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ABSTRACT 

In this paper, we will discuss our efforts to create the next 
generation of semiconductor factory simulation tools, 
which we call complete response-surface mapping 
(cRSM). More specifically, we will describe the basic re-
search and software development necessary to produce the 
capability to provide simulation results on demand for cy-
cle-time measures as a function of throughput and product 
mix.  

1 INTRODUCTION 

Many man-hours are invested in developing and exercising 
simulation models of wafer fabs, models that include criti-
cal details that are difficult or impossible to incorporate 
into simple load calculations or queueing approximations. 
Unfortunately, simulation models can be clumsy tools for 
planning or decision making because even a few minutes 
per simulation run (which is optimistic) is too slow to al-
low what-if analysis in real time. Even optimization via 
simulation (where some comb ination of simulation outputs 
is maximized or minimized) has drawbacks since an objec-
tive function must be specified and this hinders the deci-
sion maker’s ability to consider trade offs that are not eas-
ily quantified.  

We are investigating the creation of the next gen-
eration of simulation tools for decision support in semi-
conductor manufacturing, which we call complete re-
sponse-surface mapping (cRSM). cRSM exploits the 
availability of large quantities of idle computer resources, 
while recognizing the scarcity of decision-maker time. 
cRSM combines computing horsepower, adaptive statisti-
cal methods and queueing theory to allow a simulation to 
be used for planning and decision making in a much differ-
ent way than before. cRSM represents a bridge between the 
flexibility of simulation and the insight provided by an 
analytical queueing model by delivering simulation results 
on demand. 

More specifically, we are performing  the basic 
research and software development to produce a cRSM 
tool that provides simulation results on demand for cycle-
time measures as a function of throughput and product mix 
in semiconductor manufacturing. Given a simulation 

model of a wafer fab and minimal information on the con-
trollable parameters, cRSM runs an automated sequence of 
experiments to generate a model structure (MS) that repre-
sents the first four moments (equivalently, mean, variance, 
skewness and kurtosis) of product cycle time as a function 
of product mix and throughput. These experiments could 
use idle computer resources, exploit multiple processors if 
they are available, and execute without human interven-
tion. The MS is the input to a simulation-on-demand query 
engine (QE) that allows the decision maker to investigate 
options and trade offs on demand without running addi-
tional simulations. Any questions that can be answered 
through combinations of the mean, standard deviation and 
percentiles of the cycle time as a function of throughput 
and product mix are supported, with results delivered as 
numerical and graphical displays.  

To be more precise, let 1 2, , , kλ λ λK  be the 

throughputs (release rates) of k products into the factory 
simulation. We denote the steady-state cycle time of the 
j th product by 

                1 1( , , ) ( , , , )j j k j kC C Cλ λ λ α α= =K K  

where λ is the factory throughput, and jα is the fraction of 

the throughput that will be product type j  
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mates the moments of jC as the decision variables 

1, , , kλ α αK  vary over their feasible values. This allows 

the decision maker to answer questions such as:  
 

1. What is the weighted cycle time of the factory at a 
particular throughput and product mix?  

2. What is the 80th percentile of cycle time for prod-
ucts at a particular throughput and product mix?  

3. What are the feasible values of throughput and 
product mix 1, , , kλ α αK  such that average cy-

cle-time constraints jE[C] , 1,2, ,jc j k≤ = K  

are met?  



4. What is the impact on the cycle times of products 
1,2,…, k-1 of increasing the throughput of prod-
uct k to meet increased demand?  

5. What product mix maximizes revenue while keep-
ing cycle times below required limits?   

The cRSM that we are developing builds an MS for a 
factory simulation in which only the throughput and prod-
uct mix can be altered; however, multiple instances of a 
cRSM can be used for capacity planning objectives. By let-
ting cRSM build an MS for factory simulations with dif-
ferent levels of capacity, cRSM facilitates capacity plan-
ning and expansion analysis that takes cycle time into 
account. 

The emphasis of this approach is different from much 
simulation research: Our focus is on the efficiency of ob-
taining useful simulation results, rather than on the effi-
ciency of the simulation run itself. cRSM assumes that the 
user is willing to run a substantial number of simulations to 
build the MS, although “substantial” still means orders of 
magnitude less time than was required to build the simula-
tion model. We will design cRSM to make these runs effi-
ciently, but the real savings from cRSM are most apparent 
after the MS is available, when a decision maker can use 
the QE to quickly and easily answer a variety of questions 
on demand, without rerunning the simulation or even 
knowing that a simulation exists. Our goal is to get more 
value out of the simulation, via deeper insight, more com-
plete exploration and timely responses, than is currently 
possible with either simulation or analytical models. 

2 PRIOR WORK 

In our previous NSF-sponsored research we developed ef-
ficient tools for accurate and precise estimation of the 
mean, standard deviation and percentiles of cycle time as a 
function of the overall factory throughput for a fixed prod-
uct mix. Central to this work was developing flexible fami-
lies of models to represent the first four moments of 
steady-state cycle time as a function of throughput; percen-
tiles of cycle time then come from a four-moment ap-
proximation. To design simulation experiments to fit these 
models, we also needed models for the variability of the 
moment estimators themselves, because the moments, and 
the variance of their estimators, explode as the throughput 
approaches factory capacity. The form of our models was 
motivated by heavy-traffic queueing analysis (e.g., Whitt 
1989), but our research showed that generalizations of 
these simple models were essential when the simulation 
included tool failures, different product flows and priority 
schemes found in semiconductor manufacturing  (Allen 
2003, Johnson 2003).  

To define these models, let x represent the frac-
tion of system capacity in use when the factory throughput 
capability is λ  (this allows the maximum throughput to be 
standardized as 1). We developed techniques to use wafer 

fab simulation outputs to fit the following model for the 
mth moment of cycle time: 
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We also needed a model for the variance of the estimator 
of the mth moment, specifically 
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For simple networks of first-in-first-out queues, heavy traf-
fic analysis suggests that p=m, q=2m+2; however, we 
showed that this is not always the case for the queueing 
networks that are typical of semiconductor manufacturing 
facilities. With both p and q unknown, and up to eight 
models to be fit simultaneously ((1.1) and (1.2) for each of 
the first four moments), we developed techniques to effi-
ciently and effectively design the simulation experiment 
and fit the models, and showed that these models give re-
markably accurate predictions of the mean, standard devia-
tion and percentiles of cycle time (McNeill et al. 2003ab, 
Mackulak et al. 2004, Park, et al. 2002, Yang et al. 2004). 
Our experience building CT -TH models for a fixed product 
mix demonstrates that simulation output data can be used 
to fit accurate, and easily manipulated, models of the form 
(1.1) for the factory as a whole. Once the models are avail-
able they can be used to quickly and interactively evaluate 
cycle time -throughput scenarios on demand in the same 
way we use a queueing model. Our approach is to take 
these ideas to the next level in two important ways: (1) To 
allow product mix, as well as throughput, to be varied; and 
(2) to develop a simulation-on-demand QE that uses these 
models for decision support. 

3 MODELS FOR PRODUCT MIX 

We believe that the best approach for incorporating prod-
uct mix into the CT-TH analysis is to leverage, as much as 
possible, our expertise in developing CT-TH models with a 
fixed product mix. For a given product mix, we have de-
veloped procedures to fit mean cycle time curves as a func-
tion of the throughput, and then to derive cycle-time per-
centile curves from these moment models. The procedures 
make efficient use of the simulation runs, diagnose and 
correct for lack of fit, and can be completely automated. 
Unfortunately, our investigation of analytically tractable 
queueing network models convinces us that extending the 
moment model (1.1) to include product mix as an inde-
pendent variable (as in Lamb and Cheng 2002) is unlikely 
to be successful because the correct form of the model de-
pends on specifics of the network topology of the factory, 
something we do not think the user of cRSM should have 



to figure out. Instead, we will use simulation to fit CT-TH 
models for a carefully selected range of product mixes and 
then interpolate among these models to derive cycle-time 
measures at product mixes that we did not simulate. In a 
rough sense, we are looking for a set of basis functions that 
span the cycle time for the product mix space of interest. 
Since we already have the capability to fit CT-TH slices of 
this surface (i.e., curves for a fixed product mix), the focus 
of the research is designing the simulation experiment, in-
terpolating the curves, and verifying the accuracy of the 
results. We next discuss each of these issues in turn 

 
3.1 Design of the cRSM Experiment 

Our previous research has provided efficient and effective 
experiment design strategies when the product mix is 
fixed. In this context a “design” corresponds to settings of 
the standardized throughput at which to make simulation 
runs, and an allocation of simulation effort to each design 
point (Park et al. 2002, Yang et al. 2004). For cRSM, the 
design also includes the product mix settings at which we 
fit the models. There are a number of research challenges 
to address: 

1. The design space is no longer simple as the stabil-
ity requirement (throughput must be less than ca-
pacity) for different product mixes further com-
plicates the design problem. The work center, 
machine group or station that first reaches capac-
ity depends on the product mix 1( , , )kα αK . 

Figure 1a shows the CT-TH curves for Product 1 
in a two product, multi-station system when the 
mix of Product 1 changes.   

2. The experiment design must fill the product mix 
space in a way that facilitates interpolation at 
product mixes not simulated. Thus, a good design 
might need to include settings of product mix that 
cause each work center, machine group or station 
that could define the fab capacity to actually de-
fine it.   

3.2 Interpolation 

A second research challenge is interpolating among 
the fitted CT-TH curves when we encounter a new product 
mix. For instance, in the example shown in Figure 1 the 
curve for Product 1 at 50% of the mix would be some in-
terpolation of the four fitted curves. What kind of interpo-
lation will work best? 

It is plausible that CT -TH curves derived at a base col-
lection of product-mix settings can be used to infer the en-
tire CT-TH surface, but we cannot expect the interpolation 
to be so easy in a practical situation. The following is a 
more realistic approach: Let 1( , , )kα α=a K  denote a 

vector of mix parameters, and let A denote the collection 

of product mixes at which we run simulations and fit mo d-
els. Then for a new mix ′a  that we did not simulate, the 
interpolation might take the form 

         ˆ ˆ( , ) D( , ) ( , )j jC Cλ λ
∈

′ ′= ∑
a ?

a a a a          (1.3) 

where D is a measure of the distance between the mix of a 

fitted curve and the desired curve, and ˆ ( , )jC λ a  is the fit-

ted curve at mix a . Figure 1 illustrates how this might be 
done to determine Product 1’s cycle time when it is 50% of 
the mix, and the fab throughput is 4. In this case the values 
of the four fitted curves at 20%, 40%, 60% and 80% Prod-
uct 1 provide four values for a quadratic interpolation at 
50% Product 1 (right figure). The interpolated value is 
0.1545 days, while the true mean cycle time is 0.1549 
days. Although the quadratic distance measure D works 
well in this example, the key research question will be the 
choice of distance measure for more complex problems. 

3.3 Accuracy 

Since we require the experiment design, simulation and fit-
ting process (in other words, the construction of the MS) to 
be completely automated, we need a way to determine 
when the MS is complete. We will again leverage our abil-
ity to construct accurate and precise CT-TH curves for a 
fixed product mix, implying that we have confidence that 
each individual curve in our “basis” is valid. To determine 
when the basis is complete, we propose using a cross-
validation approach. When we have fit g curves, we can 
test these curves for adequacy by dropping one curve at a 
time and measuring the ability of the remaining g-1 curves 
to approximate it via (1.5). When all curves can be accu-
rately approximated by interpolating the other g-1 curves 
then the MS is complete. Based on our experience fitting 
CT-TH curves, maximum relative error along the curve is a 
good choice for measuring approximation accuracy. 

4 SOFTWARE TOOLS 

To support the development and use of cRSM, two soft-
ware tools must be built.  The first, the cRSM Generator, is 
for use in creating the Model Structure (MS) and will con-
trol which combinations of throughput rates and product 
mixes are simulated.  The second is the simulation-on-
demand Query Engine (QE), which is for use after the MS 
has been generated.  The QE answers questions, such as 
those outlined above, given a collection of nonlinear re-
sponse surface models for each of the first four moments at 
various product mixes.  Results will be provided on de-
mand, without requiring any additional simulation effort .  



4.1 cRSM Generator 

A critical step in creating the cRSM that must occur before 
the MS is generated is performing simulation runs at a va-
riety of product mix/throughput combinations.  Since it is 
impossible to perform simulation runs at all possible com-
binations, the cRSM Generator determines what design 
points (throughputs and product mixes) to run, how much 
simulation effort to allocate at each design point and auto-
matically executes the runs. It requires as input the product 
routings, the processing rates of each product on each ma-
chine group, and the number of machines in each machine 
group. Our prior work focused on a single product mix, 
which essentially reduces the problem to a single slice 
through the response surface.  Adding the additional vari-
able of product mix makes the problem significantly more 
difficult, as it dramatically increases the number of candi-
date design points at which to simulate. Further, it is also 
important to determine the relative importance of each de-
sign point for developing the MS.  Both tasks are accom-
plished by the cRSM Generator. Finally, since the results 
of all simulation runs will be stored in a database, the 
cRSM generator will have the capability to reuse existing 
simulation runs.  For example, if answering question posed 
to the Query Engine requires additional precision beyond 
that attained by the initial cRSM runs, then the initial re-
sults will be retrievable so that duplicate effort is not re-
quired to obtain the new, higher-precision results  

4.2 Query Engine 

Once the MS has been generated, nonlinear response sur-
face models exist for each of the first four moments of cy-
cle time.  These models can be used to answer a variety of 
interesting questions about the system, and the simulation-
on-demand QE will provide the decision support mecha-
nism by which these questions are asked and answered.  
Specifically, the QE software tool will consist of a front-
end user interface, which accepts inputs from the user and 
displays the outputs.  Additionally, to answer several of the 
questions we anticipate decision makers asking, the QE 
will need to contain a response-surface search algorithm 
that efficiently and effectively searches the CT-TH sur-
faces to find settings that yield specified cycle-time per-
formance, and locate optimal or near-optimal solutions.  
There are two types of questions that will typically be han-
dled through the QE:  those about the mean cycle time of 
the system and those about cycle-time percentiles.  Spe-
cific solution approaches for some sample questions are 
given below.   

Question 1: What are the mean (or P-percentile) product 
cycle times for a given fab throughput and product mix or 
vector of start rates?   

In this case, the user is interested in obtaining an esti-
mate of the mean (or P-percentile) cycle time for each 

product when the start rates of all products are already 
known. The input can be given as an overall factory 
throughput and product mix or as a vector of start rates for 
each product type.  To answer this question using the QE, 
the appropriate coordinates on the mean response surface 
model (the independent axes represent the start rates for 
each of the products) simply need to be identified and the 
associated response interpolated for each product. When 
the user is interested in obtaining a vector of estimates of a 
particular cycle time percentile, (i.e., the vector of the 95th 
cycle-time percentiles) for a given set of start rates, the an-
swer relies on our previous work in percentile estimation 
using the Cornish-Fisher expansion, which was found to 
effectively estimate percentiles from any sample distribu-
tion, given a percentile from the standard normal distribu-
tion and estimates of the sample distribution’s first four 
moments.  The only required user inputs are the desired 
percentile and the product mix.  Further details on the Cor-
nish-Fisher expansion as it applies to cycle-time percentile 
estimation can be found in the McNeill, et al. (2003ab). 

Question 2:  What product mix is most profitable that 
achieves given mean (percentile) cycle time targets? 

The user is now interested in determining the product 
mix (or, equivalently, vector of start rates) that will maxi-
mize profit for the system, while still obtaining no more 
than a maximum mean (or percentile) cycle -time value for 
each product.  To answer this question, the user must sup-
ply the following inputs:  the vector of profits for each unit 
of each product produced, the cycle time requirements for 
each product; the minimum start rate for each product 
(based on production requirements) the maximum start rate 
for each product (based on product demand).  Obtaining a 
solution to this question will be significantly more difficult 
than the previous question, as there may be an infinite 
number of product mixes that will meet the cycle-time re-
quirements.  Therefore, we must find an efficient way to 
navigate the solution space towards the optimum, or at 
least toward a solution with a high total profit. We expect 
to use nonlinear programming techniques, such as gradient 
search that is specialized to exploit the fact that these 
nonlinear functions have a known general form (1.1) and 
certain properties (e.g., monotonically increasing as 
throughput increases).   

If the cycle time targets are on percentiles, an addi-
tional step, evaluating the Cornish-Fisher  (C-F) expansion, 
will be required.  Once a possible solution is identified, 
each of the first four sample moments must be estimated 
for each product using the CT-TH surface models.  These 
values will then be plugged into the C-F expansion to de-
termine if the percentile estimate for each product meets 
the constraint.  If the constraint vector is met, the profit for 
this solution is stored, and the solution space search con-
tinues. If the constraint is not met, the solution is infeasi-
ble, and the objective function value need not be calcu-
lated.  Alternatively, we will investigate whether it is more 



efficient to build an entire response surface of the Cornish-
Fisher expansion for a given percentile, which could be 
searched directly, rather than evaluating the expansion in-
dependently for each throughput and product mix. Clearly, 
Question 2 is more difficult than Question 1 because it in-
volves a complex feasible region.  However, answering 
this type of question provides great benefit to the decision 
maker and searching the solution space will take signifi-
cantly less time than running additional simulation models 
or trying to do optimization via simulation.   

Figure 2 shows the relationship between the user in-
puts, the MS inputs, and the outputs of the QE for the ques-
tions discussed.  Neither the list of questions nor the figure 
is intended to be exhaustive.  Rather, they are intended to 
provide an example of the types of questions that the QE 
will be able to answer.    
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Figure 2: Representation of the QE in terms of potential 
inputs and outputs  

Figure 1: (a) CT-TH curves for one product in a two-product system as the mix changes from 
(left to right) 20%, 40%, 60% to 80% of Product 1. (b) Interpolation of CT-TH curves with 
20%, 40%, 60% and 80% Product 1 to determine cycle time at 50% Product 1. 




