
0 1 0
0 0 1


 , Z15 = Z16 = Z17 = Z18 =




1 0
1 0
0 1
0 1


 ,

and Z1 =




Z11 0 · · · 0
0 Z12 · · · 0
...

...
. . .

...
0 0 · · · Z18


 .

For the fixed effects, Xt is the portion of the X matrix associated with the
tth treatment combination. Then, Xt is an n × r matrix where all n rows are
identical. Let x′

Dt represent the row of XD corresponding to the tth treatment
combination, then Xt = x′

Dt ⊗ 1n. Let V t be the n × n variance-covariance
matrix of the observations associated with treatment combination t, then V t =
σ2

1Z1tZ
′
1t + σ2

2Z2tZ
′
2t. Because of the independence of the observations from

different treatment combinations, V in (2), can be written as V =
r⊕

t=1
V t.

3.2. Estimation method

Maximum likelihood (ML) and restricted maximum likelihood (REML) are
commonly used methods for the estimation of parameters in linear mixed-effects
models. ML estimation prescribes the maximization of the likelihood function
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over the parameter space, conditional on the observed data. REML estimation
is effectively ML estimation based on the likelihood of the ordinary least-squares
residuals of the response vector y regressed on the X matrix of the fixed effects.
Because it takes into account the loss of degrees of freedom due to the estimation
of the fixed effects, REML estimates of variance components tend to be less bi-
ased than ML estimates. However, the expressions for the information matrix for
REML estimation are complicated and were found to be analytically intractable
for proving D-optimality of assembled designs. In this paper, we use ML es-
timation for the fixed effects and variance components because of the greater
simplicity of the expressions for the associated information matrices. However,
since ML and REML estimators are asymptotically equivalent, we expect that
the D-optimal designs for ML will also be optimal (or nearly optimal) for REML.
This conjecture was confirmed for small designs by exhaustive search. In an em-
pirical study (r = 8 and 16, and n = 3 to 7), we found that the D-optimal
designs for ML and REML estimation were identical as long as σ2

1 ≥ σ2
2 , which,

as previously mentioned, is true for most engineering applications.
Conditional on the variance components, the estimation of the fixed effects is

a generalized least squares (GLS) problem, with solution β̂=(X′V −1X)−1X′V −1y

(see Theil (1971, p.238)). Since the variance components need to be estimated
from the data, the GLS methodology becomes equivalent to ML. The estimated
variance-covariance matrix of the fixed-effects estimators is (X ′V −1X)−1, where
the unknown variance components are replaced by their ML estimates. In this
case, the variance-covariance matrix of β̂ is the inverse of the information matrix
of β, denoted I(β) (see SCM, p.252-254). Since observations are independent
at different treatment combinations, I(β) = X ′V −1X =

∑r
t=1 It(β), where

It(β) = X ′
tV

−1
t Xt. It follows that I(β) =

∑r
t=1(xDt⊗1′n)(1⊗V −1

t )(x′
Dt⊗1n) =∑r

t=1(xDtx
′
Dt ⊗ 1′nV −1

t 1n) and, since 1′nV −1
t 1n is scalar,

I(β) =
r∑

t=1

1′nV −1
t 1nxDtx

′
Dt. (3)

Denoting the vector of ML variance estimators by σ̂2, the asymptotic
variance-covariance matrix of σ̂2 for an assembled design is the inverse of the in-
formation matrix and is given by

Var (σ̂2) = Var

(
σ̂2

1

σ̂2
2

)
≈ 2

[
tr(V −1Z1Z

′
1V

−1Z1Z
′
1) tr(V −1Z1Z

′
1V

−1Z2Z
′
2)

tr(V −1Z2Z
′
2V

−1Z1Z
′
1) tr(V −1Z2Z

′
2V

−1Z2Z
′
2)

]−1

,

(see SCM, p.253), where tr() indicates the trace function of a matrix. The
information matrix of the two variance components for treatment combination t
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is

It(σ2) =
1
2

[
tr(V −1

t Z1tZ
′
1tV

−1
t Z1tZ

′
1t) tr(V −1

t Z1tZ
′
1tV

−1
t Z2tZ

′
2t)

tr(V −1
t Z2tZ

′
2tV

−1
t Z1tZ

′
1t) tr(V −1

t Z2tZ
′
2tV

−1
t Z2tZ

′
2t)

]
.

The information matrix of variance-components estimators is I(σ2)=
∑r

t=1It(σ
2).

The information matrix of [β σ2]′ is block diagonal (see SCM, p.239) and
thus the estimators for the fixed effects and the variance components are asymp-
totically uncorrelated.

4. Simplest Assembled Design

The simplest assembled design with r = 1 design point and s = 1 structure
is an HND. Hence, it is fundamental to study a single HND or the jth structure.
For notational simplicity, we use B instead of Bj to represent the number of
batches in a structure for the case of s = 1. Using the notation from Section 2,
an HND with B batches is represented by m = (m1, . . . ,mB), where mi is the
number of samples in batch i, i = 1, . . . , B and mi ≥ mi+1. Define MB as the
set of all feasible and non-trivial HNDs:

MB = {〈m1, . . . ,mB〉|mi ∈ I+; mi ≥ mi+1 i = 1, . . . , B; B < n− 1}, (4)

where I+ denotes the set of positive integers (i.e., at least one sample is taken
per batch). Note that, by definition,

∑B
i=1mi = n. The HNDs where B = n or

B = n− 1 are trivial, since there is only one unique HND for each of these cases
and thus they must be optimal.

To develop the information matrix for fixed effects at a single design point,
the expressions in terms of the mi’s for a treatment combination t are V t =

σ2
1Z1tZ

′
1t + σ2

2Z2tZ
′
2t =

B⊕
i=1

[σ2
1Jmi + σ2

2Imi ], where Jn is an n × n square ma-

trix with all elements equal to one. Note that Z2tZ
′
2t = In. Also, V −1

t =
B⊕

i=1
[−σ2

1(σ2
2(σ2

2 +σ2
1mi))−1Jmi +σ−2

2 Imi ] and, from (3), it can be shown that the

information for the fixed-effects estimator of a structure at a design point given
n and B is

It(β)=X ′
tV

−1
t Xt =1′nV −1

t 1nxDtx
′
Dt =

B∑
i=1

(
−σ2

1m
2
i

σ2
2(σ2

2+σ2
1mi)

+
mi

σ2
2

)
=

B∑
i=1

mi

σ2
2+σ2

1mi
.

(5)
Note that for a single design point (r = 1) xDt = 1 and, thus, β and It(β) are
scalars.
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The information matrix for the variance-components estimators from ML is

It(σ2) =
1
2

[
tr((V −1

t Z1tZ
′
1t)2) tr((V −1

t )2Z1tZ
′
1t)

tr((V −1
t )2Z1tZ

′
1t) tr((V −1

t )2)

]

=
1

2σ4
2




B∑
i=1

m2
i

(1 + τmi)2

B∑
i=1

mi

(1 + τmi)2

B∑
i=1

mi

(1 + τmi)2
n−B +

B∑
i=1

1
(1 + τmi)2


 , (6)

where τ is defined as the variance ratio σ2
1/σ

2
2 . The expressions in terms of the

mi’s in (6) are derived in Avilés (2001).

5. Optimality

In this section, designs (with equal values of r, n, BT and s) are compared
in terms of their ability to accurately estimate the fixed effects and the two vari-
ance components. The goal is to minimize the variance of the estimates of the
fixed effects and variance components. The D-optimality criterion (see Myers
and Montgomery (1995, p.364) and Pukelsheim (1993, p.136)) has been chosen.
A design is D-optimal if it minimizes the determinant of the variance-covariance
matrix of the parameter estimates. Because no closed form expressions are avail-
able for the variance-covariance matrix of the maximum likelihood estimates in
a linear mixed-effects model, we investigate (approximate) D-optimal assembled
designs using the asymptotic variance-covariance matrices. Equivalently, we seek
the assembled design that maximizes the determinant of the information matrix
of the fixed effects and the variance components. Because the information ma-
trix is block diagonal, its determinant is the product of the determinant of the
fixed-effects information matrix and the determinant of the variance-components
information matrix. Thus, if the same design maximizes the individual determi-
nants, that design is D-optimal overall.

5.1. Fixed-effects optimality

For a single HND, the D-optimality criterion for the fixed effects is the de-
terminant of the matrix defined in (5). Since (5) is a scalar, it is the inverse of
the D-optimality criterion. The D-optimal HND for fixed effects can be found
for any choice of n and B by solving

Problem I. max
m∈MB

B∑
i=1

mi

σ2
2 + σ2

1mi
subject to

B∑
i=1

mi = n.
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Problem I is non-linear and has implicit integer constraints. By the defini-
tion of MB in (4), mi ≥ mi+1, m1 and mB are respectively the maximum and
minimum number of samples per batch in m. Theorem 1 shows that, for a given
n and B, the unique solution for Problem 1 is the one and only design such that
m1 − mB ≤ 1. This design is shown in (7). This is the most balanced HND
confirming that more balanced designs are generally better. Note that the re-
sults in this section do not depend on any assumption about the size of varainace
components.

Theorem 1. Let m ∈ MB such that
∑B

i=1mi = n. The unique solution to
Problem I is

m∗ =

〈
�n/B�, . . . , �n/B�︸ ︷︷ ︸

χ=n−�n/B�B

, �n/B�, . . . , �n/B�︸ ︷︷ ︸
φ=B−χ

〉
, (7)

where �x� gives the greatest integer less than or equal to x and �x� gives the
smallest integer greater than or equal to x. The χ and φ are the number of
ceilings and floors in (7), respectively.

Proof. See Appendix 1.

Corollary 1.1. If V ∗
n,B is the variance-covariance matrix for the observations

from the D-optimal HND represented by m∗ in (7), then

Iβ(m∗) = 1′(V ∗
n,B)−11 ≥ 1′(V n,B)−11, (8)

where Iβ(m∗) is the fixed-effects information matrix for m∗ and V n,B is the
variance-covariance matrix for any m ∈MB with n observations.

Proof. The information of the D-optimal design, m∗, must be greater than or
equal to the information from any other design.

The following theorem uses the results of Theorem 1 and Corollary 1.1 to
show that given the number of samples/batch and the number of batches for
each structure, the D-optimal AD is the design that places the D-optimal HND
at each design point.

Theorem 2. Given n and Bj , j = 1, . . . , s, such that BT =
∑s

j=1 rjBj, the
D-optimal AD for fixed effects is (in design order):

s∑
j=1

〈
�n/Bj�, . . . , �n/Bj�︸ ︷︷ ︸

χj=n−�n/Bj�Bj

, �n/Bj�, . . . , �n/Bj�︸ ︷︷ ︸
φj=Bj−χj

〉
@{Rj−1 + 1, . . . , Rj}, (9)
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where Rj =
∑j

h=1 rh and R0 = 0. The number of ceilings and the number of
floors in the optimal structure, given n and Bj , respectively are χj and φj .

Proof. See Appendix 2.

5.2. Variance-components optimality

For a single HND, the D-optimality criterion for estimation of the two vari-
ance components is the determinant of the information matrix defined in (6).
The D-optimal HND can be found for any choice of n and B by solving Problem
II for two variance components.

Problem II. max
m∈MB

det

(
1
2

[
tr((V −1

t Z1tZ
′
1t)2) tr((V −1

t )2Z1tZ
′
1t)

tr((V −1
t )2Z1tZ

′
1t) tr((V −1

t )2)

])
subject

to
B∑

i=1

mi = n.

As with Problem I, Problem II is non-linear and has integer constraints.
However, unlike Problem I, the information for the variance components is a
matrix, rather than a scalar. Also unlike Problem I, the solution of Problem II
does depend on the relative size of the variances. Recall that in most engineering
applications, the batch-to-batch variance is at least as large as the sample-to-
sample variance (i.e., τ ≥ 1). Theorem 3 indicates that, when the variance ratio
is at least one, the most balanced HND is D-optimal for two variance components
except in cases where a single sample is taken from a large number of batches in
that HND. In other words, given B batches and n samples, the HND in (7) is
D-optimal unless �n/B� = 1 and φ is large.

Theorem 3. Let m ∈ MB such that
∑B

i=1mi = n. If τ ≥ 1, then the unique
solution to Problem II is shown in (7) as long as M1 < 1 +

∑
i:mi>1mi(5mi −

7)(mi + 1)−1, where M1 is the number of batches in (7) with a single sample.

Proof. See Appendix 4.

Note that when at least two samples are taken from each batch then M1 = 0
and the condition M1 < 1 +

∑
i:mi>1mi(5mi − 7)(mi + 1)−1 is automatically

satisfied. If there are batches with only a single sample, then the condition is
still satisfied for most practical situations. When there are batches with single
samples in (7), then all other batches have two samples. If we denote the number
of batches in (7) with two samples asM2, thenM1+M2 = B. It can be shown that
as long as M1 < 1+2M2, the condition M1 < 1+

∑
i:mi>1mi(5mi −7)(mi +1)−1

is satisfied. We have also verified empirically that for practical cases (up to 100
batches) when M1 < 1 + 6M2, then (7) is the solution to Problem II. Since
designs with large numbers of batches having only a single sample are not likely
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to be used in practice, the most balanced HND, as shown in (7), is the D-optimal
design in almost all applications.

We now look at ADs with r > 1 and again find that in most practical cases,
placing the most balanced HND at each design point is the D-optimal design.
Consider an AD with r design points and s structures. Assume that constraints
are imposed on the number of batches at each design point. That is, rj design
points will have Bj batches, j = 1, . . . , s. Let mij be the number of samples
in batch i, i = 1, . . . , Bj of structure j. For an assembled design, a structure j
with Bj batches can be represented by (m1j , . . . ,mHj , . . . ,mLj , . . . ,mBjj), where
mij ≥ m(i+1)j .

Theorem 4 indicates that, when the variance ratio is at least one, the most
balanced HND at each design point, as shown in (9), is D-optimal for variance
components except in cases where a single sample is taken from a large number
of batches in the AD. Thus, as long as there are no structures that have more
than twice as many batches with a single sample as batches with two samples,
then (9) can be shown to be the D-optimal design.

Theorem 4. Suppose n and Bj, j = 1, . . . , s, satisfy BT =
∑s

j=1 rjBj. If
τ ≥ 1, then the D-optimal AD for variance components is shown in (9) as long
as M1j <

∑
i:mij>1mij(5mij − 7)(mij + 1)−1 for all j, where M1j is the number

of batches with a single sample for the jth structure in an AD.

Proof. See Appendix 5.

Taken together, the results of Theorems 2 and 4 show that, in most practical
situations, the most balanced AD is the D-optimal design for ML estimation of
fixed effects and two variance components. Since the most balanced design is
always the D-optimal design for fixed effects, it could be argued that even in
those rare situations when the variance ratio is less than one or there are a large
number of batches with a single sample, the balanced design will still perform
reasonably well even if it is not optimal for variance components.

6. Examples

The following examples show how to obtain the D-optimal ADs for the re-
quirements of an experiment.

Example 1. In pharmaceutical production, an experiment could be designed to
estimate the effects of certain machine settings (fixed effects) on the hardness of
a tablet and the variability of hardness from batch-to-batch and from sample-
to-sample (variance components). It is likely that the batch-to-batch variance is
at least as large as the sample-to-sample variance (τ ≥ 1) since there are likely
to be larger differences between batches than within batches of tablets. The
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production schedule only allows for producing a total of 24 experimental batches
(BT = 24) and the engineers want to take six samples (n = 6) from each of
eight treatment combinations (r = 8). For this experiment, only one structure
is needed (s = 1), since B1 = BT /r1 = 24/8 = 3 batches can be produced
(B1 = B = 3) in each of the eight treatment combinations (r1 = r = 8). For
the given parameters, the assembled design in (9) is (2, 2, 2)@{1, 2, 3, 4, 5, 6, 7, 8},
since χ1 = n−�n/B1�×B1 = 6−�6/3� × 3 = 6− 2× 3 = 0 and φ1 = B1 −χ1 =
3 − 0 = 3. Since τ ≥ 1 and there are no batches with single samples, then the
D-optimal assembled design is (2, 2, 2)@{1, 2, 3, 4, 5, 6, 7, 8}.
Example 2. For the pharmaceutical example, let there now be 28 batches
(BT = 28) and 10 samples (n = 10) at each of 8 treatment combinations (r = 8).
SinceB1 = BT /r1 = 28/8 = 3.5 batches is not feasible, more than one structure is
needed (s �= 1). The engineers decide to produce four batches at four of the design
points (B1 = 4 and r1 = 4) and three batches at the other design points (B2 = 3
and r2 = 4), and thus d1 =

∑s
j=1 rj(Bj−1) = BT−r = 20 and d2 = n×r−d1−r =

n× r −BT = 52. Hence, χ1 = 2, φ1 = 2 and, since n/B1 = 10/4 = 2.5, the first
structure is (3, 3, 2, 2). Since χ2 = 1, φ2 = 2, and n/B2 = 10/3 = 3.33, the second
structure is (4, 3, 3). The assembled design in (9) is (3, 3, 2, 2)@{1, 2, 3, 4} +
(4, 3, 3)@{5, 6, 7, 8}, where the design points are in design order. By Theorem 2
and Theorem 4, since τ ≥ 1, M11 = 0 <

∑
i:mi1>1mi1(5mi1−7)(mi1 +1)−1 = 16,

and M12 = 0 <
∑

i:mi2>1mi2(5mi2 − 7)(mi2 + 1)−1 = 22.4, the design is D-
optimal for ML estimation of both fixed effects and variance components. In
order to demonstrate the benefit of using the D-optimal design, a comparison is
made with the most unbalanced design with the same n, B1, and B2, namely
(7, 1, 1, 1)@{1, 2, 3, 4} + (8, 1, 1)@{5, 6, 7, 8}. This unbalanced design is slightly
better at estimating the sample-to-sample variance, but significantly worse in
estimating the fixed effects and the batch-to-batch variance. Table 1 shows the
standard error of the parameter estimates at various values of the batch-to-batch
variance assuming that the sample-to-sample variance is 1.

Table 1. Standard error of estimators for most balanced and least balanced
assembled designs in Example 2. Given r = 8, n = 10, B1 = 4, and B2 = 3,
the most balanced design is (3, 3, 2, 2)@{1, 2, 3, 4}+ (4, 3, 3)@{5, 6, 7, 8} and
the least balanced design is (7, 1, 1, 1)@{1, 2, 3, 4}+ (8, 1, 1)@{5, 6, 7, 8}.

Standard Error of Standard Error of Standard Error of

Fixed Effects Batch Variance Sample Variance

Batch Balanced Unbalanced % Balanced Unbalanced % Balanced Unbalance %

Variance Design Design Difference Design Design Difference Design Design Difference

1 0.2219 0.2437 9.8% 0.3705 0.4338 17.1% 0.1959 0.1923 -1.8%

3 0.3496 0.3671 5.0% 0.9024 0.9926 10.0% 0.1961 0.1954 -0.3%

5 0.4417 0.4564 3.3% 1.4362 1.5318 6.7% 0.1961 0.1958 -0.1%
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7. Conclusions and Discussion

We have introduced assembled designs, a general class of experimental de-
signs for mixed-effects models with random nested factors. The assembled designs
are crossed factor designs with a hierarchical nested design (HND) placed at each
treatment combination of the crossed factor design. We have shown that when
there are two levels of nesting, distributing the samples as uniformly as possible
among the batches of the design results in D-optimal designs for maximum like-
lihood estimation, except in a few relatively uncommon situations. Although we
believe that this principle extends to REML estimation and to more than two
levels of nesting, proofs of these extensions are left to future research.
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Appendix 1: Proof of Theorem 1

Define Iβ(m) as the fixed-effects information matrix for a feasible HND,
m ∈ MB. By Equation (5), Iβ(m) =

∑B
i=1mi(σ2

2 + σ2
1mi)−1. Let mI =

〈m1,m2, . . . ,mB−1,mB〉 and mII = order[〈m1−1,m2, . . . ,mB−1,mB+1〉], where
order[ ] rearranges mII into decreasing order and mI, mII ∈MB. It can be shown
that sign(Iβ(mII) − Iβ(mI)) = sign(m1 −mB − 1), where sign[x] is −1, 0, or 1
depending on whether x is negative, zero, or positive. Thus, m1−mB = 0 implies
Iβ(mII) < Iβ(mI), m1 −mB = 1 implies Iβ(mII) = Iβ(mI), and m1 −mB ≥ 2
implies Iβ(mII) > Iβ(mI). Since any m ∈ MB such that m1 − mB ≥ 2 can
be improved upon, it cannot be a solution to Problem I. Given n and B, there
is only one m∗ ∈ MB such that m1 − mB ≤ 1 and

∑B
i=1mi = n. Therefore,

m∗ ∈MB , shown in (7), is the unique solution to Problem I.

Appendix 2: Proof of Theorem 2

XD can be partitioned into XD = [xD1 xD2 · · · xDr]′. Define A as
the information matrix for β. From (3), A =

∑r
i=1 1

′
nV −1

t 1nxDtx
′
Dt. If w

is an r-dimensional multivariate normal variate with mean zero and variance-
covariance matrix A−1, we have (det(A))1/2

∫
e−w′Aw/2dw = (2π)r/2. Con-

sequently det(A) ≥ det(B) if w′Aw ≥ w′Bw for all w and some alterna-
tive information matrix B. Let λ∗n,B = 1′(V ∗

n,B)−11, as defined in (8). Since
w′xDtx

′
Dtw = ‖xDtw‖2 ≥ 0 and AOPT =

∑r
t=1 λ

∗
n,Bt

xDtx
′
Dt, from Corollary

1.1, w′Aw =
∑r

t=1 1
′
nV −1

t 1nw′xDtx
′
Dtw ≤ ∑r

t=1 λ
∗
n,Bt

w′xDtx
′
Dtw =w′AOPTw.
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So det(AOPT ) ≥ det(A) for all A. Therefore, given n samples and Bj (j =
1, . . . , s) batches, placing the optimal structure (HND) at each design point is
the optimal AD for fixed effects.

Appendix 3: Lemma 1

Given B and n, consider two HNDs (m ∈ MB such that
∑B

i=1mi = n and
mU ∈MB) that are identical except for two batches as in the following definition:
m = 〈m1,m2, . . . ,mH , . . . ,mL, . . . ,mB−1,mB〉; mU = order[〈m1,m2, . . . ,mH +
1, . . . ,mL − 1, . . . ,mB−1,mB〉], where mH ≥ mL. Let Iσ(m) and Iσ(mU ) repre-
sent the information matrix of m and mU , respectively. Then det(Iσ(mU )) <
det(Iσ(m)), provided M1 < 1 +

∑
i:mi>1mi(5mi − 7)/(mi + 1).

Proof. A more detailed proof is available in Avilés (2001). Here a sketch is
provided. The variance-components information matrix, denoted by Iσ(m), can
be written as

Iσ(m) =
1
2

[
tr((V −1

t Z1tZ
′
1t)

2) tr((V −1
t )2Z1tZ

′
1t)

tr((V −1
t )2Z1tZ

′
1t) tr((V −1

t )2)

]
=

[
D F

F E

]
,

where D = (2σ4
2)−1∑B

i=1 d(mi, τ), E = (2σ4
2)−1∑B

i=1 e(mi, τ), F = (2σ4
2)−1∑B

i=1 f(mi, τ), d(mi, τ) = m2
i (1+τmi)−2, e(mi, τ) = mi((1+(mi −1)τ)2 +(mi−

1)τ2)(1 + τmi)−2, and f(mi, τ) = mi(1 + τmi)−2.
To show that det(Iσ(mU )) < det(Iσ(m)), it suffices to show that for 0 <

δ ≤ 1,
∂

∂δ
[det(Iσ(h))] =

∂

∂δ

[
det

(
Dδ Fδ

Fδ Eδ

)]
< 0, (A3.1)

where

h = 〈h1, h2, . . . , hH , . . . , hL, . . . , hB−1, hB〉 and



hi =mi+δ i=H

hi =mi−δ i=L

hi =mi else
(A3.2)

and Dδ , Eδ and Fδ are the elements of the information matrix of h. If we let
α1 = Eδ + τFδ and α2 = Fδ + τDδ, then it can be shown that

∂

∂δ
[det(Iσ(h))] = 2

[
α1hH − α2

(1 + hHτ)3
− α1hL − α2

(1 + hLτ)3

]
= 2[g(hH ) − g(hL)], (A3.3)

where g(x) = (α1x − α2)(1 + xτ)−3. Hence if g(x) is a decreasing function in
x, then (A3.1) is satisfied. Since ∂

∂x [g(x)] = (α1 + 3τα2 − 2τα1x)/(1 + τx)4,
then as long as x > (2τ)−1 + 3α2(2α1)−1, it can be shown that ∂

∂x [g(x)] < 0
and, thus, g(x) is decreasing in x. Notice that mL must be at least 2, since
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mL = 1 implies that mU would have only B − 1 batches, which is infeasible
because we are comparing HNDs with B batches. For h, α1 > α2 and it follows
that for τ ≥ 1, (2τ)−1 + 3α2(2α1)−1 < 2, implying that g(x) is decreasing for
x ≥ 2. When mL ≥ 3, then hH > hL ≥ 2 and it follows that (A3.3) is negative
and (A3.1) is satisfied, provided τ ≥ 1. Only the case of mL = 2 remains.
In Avilés (2001), it is shown that if τ ≥ 1 and mL = 2, (A3.1) is satisfied if
M1 < 1 +

∑
i:mi>1mi(5mi − 7)/(mi + 1). This completes the sketch of proof.

Appendix 4: Proof of Theorem 3

Observe that any design in MB such that m1 −mB ≥ 2 can be represented
(with a possible difference in order) by h as defined in (A3.2) with H < L and
δ = 1. Lemma 1 (see Appendix 3) shows that such a design can be improved
upon in terms of D-optimality for ML estimation of two variance components by
choosing δ = 0, provided M1 < 1 +

∑
i:mi>1mi(5mi − 7)/(mi + 1) and τ ≥ 1.

Under these conditions, the D-optimal design then must have m1 − mB ≤ 1.
For a given value of n and B, the design in (7) is the unique design such that
m1 − mB ≤ 1. Thus, it must be the D-optimal design under the conditions of
the theorem.

Appendix 5: Proof of Theorem 4

As in Appendix 3, we sketch a proof and refer to Avilés (2001) for the com-
plete proof. We show that det[Iσ(m1, . . . ,mu, . . . ,mr)] is a decreasing function
of δ, where mu = h as defined in (A3.2) with B = Bu and mi = miu. Denote
the information of variance components associated with the tth design point as
Iσ(mt). Because the design points are independent,

Iσ(m1, . . . ,h, . . . ,mr)=
r∑

t=1

Iσ(mt)=
r∑

t=1

[
Dt Ft

Ft Et

]
=

[∑r
t=1Dt

∑r
t=1Ft∑r

t=1Ft
∑r

t=1Et

]
≡
[
D F

F E

]
,

where Dt, Et and Ft are the elements of the information matrix of mt. Note
that when t = u, Iσ(mt) = Iσ(h). Now, following similar steps as in the proof
of Lemma 1,

∂

∂δ
[det(Iσ(m1, . . . ,h, . . . ,mr))] = 2[g(hH) − g(hL)], (A5.1)

where α1 = E + τF , α2 = F + τD, and g(x) = (α1x − α2)(1 + xτ)−3. Hence,
if g(x) is a decreasing function in x, then ∂

∂δ [det(infσ(m1, . . . ,h, . . . ,mr))] < 0.
This last is true if and only if x > (2τ)−1 + 3α2(2α1)−1. Since α1 =

∑r
t=1 α1t

and α2 =
∑r

t=1 α2t, where α1t = Et + τFt and α2t = Ft + τDt, it follows from
the proof of Lemma 1 that α1 −α2 =

∑r
t=1(α1t −α2t) ≥ α1u −α2u > 0, provided
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hL ≥ 2. When mLu ≥ 3, then hH > hL ≥ 2 and it follows that (A5.1) is
negative, provided τ ≥ 1. For the case of τ ≥ 1 and mLu = 2, Avilés (2001)
shows that (A5.1) is satisfied if M1j <

∑
i:mij>1mij(5mij − 7)(mij + 1)−1 for all

j, j = 1, . . . , s. This concludes the sketch.
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