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ABSTRACT 

This paper illustrates an example of the use of a metamodel-
ing approach to simulation through an example of two real 
world semiconductor manufacturing systems. The meta-
model used was from Yang et al. (2004) and has similarities 
to Cheng and Kleijnen (1999). The approach aims at reduc-
ing the amount of simulation work necessary to generate 
high quality cycle time-throughput (CT-TH) curves. The pa-
per specifically focuses on demonstrating that, in practice, 
CT-TH curves can deviate significantly from forms cur-
rently assumed in the literature (Cheng and Kleijnen 1999). 

1 INTRODUCTION 

One metric often used for the analysis of manufacturing fac-
tories is the cycle time of a lot or job. This cycle time is a 
random variable equivalent to the time it takes for a given lot 
or job to traverse a pre-determined path throughout the fac-
tory floor (Hopp and Spearman 1996). A manager can con-
trol this random variable by controlling the rate in which lots 
are introduced to the factory floor. This rate is known as the 
throughput (start rate) level and is often expressed as a 
decimal percentage from zero to one, with one being the 
maximum achievable throughput level; i.e. the system ca-
pacity. Each throughput level corresponds to a single esti-
mate of mean cycle time and only provides a picture of the 
factory floor for a given throughput level. Therefore, it is 
preferable to characterize the system based on a series of 
consecutive throughput levels with corresponding cycle time 
value estimates. This type of characterization results in what 
is known as a cycle time-throughput (CT-TH) curve as 
shown in Figure 1.  

The generation of CT-TH curves requires precise and 
accurate estimates of the average cycle time at a number of 
throughput levels. CT-TH curves can be generated in vari-
ous ways. For simple systems, such as an M/M/1 queuing 
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Figure 1: An Example of a CT-TH Curve 
without Batch Processing 

 
system, there are analytical equations that allow quick calcu-
lations of average cycle time given the throughput level. 
However, as the systems become more complex, mathe-
matical calculations become unwieldy and too complex to 
solve in a reasonable amount of time. Therefore, simulation 
has become the tool of choice for the generation of CT-TH 
curves for most real-world manufacturing systems. One 
draw back to the use of simulation to create CT-TH curves is 
that the computational time for the generation of the curve 
can become arbitrarily large when trying to achieve very 
precise and accurate estimates of the average cycle time.  
The time it takes to run the simulation models is driven by 
the specific precision or level of accuracy an analyst is striv-
ing to achieve. This can often cause problems because the 
higher the level of precision the analyst wants, the longer the 
simulation must be run. Additionally the computation time it 
takes to run the simulation depends on the throughput levels 
the analyst chooses to select. CT-TH curves are known to 
follow a non-linearly increasing pattern with steep rises in 
cycle time variance as the throughput level reaches maxi-
mum capacity for systems without batch processing. There-
fore, if an analyst is interested in the generation of mean cy-
cle time estimates at high throughput levels with high pre-
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cision and accuracy, large amounts of simulation time and 
effort can be expected.  

One method of mitigating the time it takes to develop a 
simulation based CT-TH curve is the application of meta-
models. Metamodeling can be described as using simulation 
to develop a tractable and (usually simple) equation-based 
model to represent the relationship between controllable sys-
tem parameters and system performance. Yang et al. (2004) 
uses this concept of metamodeling to provide a methodology 
that requires nothing of the analyst beyond the simulation 
model, a range of throughput levels of interest, and a measure 
of the required precision for the estimated curve. The results 
derived from this method include a complete response profile 
like that provided by a queueing model, but with the fidelity 
of a simulation model.  

The methodology developed in Yang et al. (2004) is 
similar to previous work by Cheng and Kleijnen (1999). The 
procedure proposed in Yang et al. (2004) describes the in-
put-output relationship that is inherit in simulation of manu-
facturing facilities, by a metamodel known as the expected 
cycle-time model. This expected cycle time model was de-
veloped from the work in Cheng and Kleijnen, but deviates 
from it by changing a known exponential term in the de-
nominator of the equation to an unknown (called p in this 
research).  This is done for three reasons. First is to get the 
exponent right, thus simplifying the model. Second, the ad-
dition of p as an exponent in the denominator saves compu-
tational effort. Finally, the addition of p in the equation re-
serves the properties of the true CT-TH curve. This paper 
addresses the addition of this unknown term and provides 
empirical evidence that its value deviates from the assumed 
value of one by applying the methodology to several models 
of real world semiconductor manufacturing facilities.  

2 SUMMARY OF YANG ET AL. (2004) 

As described previously, CT-TH curves are known to follow 
a monotonically increasing path as the throughput levels 
reach a maximum capacity. Maximum capacity can be de-
scribed as the maximum throughput level of the system, 
which takes on a value of one. The range of throughput level 
interests used to describe a system and thus create the base 
for the CT-TH curve can be described as [xL, xU] and range 
from 0, which is the minimum capacity and at this point 
equal to the pure processing time of a product, to 1, which is 
the maximum capacity of the system where the cycle time 
value goes to infinity.  

The object of the research in Yang et al. (2004) is to 
estimate the CT-TH curve via sequential experimentation. 
There has been extensive literature on fitting CT-TH 
curves to simulation responses, two papers include; Fowler 
et al. (2001) and Park et al. (2002). In the paper by Yang et 
al. (2004) an input-output relationship for throughput lev-
els and average cycle time values is represented by the fol- 
 

lowing metamodel, which is referred to as the expected cy-
cle-time (ECT) model: 

 
           Yj(x) = µt(x,c,p) + εj(x)  j = 1, 2, …, n(x)       (1) 
 
where,  
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This input-output relationship is derived from the fact that the 
output response, Y(x), average cycle time, is directly depend-
ent on the input value, x, the throughput level. Yj(x) is the 
output from the jth replication at throughput level x and n(x) 
is the number of replications placed at the input level x. The 
term, εj(x), is an error term with an expected value of zero 
and a variance of σ2(x). In (1) and (2) t is the degree of the 
polynomial factor in x and p, t, and the vector c = (c1, c2, . . . , 
ct) are unknown parameters. The equations given in (1) and 
(2) were derived from Cheng and Kleijnen (1999); however, 
the response of the metamodel differs in the fact that Cheng 
and Kleijnen investigated a response variable of expected 
waiting time as opposed to expected cycle time.  

The expectation function given in (2) is composed of 
two parts, the polynomial function in the numerator and the 
exponential denominator which accounts for the unbounded 
behavior of the CT-TH curve as the system reach-es capac-
ity. Notice the limit of the numerator as the system reaches a 
maximum of one is infinity. The form of this model was mo-
tivated by queueing results for some elementary stochastic 
models and heavy-traffic analysis found in Whitt (1989). 
The linear regression model referred to as the expected cycle 
time model given in (1), is the same model used in Cheng 
and Kleijnen (1999), but with the p value unknown. In fact, 
Cheng and Kleijnen (1999) use a default value for p as one 
and rely on the polynomial numerator of (2) to adjust the fit-
ted curve for the misspecification in the denominator. They 
argue that the error in p can be eliminated or corrected by 
adding terms in the polynomial numerator. Yang et al.(2004) 
argues that this meth-od is undesirable, not only because of 
the addition of unknown terms, but also because the incorpo-
ration of a higher-order polynomial may not preserve the 
monotonicity of the CT-TH curve. The goal of this paper is 
to provide evidence that the equations used in Cheng and 
Kleijnen (1999) can be incorrect in a real manufacturing set-
ting and often the value of p can vary greatly from the as-
sumed value of one.  

3 METHODOLOGY 

The research presented in this document follows the YAN 
procedure found in Yang et al. (2004). In a very brief sum-
mary the steps are as follows: 
  

• Choose a set of throughput levels 



Johnson, Yang, Ankenman, and Nelson 
 

• Simulate each design point to within a specified 
precision level, while accounting for initialization 
bias through truncation methods 

• Use a statistical program to sequentially fit the 
non-linear regression equation proposed in (1). 
 

The set of design points (throughput levels) used in the 
experiments presented in this paper were chosen to span a 
range between 0.5 and 1.0. These points were chosen to 
span the portion of the curve that captured the sharp in-
crease in estimated cycle time as the system reaches capac-
ity. In order to ensure that the simulation was run to within 
the specified precision level two short trial runs were con-
ducted. The first trial run was run for a long enough por-
tion of time to capture the warm-up period of the system. 
The warm-up length was determined by studying the WIP 
graph (WIP plotted against time) and watching when the 
increase stopped and the WIP began to oscillate around a 
horizontal line. Once the warm-up period was determined, 
the next trial run was conducted with a run length ten times 
the warm-up period. This was done to insure that the bias 
from the warm up period did not affect the results.  From 
the second trial run, calculations were made on the mean 
cycle time half-widths to predict the number of replications 
needed to obtain a specified precision level. In the case of 
this experiment, a precision level of 1% was chosen.   

Once the simulations were complete, the values for the 
estimated mean cycle time for each throughput level were 
extracted and used to fit the non-linear regression model. 
The metamodel proposed in (1) was fitted in a step by step 
process. The order of the polynomial in the numerator of 
(2) was increased in each step, until the T-value from the 
results was no longer significant. At this point, the meta-
model with highest number of polynomial terms, with the 
T-value still significant, was chosen as the fitted model. 

4 RESULTS AND DISCUSSION 

The experiments in this report were conducted on two data 
sets provided by the Modeling and Analysis for Semicon-
ductor Manufacturing Lab at Arizona State University 
(www.eas.asu.edu/~masmlab/). The data sets in-
clude real world wafer fab processing and product informa-
tion. The first data set (MASM Lab Set #1) included two 
products (MASM Lab Set #5) included twenty-one prod-
ucts. All of the products had unique factory production 
routes in which they followed; resulting in differing ex-
pected cycle time values. The simulations were conducted 
in Factory Explorer and the statistical analysis was pre-
formed using the program S-Plus.  

The implementation of the YAN procedure, described 
briefly in the methodology section of this report, included 
choosing the design points from a range of values spanning 
[0.5, 1.0]. In order to test the efficiency of the metamodel, 
more simulation effort was allocated to the simulation of 
each design point than required by the YAN procedure to 

ensure that the values for the expected cycle times were 
“nearly true” estimates. Essentially the simulation was run 
until the standard error of the expected cycle time estimate 
was nearly zero. 

4.1 Results from MASM Lab Set #1 

The results from the first data set contained two products. 
Table 1 shows a comparison between the simulated values 
for expected cycle time and the values obtain from the 
YAN procedure. 
 
Table 1: Comparison of the Estimated Expected Cycle 
Time Values to the True Values 

    Prod 1     Prod 2   
Check Points µ' µ* Error µ' µ* Error 

0.52 471.9 467.9 0.80% 617 606.1 1.80% 

0.58 479.7 471.7 1.70% 618 608 1.60% 

0.64 481.1 478.2 0.60% 626.7 615.7 1.80% 

0.7 493.4 488.8 0.90% 638 630.7 1.10% 

0.76 511.4 505.8 1.10% 661.4 656 0.80% 

0.82 540.8 534.1 1.20% 698.7 697.1 0.20% 

0.88 595.9 586.1 1.60% 767.3 767.2 0.01% 

0.94 703 708.6 0.80% 896.2 912.9 1.90% 

  ABS Average: 1.09% ABS Average: 1.15% 
 
In Table 1, the first column for each product, µ’, represents 
the “true” values for cycle time (estimates from the simula-
tion with nearly zero confidence intervals), the second col-
umn, µ*, gives the estimates from the YAN procedure, and 
the third column shows the relative error between the two. 
The last row in Table 1 shows the absolute value of the av-
erage percent error for each product. The relative error is at 
most no greater than 2% and the fitted expected cycle time 
(ECT) model values are given in (3) and (4) for products 1 
and 2, respectively.  

 
 Y(x) = 480.43 – 225.12x/(1 – x)0.34 (3) 

 
 Y(x) = 736.80 – 624.29x + 337.72x2/(1 – x)0.25  (4) 
 
As seen from equations (3) and (4), the p values differ 
greatly from a value of one. The value of p for product 1 is 
0.34, while the value of p for product 2 is 0.25.  

4.2 Results from MASM Lab Set #5 

The results from the second model are summarized in Ta-
ble 2. The second column in the table contains the value of 
p obtained from fitting the ECT model (equation (1)) to the 
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simulated product values over the same range of through-
put values used on data set 1. As seen in Table 2, the val-
ues for p range from 0.04806 to 1.17277. These values 
clearly differ from a value of one and they show a wide 
range of values supporting the need for the addition of p in 
the numerator of the ECT equation. The third column in 
Table 2 shows the average absolute percent error. This 
value was obtained by calculating the absolute of the per-
cent error between the “true values” obtained from the 
simulation and the values obtained through the YAN pro-
cedure and then averaging the values across the range of 
throughput values selected. This column corresponds to the 
last row in Table 1. In the case of this set (MASM Lab Set 
#5), the greatest average % error is 1.26%. This low num-
ber signifies good fits from the YAN procedure. 

 
Table 2: Values for p and Average Percent Error from Data 
Set 5 Containing 21 Products. 

Product   Value of p  Average ABS % Error 
Product 1 p = 1.08517 0.20% 
Product 2 p = 1.0117 0.07% 
Product 3 p = 1.10568 0.30% 
Product 4 p = 1.01164 0.07% 
Product 5 p = 1.03686 0.08% 
Product 6 p = 1.07985 0.15% 
Product 7 p = 1.04368 0.04% 
Product 8 p = 1.0296 0.05% 
Product 9 p = 0.04806 0.27% 
Product 10 p= 0.0496296 0.35% 
Product 11 p = 1.01991 0.05% 
Product 12 p = 1.14058  0.93% 
Product 13 p = 1.04359  0.04% 
Product 14 p = 1.034  0.04% 
Product 15 p = 1.13779 0.95% 
Product 16 p = 0.162968 1.13% 
Product 17 p = 0.17277 1.26% 
Product 18 p = 1.05862 0.02% 
Product 19 p = 1.04393 0.13% 
Product 20 p = 1.04222 0.05% 
Product 21 p = 1.16398 0.61% 

5 CONCLUSIONS 

The results in this paper demonstrate an example of a real 
world semiconductor manufacturing setting where the fit-
ted metamodel results in a p value that differs greatly from 
one. In the case of this demonstration, setting the p value to 
one would have often overestimated its true value and re-
sulted in a curve that did not adequately represent the sys-
tem. It is clear that the p term directly relates to the vari-
ability in the system. While CT-TH curves are known to 
follow a sharply increasing trend as throughput levels in-
crease, not all CT-TH curves follow the exact same in-
creases. Less variability in the system will cause a slightly 
less drastic increase in the estimated cycle times as the sys-

tem throughput level is increased, resulting in p values that 
can be drastically less than one.  
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