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ABSTRACT

Cycle time-throughput (CT-TH) percentile curves quantify
the relationship between percentiles of cycle time and factory
throughput, and they can play an important role in strategic
planning for manufacturing systems. In this paper, a highly
flexible distribution, the generalized gamma, is used to
represent the underlying distribution of cycle time. To obtain
CT-TH percentile curves, we fit metamodels for the first three
CT-TH moment curves throughout the throughput range of
interest, determine the parameters of the generalized gamma
by matching moments, and obtain percentiles by inverting
the distribution. To insure efficiency and control estimation
error, simulation experiments are built up sequentially using
a multistage procedure. Numerical results are presented to
demonstrate the effectiveness of the approach.

1 INTRODUCTION

Computer simulation is an essential tool for the design and
analysis of complex manufacturing systems. Nevertheless,
it is difficult to use simulation for strategic planning because,
by its nature, a simulation can only evaluate one particular
scenario at a time. A cycle time-throughput (CT-TH) curve,
on the other hand, shows the projected cycle time plotted
against a range of throughput. Using this curve, a company
can control cycle time by controlling the rate at which
products are released into the system, or assess the impact
on cycle time of increasing or decreasing the release rate.
Since long-run average cycle time and long-run average
Work in Process (WIP) are proportional, a CT-TH mean
curve can also be used to control WIP.

Our focus in this paper is providing CT-TH curves
that can be used to assess lead-time commitments with a
high level of confidence. For this application, a CT-TH
percentile curve is more relevant than a mean curve. A CT-
TH percentile curve is simply a given percentile of the cycle
time distribution as a function of the throughput desired.

For example, if the CT-TH 95th percentile curve is used to
set the throughput level, then 95% of the time the actual lead
time of any given product will meet the promised delivery
time.

In Yang et al. (2004), a procedure was developed to
efficiently generate CT-TH mean curves. In this paper, we
will significantly extend this methodology to the generation
of simulation-based CT-TH percentile curves. Since most
manufacturing systems operate in a throughput range where
the CT-TH curve is monotonically increasing, we restrict
ourselves to this case. Once a CT-TH curve is constructed,
the sensitivity of cycle time to throughput can be appraised by
examining the curvature or steepness, and different operating
policies can be quantitatively evaluated by comparing the
curves generated for different scenarios of product mix,
production targets and capital expansion.

The goal is to provide a methodology that generates
CT-TH percentile curves given the following inputs

• the simulation model,
• a throughput range of interest, say [xL, xU ],
• a percentile range of interest, say [αL, αU ], and
• a measure of the required precision for the estimated

curves.

Simulation is often used to provide percentile estimates,
and substantial research effort has been devoted to the esti-
mation of cycle time percentiles via simulation. However,
efficiently generating cycle time percentile estimates remains
a challenging topic for at least two reasons: Standard esti-
mators based on order statistics may require excessive data
storage unless all of the percentiles of interest are known
in advance, and even then it is difficult to do sequential
estimation until a fixed precision is reached (Chen and Kel-
ton 1999). On the other hand, approximations based on
only the first two moments of cycle time and assuming a
normal distribution can be grossly inaccurate (McNeill et al.
2003). A technique based on the Cornish-Fisher expansion
has been proposed by McNeill et al. (2003) to estimate
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percentiles of cycle times; it takes into account the first
four moments of the cycle time distribution and allows ac-
curate and precise percentile estimates to be generated for
moderately non-normal distributions. However, this method
can only give percentiles at fixed, prespecified throughputs
where simulation experiments have been performed. The
methodology proposed in this paper aims at providing a
more comprehensive profile of the system by generating
CT-TH percentile curves throughout a throughput range.

2 METHODOLOGY

In this section, we describe the methodology for generating
the CT-TH percentile curves for a given simulation model.

2.1 Overview of the Approach

A highly flexible distribution type, the generalized gamma
distribution (GGD), is assumed for the underlying random
variable, cycle time. The first three moments of cycle time
are utilized to generate a fit of the GGD distribution. The
percentile estimates are then obtained by taking the inverse
of the fitted GGD. More specifically, the strategy we propose
for estimating Cα(x), the α ∈ [αL, αU ] percentile of cycle
time at any throughput rate x ∈ [xL, xU ], is as follows:

1. Use an extended version of the methodology of
Yang, et al. (2004) to estimate not only the CT-TH
mean (1st moment) curve, but also the CT-TH 2nd

and 3rd moment curves over the throughput range
of interest. This allows for the prediction of the
first three moments of cycle time at any throughput
x, say μ1(x), μ2(x), and μ3(x). The form of the
models for the relationship between throughput
and the moments of cycle time are derived from
heavy traffic approximations that hold for many
queueing system at levels of throughput that are
near the capacity of the system (see Whitt 1989).

2. Use method of moments to fit a GGD distribution
G(t; a(x), b(x), k(x)) as an approximation for the
cycle time distribution (a(x),b(x), and k(x) are
distribution parameters that depend on x). We write
the resulting fitted GGD as G(t; â(x), b̂(x), k̂(x)).

3. Estimate the percentile Cα(x) by taking the in-
verse of the c.d.f. of the cycle time: Ĉα(x) =
G−1(α; â(x), b̂(x), k̂(x)).

2.2 Technical Details

In this subsection, we discuss the technical details of the
approach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Throughput

M
o

m
en

t 
o

f 
C

yc
le

 T
im

e

Figure 1: A Generic CT-TH Moment Curve

2.2.1 Estimation of CT-TH Moment Curves

As indicated in Section 2.1, providing the first three CT-TH
moment curves over the throughput range of interest is the
primary step in the estimation of Cα(x).

In Yang, et al. (2004), a metamodeling-based method-
ology was developed for estimating CT-TH mean (1st mo-
ment μ1(x)) curves via simulation. The same method can
be directly applied to the simultaneous estimation of higher
moment curves based on a single set of simulation experi-
ments.

In manufacturing systems, CT-TH moment curves typ-
ically follow the shape in Figure 1. We suppose that
the experiment is made up of a number of indepen-
dent simulation runs performed at m distinct levels of
throughput x = (x1, x2, . . . , xm) with xi ∈ [xL, xU ] for
i = 1, 2, . . . , m. From the j th run performed at throughput
x, an output response {Y (ν)

j (x), ν = 1, 2, 3}, can be obtained

for the purpose of estimating the νth moment curve:

Y
(ν)
j (x) = 1

H(x)

H(x)∑
h=1

(CTjh(x))ν j = 1, 2, . . . , n(x) (1)

where n(x) is the number of replications placed at throughput
x; CTjh(x) represents the individual cycle time of the hth

product simulated in the j th replication at x; and H(x) is
the selected number of products simulated in steady state
for simulations at x. For a given experiment consisting of
a number of simulation replications carried out at m design
points, the data sets

Yν = (Y
(ν)
1 (xi), . . . , Y

(ν)
n(xi )

(xi), i = 1, 2, . . . , m)

can be extracted for ν = 1, 2, 3.
To these data sets {Yν, ν = 1, 2, 3} we fit the three

moment curves based on the regression metamodel (2) below,
which is assumed to represent the CT-TH νth moment curve.
For the sake of simplicity, since all of the metamodels have
the same form, we omit the superscript ν representing the
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νth moment in the model:

Yj (x) = μ(x, c, p) + εj (x) j = 1, 2, . . . , n(x) (2)

where

μ(x, c, p) =
∑t

�=0 c�x
�

(1 − x)p
. (3)

The exponent p, the polynomial order t , and the coefficient
vector c = (c0, c1, . . . , ct ) are unknown parameters in each
model. Thus, a total of 3(t + 3) parameter estimates are
needed to fit all three moment models.

We write the resulting fitted curves for the first three mo-
ments as μ̂ν(x) (ν = 1, 2, 3) with throughput x ∈ [xL, xU ].

2.2.2 The Generalized Gamma Distribution

The distribution family chosen to fit the individual cycle
times for manufacturing settings should be able to provide
a good fit for a variety of cycle time distributions. It
has been pointed out by Rose (1999) that for complicated
systems, cycle times tend to be close to normally distributed.
However, as the system is more and more heavily loaded,
even for complicated systems, the cycle time distribution
becomes more and more skewed (McNeill et al. 2003).
Therefore, we decided to adopt the generalized gamma
distribution because of its flexibility compared to other
commonly used distributions. The GGD can cover a wide
range of skewness as well as kurtosis.

The three-parameter GGD, first presented in Stacy
(1962), has the following p.d.f.

g(t; a, b, k) = |k|
�(a)

· tak−1

bak
· exp[−(t/b)k], t > 0 (4)

a > 0, b > 0, k �= 0

where a and k are the shape parameters, and b the scale
parameter. The GGD includes a variety of distributions as
special cases, such as exponential (a = k = 1), gamma
(k = 1), and Weibull (a = 1) distributions. The lognormal
and normal distributions also arise as limiting cases.

Noncentral moments of GGD are given by:

mν = bν�(a + ν/k)

�(a)
v = 1, 2, 3, . . . (5)

where ν is the order of the moment. Choosing any three
distinct values for ν will provide the equations required
by the method of moments to obtain the three distribution
parameters, a, b, and k.

2.2.3 Estimation of Percentiles

In this section, we discuss how to fit the generalized gamma
distribution at a given throughput level x ∈ [xL, xU ] based

on the first three moment estimators, how the percentiles
are estimated once G(t, â(x), b̂(x), k̂(x)) is obtained, and
how an approximate variance can be provided for the
percentile estimators.

Point Estimation: As explained in Section 2.2.1, the first
three moment curves can be fitted simultaneously based on
a single set of simulation experiments performed at different
levels of throughput. Therefore, for any x ∈ [xL, xU ], the
first three moments {μ̂ν(x), ν = 1, 2, 3} can be predicted.
Substituting the moment estimates into (5) results in the
following equations:

μ̂1(x) = â(x)�(̂k(x) + 1/b̂(x))

�(̂k(x))

μ̂2(x) = â(x)2�(̂k(x) + 2/b̂(x))

�(̂k(x))
(6)

μ̂3(x) = â(x)3�(̂k(x) + 3/b̂(x))

�(̂k(x))
.

Numerically solving the three Equations (6) gives the three
estimated distribution parameters (̂a(x), b̂(x), k̂(x)) for the
fitted GGD distribution at throughput x.

With the estimated distribution of cycle time at
throughput x, G(t; â(x), b̂(x), k̂(x)), the percentile Cα(x)

can be estimated for any α ∈ [αL, αU ] by taking the
inverse of the distribution.

Statistical Inference for the Percentile Estimator: Draw-
ing inference about a parameter obtained indirectly is in
general difficult. In this paper, the delta method is applied
to make inferences concerning the estimated percentiles.

The percentile Cα(x) is estimated based on the fitted
GGD distribution, and is obviously a function of the distri-
bution parameters, a(x), b(x) and k(x). The delta method
provides the following approximation for calculating the
variance of percentile estimators, where we supress the
dependence on x for convenience:

Var[Ĉα(x)] .=
(

∂Cα(x)

∂a

)2
Var[̂a] +

(
∂Cα(x)

∂b

)2
Var[̂b]

(
∂Cα(x)

∂k

)2
Var[̂k] + 2

(
∂Cα(x)

∂a

) (
∂Cα(x)

∂b

)
Cov[̂a, b̂]

+2

(
∂Cα(x)

∂b

) (
∂Cα(x)

∂k

)
Cov[̂b, k̂]

+2

(
∂Cα(x)

∂k

) (
∂Cα(x)

∂a

)
Cov[̂k, â]. (7)

In (7), the partial derivatives of the percentile Cα(x) with
respect to the GGD parameters can be approximately cal-
culated numerically (for details, see Yang et al. 2005).

Since the GGD parameters are estimated by match-
ing the first three moments of the GGD distribution to the
moment estimates {μ̂ν(x), ν = 1, 2, 3}, the variances and
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covariances in (7) are functions of the variances and co-
variances of μ̂1(x), μ̂2(x) and μ̂3(x). This is where the
delta method is applied for a second time. Using matrix
notation, we have the following relationship as derived in
Ashkar et al. (1988):

⎛
⎜⎜⎜⎜⎜⎜⎝

Var[̂a]
Var[̂b]
Var[̂k]

Cov[̂a, b̂]
Cov[̂a, k̂]
Cov[̂b, k̂]

⎞
⎟⎟⎟⎟⎟⎟⎠

.=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 · · · C16
C21 C22 · · · C26
C31 C32 · · · C36
C41 C42 · · · C46
C51 C52 · · · C56
C61 C62 · · · C66

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

Var[μ̂1(x)]
Var[μ̂2(x)]
Var[μ̂3(x)]

Cov[μ̂1(x), μ̂2(x)]
Cov[μ̂1(x), μ̂3(x)]
Cov[μ̂2(x), μ̂3(x)]

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

For calculation of the matrix C, please refer to Ashkar et
al. (1988). As can be seen from the derivation above,
estimating the variance of percentile estimators comes
down to the estimation of {Var[μ̂ν(x)], ν = 1, 2, 3} and
{Cov[μ̂ν1(x), μ̂ν2(x)]; ν1, ν2 = 1, 2, 3, ν1 �= ν2} involved
in (8). These estimators can be obtained from the standard
linear approximation to the covariance matrix of the param-
eters when fitting the three moment curves with nonlinear
regression (details are given in Bates and Watts 1988 and
Yang et al. 2005).

2.3 Procedure for Estimating Percentiles of Cycle Time

We now describe a multistage procedure to collect simulation
data for estimating percentiles of cycle time. A high-level
description of the procedure is provided in Figure 2.

Simulation experiments are carried out sequentially until
the prespecified stopping criterion is satisfied. The experi-
mentation is initiated with a starting design which allocates
some replications to the two end points of the throughput
range [xL, xU ]. As the procedure progresses, new design
points are added and additional replications are added in
batches. Each batch of replications is allocated to the design
points to minimize PM, an experiment design criterion that
is related to the variance of the percentile estimators. Since
the design criterion depends on the unknown parameters of
the moment curve, the current best estimates of the param-
eters are used in the allocation of each batch of replications.
As more simulation data are collected, increasingly precise
estimators are obtained until the precision of the estimators
matches the stopping criterion.

In the remainder of this subsection we will discuss the
issue of designing experiments and the stopping criterion
used in our procedure.

1. Collect data at two end points of 
the throughput range,       and     .
2. Fit the three moment curves. 
3. Based on the estimated moment 
models, find the optimal design for 
follow-up experiments.

Carry out more simulation experiments 
according to the latest design and refit 
the moment curves. 

No

Yes

Estimate the       percentile at 
throughput      and its variance. 

Estimate the       percentile at
throughput       and its variance. 

STOP

Uα
Ux

Lα
Ux

Ux
Lx

Augment the 
current design 
by adding more 
replications. 

Desired precision 
achieved?

Desired precision 
achieved?

No Yes

Figure 2: Flow Chart for the Multistage Procedure

2.3.1 Experiment Design

The experiment design consists of selecting the design points
x, the throughput levels at which simulations will be ex-
ecuted, and the allocation π , a vector of proportions that
allocate a fraction of the total replications to each design
point. Recall that our goal is to estimate the percentile
Cα(x) for x ∈ [xL, xU ] and α ∈ [αL, αU ]. Therefore, the
experiment design will seek to minimize some measure of
the variance of Ĉα(x). Suppose that N is the number of
replications available for allocation in the next step (see
Yang et al. 2005 for the determination of N ). A natural
performance measure, which is inherited from Cheng and
Kleijnen (1999), is the weighted average variance over the
throughput range of interest normalized by N :

PM0 = N

∫ xU

xL
w(x)Var[ĈαU

(x)]dx∫ xU

xL
w(x)dx

(9)

where w(x) is the weight function which in the simplest case
is w(x) = 1. We chose to base (9) on the variance of the
largest percentile αU because ĈαU

(x) is typically much more
variable than other percentile estimators. Unfortunately, it
is not practical to determine [x, π ] by minimizing PM0,
because Var[Ĉα(x)] can only be numerically estimated for
given values of x and α, as can be seen from Section 2.2.3.
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Hence, we use the finite difference approximation of (9):

PM = N
∑
κ∈Cx

Var[ĈαU
(κ)] · 	κ (10)

where Cx is the chosen set of evenly spaced grid points
in the range [xL, xU ], and 	κ is the interval between two
neighboring points. Since 	κ is a constant, it can be
dropped from (10), and we define our design criterion as:

PM = N
∑
κ∈Cx

Var[ĈαU
(κ)] (11)

Clearly, PM is a function of the design [x, π ], and by
minimizing PM we determine how to allocate simulation
replications in our experiments.

2.3.2 Stopping Criterion

The proposed procedure collects simulation data to allow
for estimation of Cα(x) for x ∈ [xL, xU ] and α ∈ [αL, αU ]
with both ranges of interest being specified by the user.
Obviously, the upper end of throughput is where the vari-
ability of cycle time is most pronounced, and it is known that
estimators of larger percentiles are more variable than their
lower counterparts. Consequently, ĈxU

(αU ) is considered
to possess the highest variability among all the estimable
percentiles, which motivates us to use the relative error
on ĈαU

(xU ) as the stopping criterion for our procedure.
By controlling the precision of the most variable estimator
ĈαU

(xU ), the other percentiles should be well estimated.
Specifically, we let the user specify a precision level, say

γ %, and the procedure terminates only when the condition

2SE[ĈαU
(xU )]

ĈαU
(xU )

≤ γ %

is satisfied. We define SE[·] = √
Var[·]. Moreover, a safe

fall-back strategy is adopted. As illustrated in Figure 2, a
check is also performed on the precision of ĈαL

(xU ), and
simulation data will be collected until

2SE[ĈαL
(xU )]

ĈαL
(xU )

≤ γ %

also.
Controlling the precision of all percentile estimators

Cα(x) to within a certain prespecified level is difficult. In
the next section, we will show that, for some well known
queueing systems, controlling the relative precision of only
the two estimators ĈαU

(xU ) and ĈαL
(xU ) effectively controls

the error in percentile estimators across the range of interest.

3 NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
procedure based on queueing models. Simple queueing
systems, M/M/1, M/E2/1, D/E2/1 and D/M/1, have been
considered in our experiments because they represent a range
of cycle time distributions while still being analytically
tractable. Not surprisingly, our procedure performs best
on M/M/1, where the assumptions concerning the form
of moment models and the distribution of cycle times are
known to be true. Among these three systems, our procedure
has the worst performance on the D/M/1 system. Due to
space constraints, we only present the results for M/M/1
and D/M/1.

3.1 Results for Queueing Systems

For both M/M/1 and D/M/1, the true percentiles of cycle
time at different throughputs can be analytically computed,
and hence the quality of percentile estimation can be easily
evaluated. For each model, the proposed procedure was ap-
plied 100 times, and from each of the 100 macro-replications
the following outputs were recorded:

• The estimated CT-TH curves for the first three
moments, {μ̂ν(x), ν = 1, 2, 3}, which allows for
the estimation of percentile Cα(x) for any x ∈
[xL, xU ] and α ∈ [αL, αU ]; and

• the inferred variance information from fitting
the moment models, which allows for estimat-
ing both the {Var[μ̂ν(x)], ν = 1, 2, 3} and the
{Cov[μ̂ν1(x), μ̂ν2(x)]; ν1, ν2 = 1, 2, 3, ν1 �= ν2}
for x ∈ [xL, xU ], and hence the variance of the
percentile estimator Ĉα(x) throughout the given
throughput and percentile ranges of interest.

In our experiments, the throughput range of interest
was chosen to be [xL, xU ] = [0.7, 0.95], and the percentile
range [αL, αU ] = [85%, 95%], where we have normalized
the throughput so that the maximum system capacity is 1.
The precision level of the relative error used as the stopping
criterion was set at γ = 5% (see Section 2.3.2). As already
noted, our procedure is able to give percentile estimates
Cα(x) for any point in the two-dimensional region defined
by the percentile α ∈ [αL, αU ] and throughput x ∈ [xL, xU ].
We call this region the feasible region. To evaluate the
accuracy and precision of the percentile estimation, check
points were selected inside this feasible region, as shown
in Figure 3. At each of these points, the estimates were
compared to the true percentiles of the queueing system.
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Figure 3: Check Points Selected in the Feasible Region

3.1.1 Point Estimators

All the point estimators for percentiles performed similarly
well in terms of deviation from the true value for both
M/M/1 and D/M/1. Two types of plots were made to
display graphically the 100 realizations of each percentile
estimator made at the check points: (i) relative error plots
where the y-axis is defined as

Percentile Estimate − True Percentile

True Percentile
× 100% (12)

and (ii) absolute error plots in which percentile estimates
are plotted around their true values.

Figure 4 shows the percentile estimation results for
M/M/1. Figure 4a, 4b, and 4c are relative error plots with
the percentile α being 85%, 90%, and 95%, respectively.
For these graphs, the x-axis represents throughput rate x,
and every plot in the graph represents the relative devia-
tion at corresponding check point (α, x) calculated by (12)
from one of the 100 macro-replications. Notice that a very
high proportion of the relative deviations of the percentile
estimates at the selected check points are within 5% (the
precision level γ % imposed prior to experimentation). Fig-
ures 4a′, 4b′, and 4c′ are the absolute error plots, in which
the solid curve represents a piecewise linear version of the
true percentile curve across the throughput range and the
percentile estimates are plotted in absolute units. From
these plots, it is evident that the variability of the percentile
estimators at the highest throughput xU = 0.95 is the most
pronounced, and as explained in Section 2.3.2, it has been
well controlled in our procedure.

Figure 5 shows an analogous plot for the D/M/1 sys-
tem, and similar conclusions can be drawn, although the
performance not as good as the M/M/1 especially when the
throughput is at x = 0.95.

3.1.2 Standard Error

An estimator of the standard error SE[Ĉα(x)] =√
Var[Ĉα(x)] is provided for each percentile estimator Ĉα(x)

by the procedure described in Section 2.2.3. Our goal in
this section is to evaluate the quality of the SE estimator.
Tables 1 and 2 show the results for M/M/1 and D/M/1,
respectively. The column labeled “Sample Stdev" is the
sample standard deviation of the percentile point estima-
tors calculated from the 100 realizations of the percentile
estimator; therefore, it is an unbiased estimator of the true
standard error. The “Average SE" column is the average of
the 100 standard error estimators ŜE[Ĉα(x)], each one of
which is estimated from within a single macro-replication.

Table 2 shows that for M/M/1, the mean of the standard
error estimate in the “Average SE" column is close to, but
consistently less than, the unbiased external estimate of the
standard deviation found in the “Sample Stdev" column.
The underestimation trend is more apparent for the D/M/1.
Nevertheless, the estimated standard error ŜE[Ĉα(x)] pro-
vided by the procedure can still give the user a rough idea
about how variable the percentile estimator is.

In the absence of any knowledge about the distribution
of the percentile estimators, it would be natural to attempt
to form a 95% confidence interval for the percentile by
using:

Ĉα(x) ± 1.96 × ŜE[Ĉα(x)]. (13)

For M/M/1, (13) works well in terms of coverage and
gives a conservative CI. However, for D/M/1, the coverage
probability was lower than the nominal level. This can
be explained by underestimation of the standard error, and
non-normality of the percentile of cycle time estimator. In
the case with D/M/1, it appears that non-normality is the
dominant factor.

3.2 Summary of Results

Through experimentation based on queueing models, it has
been shown that the proposed procedure is effective in
providing accurate and precise percentile estimators. By
controlling the relative standard error of the percentile es-
timators at the upper end of the throughput range, high
precision has been achieved for estimators of percentiles
throughout the feasible region.

For each percentile estimator, an estimate of the standard
error is also provided which gives the user a sense of the
size of the variability. However, in the scope of our work,
there is not sufficient information to draw any conclusion
regarding the distribution (or limiting distribution) of the
percentile estimators. Thus, no reliable confidence interval
can be created based on the standard error estimation.
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Figure 4: Plots of the Percentile Estimates for M/M/1 (100 Macro-replications)
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Figure 5: Plots of the Percentile Estimates for D/M/1 (100 Macro-replications)
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Table 1: Estimated Standard Errors of Percentile Estimates for M/M/1

85th Percentile 90th Percentile 95th Percentile
TH x Sample Stdev Average SE Sample Stdev Average SE Sample Stdev Average SE
0.70 0.055 0.053 0.072 0.067 0.117 0.105
0.75 0.056 0.053 .071 0.067 0.112 0.106
0.80 0.070 0.064 0.089 0.080 0.137 0.125
0.85 0.110 0.100 0.139 0.126 0.213 0.190
0.90 0.225 0.213 0.282 0.270 0.430 0.399
0.95 0.759 0.734 0.950 0.926 1.439 1.361

Table 2: Estimated Standard Errors of Percentile Estimates for D/M/1

85th Percentile 90th Percentile 95th Percentile
TH x Sample Stdev Average SE Sample Stdev Average SE Sample Stdev Average SE
0.70 0.028 0.024 0.035 0.029 0.056 0.046
0.75 0.035 0.026 0.044 0.032 0.065 0.048
0.80 0.060 0.042 0.074 0.052 0.103 0.079
0.85 0.090 0.065 0.106 0.082 0.142 0.125
0.90 0.144 0.105 0.171 0.132 0.224 0.195
0.95 0.399 0.373 0.503 0.471 0.733 1.696

4 CONCLUSIONS

Estimating percentiles of cycle time is difficult due to the
high variability of percentile estimators and the diversity
of cycle time distributions. This paper proposes a new
methodology for estimating multiple cycle time percentiles
throughout the throughput range of interest based on a single
set of simulation runs. It has been shown that for M/M/1 and
D/M/1 system the multistage procedure developed provides
good point estimators for percentiles of cycle time without
requiring unreasonable computational effort.

Additional work will focus on applying the proposed
procedure on full factory simulation models and evaluate
the goodness of the percentile estimation.
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