
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
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ABSTRACT

We use a collection of simple models to examine the interaction between the variance reduction
technique of common random numbers and a new simulation metamodeling technique called
stochastic kriging. We consider the impact of common random numbers on prediction, parameter
estimation and gradient estimation.

1 INTRODUCTION

Beginning with the seminal paper of Schruben and Margolin (1978), simulation researchers have
been interested in the impact of incorporating common random numbers (CRN) into experiment
designs for fitting linear metamodels of the form

Y (x) = f(x)⊤β + ε (1)

to the output of stochastic simulation experiments. In Model (1), Y (x) is the simulation output,
x = (x1, x2, . . . , xp)

⊤ is a vector of controllable design or decision variables, f(x) is a vector
of known functions of x (e.g., x1, x

2
3, x1x7), β is a vector of unknown parameters of appropriate

dimension, and ε represents the intrinsic variability in the simulation output.
CRN is a variance reduction technique that attempts to induce a positive correlation between the

outputs of simulation experiments at distinct design points (settings of x in the context of Model (1))
and thereby reduce the variance of the estimator of the expected value of their difference. For k ≥ 2
design points, a large literature has shown that, properly applied, CRN reduces the variance of
“slope” parameters in (1)—and therefore estimates of the response-surface gradient—while often
inflating the variance of an intercept term. See, for instance, Donohue, Houck, and Myers (1992,
1995), Hussey, Myers and Houck (1987a,b), Kleijnen (1988, 1992), Nozari, Arnold, and Pegden
(1987), and Tew and Wilson (1992, 1994).

It is fair to say that for Model (1) the role of CRN has been thoroughly examined. The
purpose of this paper is to undertake a similar analysis of the interaction of CRN and a new
metamodeling technique called stochastic kriging (Ankenman, Nelson, and Staum 2008, 2010).
Stochastic kriging is an extension of kriging as applied to deterministic computer experiments (see,
for instance, Santner et al. 2003) to stochastic simulation. Specifically, we explore the effects of
CRN on prediction, parameter estimation and gradient estimation for stochastic kriging through
variations of two-point and k-point models that are rich enough to offer some enlightening insights
while still being analytically tractable.

Ankenman, Nelson, and Staum (2010) used a two-point problem with all parameters known
to show that CRN increases the mean squared error (MSE) of the MSE-optimal predictor at a
prediction point that has equal extrinsic spatial correlation with the two design points. They
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speculated that CRN will not be helpful for prediction in general. In this paper we generalize
their two-point problem to allow unequal spatial correlations between the design points and the
prediction point, and drop the assumption that the trend-model parameters are known. Even with
these generalizations we are still able to show that CRN is detrimental to prediction with respect
to MSE. We then extend the result given in Appendix A.2 in Ankenman, Nelson, and Staum
(2010) for k ≥ 2 spatially uncorrelated design points and show that CRN inflates the MSE of
prediction. We assume that the trend parameters are unknown whereas Ankenman, Nelson, and
Staum (2010) assumed that all parameters are known. In contrast to prediction, we show that
CRN typically improves the estimation of trend-model parameters by reducing the variances of
the slope parameters. Finally, we show that CRN improves gradient estimation in the sense that
the gradient estimators from stochastic kriging are less affected by intrinsic simulation noise when
CRN is employed.

2 STOCHASTIC KRIGING

In this section we briefly review stochastic kriging as developed in Ankenman, Nelson, and Staum
(2010) and the particular simplifications we exploit in this paper.

In stochastic kriging we represent the simulation’s output on replication j at design point x as
Yj(x) = f(x)⊤β + M(x) + εj(x) = Y(x) + εj(x) where M is a realization of a mean 0 Gaussian
random field; that is, we think of M as being randomly sampled from a space of functions mapping
ℜp → ℜ. Therefore, Y(x) = f(x)⊤β + M(x) represents the unknown response surface at point x.
In this paper we will only consider the special case

Y(x) = β0 +
p∑

d=1

βdxd + M(x); (2)

that is, the trend model is linear. Finally, ε1(x), ε2(x), . . . represents the independent and identically
distributed intrinsic noise observed for each replication taken at design point, x.

Throughout this paper we assume that the variance V = V(x) ≡ Var[ε(x)] at all design points
is equal, while allowing the possibility that ρ(x,x′) ≡ Corr[εj(x), εj(x

′)] > 0 due to CRN. In
most discrete-event simulation settings the variance of the intrinsic noise V(x) depends (perhaps
strongly) on the location of design point, x, and one of the key contributions of stochastic kriging
is to address experiment design and analysis when this is the case. However, there are a number
of reasons that we will not consider heterogeneous intrinsic variance here: In practice, V(x) can
take many forms, making it nearly impossible to obtain useful expressions for the effect of CRN.
Further, if the variance of the noise depends on x, then complicated experiment design techniques
(e.g., as developed in Ankenman, Nelson, and Staum 2010) are needed to properly counteract the
effects of the non-constant variance. Once again, this would not lead to tractable results. In some
sense, the equal variance assumption is what occurs after the proper experiment design strategy
has mitigated the effects of the non-constant variance.

In our setting an experiment design consists of n simulation replications taken at all k design
points {xi}k

i=1. Given our equal variance assumption, assuming that n is equal for all design points
seems reasonable and again greatly simplifies the analysis. Let the sample mean of simulation
output at xi be

Ȳ(xi) =
1

n

n∑

j=1

Yj(xi)

= Y(xi) +
1

n

n∑

j=1

εj(xi)

= β0 +
p∑

d=1

βdxd + M(xi) +
1

n

n∑

j=1

εj(xi)

and let Ȳ =
(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xk)

)⊤
. Define ΣM(x,x′) = Cov[M(x), M(x′)] to be the

covariance of points x and x
′ implied by the extrinsic spatial correlation model; and let the k × k
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matrix ΣM be the extrinsic spatial variance-covariance matrix of the k design points {xi}k
i=1.

Finally, let x0 be the prediction point, and define ΣM(x0, ·) to be the k × 1 vector that contains
the extrinsic spatial covariances between x0 and each of the k design points; that is,

ΣM(x0, ·) = (Cov[M(x0), M(x1)], Cov[M(x0), M(x2)], . . . , Cov[M(x0), M(xk)])
⊤ .

Since M is stationary, ΣM and ΣM(x0, ·) are of the following form:

ΣM = τ 2




1 r12 . . . r1k

r21 1 . . . r2k
...

...
. . .

...
rk1 rk2 . . . 1


 and ΣM(x0, ·) = τ 2




r1

r2
...
rk




where τ 2 > 0 is the extrinsic spatial variance.
What distinguishes stochastic kriging from kriging is that we account for the sampling variability

inherent in a stochastic simulation. Let Σε be the k× k variance-covariance matrix implied by the
sample average intrinsic noise with (h, i) element

Σε(xh,xi) = Cov




n∑

j=1

εj(xh)/n,
n∑

j=1

εj(xi)/n





across all design points xh and xi. The anticipated effect of CRN is to cause the off-diagonal
elements of Σε to be positive. To make our results tractable, we let

Σε =
V

n




1 ρ . . . ρ
ρ 1 . . . ρ
...

...
. . .

...
ρ ρ . . . 1


 (3)

where ρ > 0, meaning we assume equal variance and correlation, assumptions that are useful in
this paper for drawing insight about the impact of CRN, but not necessary for stochastic kriging
in general.

The MSE-optimal predictor (metamodel) provided by stochastic kriging takes the form

Ŷ(x0) = f(x0)
⊤β̂ + ΣM(x0, ·)⊤[ΣM + Σε]

−1(Ȳ − Fβ̂)

where the row of F are f(x1)
⊤, f(x2)

⊤, . . . , f(xk)
⊤. In our analysis we will suppose that only

β needs to be estimated, while ΣM, Σε and ΣM(x0, ·) are known. For estimation of all of the
parameters see Ankenman, Nelson, and Staum (2010).

3 INTERCEPT MODELS

In kriging metamodeling for deterministic computer experiments, the most common form is the
intercept model (no other trend terms) since (it is argued) the random field term M is flexible
enough to account for any variation across the response surface. In this section, we will study
intercept models and how the use of CRN affects parameter estimation, prediction and gradient
estimation. All results are derived in Chen, Ankenman, and Nelson (2010).

3.1 A Two-Point Intercept Model

Consider the two-point intercept model Yj(x) = β0+M(x)+εj(x) with β0 unknown, design points
x1 and x2 with equal numbers of replications n, and prediction point x0, with xi ∈ ℜ, i = 0, 1, 2.
Therefore, Y(x0) = β0 + M(x0) is the response that we want to predict, β0 is the parameter we
want to estimate, and dY(x0)/dx0 is the gradient we want to estimate.
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The best linear unbiased predictor (BLUP) of Y(x0) is

Ŷ(x0) =
Ȳ(x1) + Ȳ(x2)

2
+

τ 2
(
Ȳ(x1)−Ȳ(x2)

2

)

τ 2(1 − r12) + V

n
(1 − ρ)

(r1 − r2) (4)

with MSE

MSE⋆ = τ 2 (1 − (r1 + r2)) +
1

2

[
τ 2(1 + r12) +

V

n
(1 + ρ) − τ 4(r1 − r2)

2

τ 2(1 − r12) + V

n
(1 − ρ)

]
. (5)

We can show that dMSE⋆/dρ is always positive, hence it follows that CRN increases the MSE⋆ of the
best linear unbiased predictor for this two-point intercept model. Notice that for the spatial variance-
covariance matrix of (Y(x0), Ȳ(x1), Ȳ(x2))

⊤ to be positive definite, the following condition must
be satisfied: −r2

12 + 2r1r2r12 + 1 − (r2
1 + r2

2) > 0.
The best linear unbiased estimator (BLUE) of β0 corresponding to the BLUP of Y(x0) is

β̂0 =
Ȳ(x1) + Ȳ(x2)

2
(6)

and it is easy to see that its variance is increasing in ρ since it is a sum of positively correlated
outputs. Thus, the MSE of prediction and the variance of β̂0 are both inflated by CRN.

To analyze gradient estimation we need to impose some structure on the form of the spatial
correlation function, so we assume the popular Gaussian correlation form. Thus, the spatial
correlation between the design point xi and the prediction point x0 is ri = e−θ(xi−x0)2 , i = 1, 2,
and the spatial correlation between the two design points themselves is r12 = e−θ(x

1
−x

2
)
2

. Let ∇̂sk
denote the gradient of the predictor Ŷ(x0) at x0 in the stochastic kriging setting. Then

∇̂sk =
dŶ(x0)

dx0

= −2θ [r1(x0 − x1) + r2(x2 − x0)]
τ 2
(
Ȳ(x1)−Ȳ(x2)

2

)

[
τ 2(1 − r12) + V

n
(1 − ρ)

] . (7)

To assess the impact of CRN, we choose as a benchmark the gradient estimator that would be
obtained if there were no simulation intrinsic variance; that is, if the response surface could be
observed noise free. We are interested in the impact of CRN on the “distance” between the noise
and noise-free gradient estimators to measure whether CRN helps mitigate the effect of random
noise on gradient estimation.

Let ∇̂sk(n) be the gradient estimator when n simulation replications are used at each design

point, and let ∇̂sk(∞) be the gradient estimator as n → ∞, which can be obtained by simply
setting the intrinsic variance V = 0 in Equation (7). It follows that

E
[
∇̂sk(n) − ∇̂sk(∞)

]2
=

2θ2(r1(x0 − x1) + r2(x2 − x0))
2

(
1−r12

V

n
(1−ρ)

+ 1
τ2

)
(1 − r12)

. (8)

From Equation (8), we see that CRN decreases the mean squared difference between these two
estimators. In the extreme case as ρ → 1, even if n is not large, the gradient estimate from stochastic
kriging converges to the “ideal” case because the effect of random noise on gradient estimation is
eliminated by employing CRN.

950



Chen, Ankenman and Nelson

3.2 A k-Point Intercept Model

In the previous section we were able to show that CRN is detrimental to response surface prediction
and parameter estimation, but is beneficial to gradient estimation. In this section we are able to draw
the same conclusions in a particular k-point (k ≥ 2) intercept model, Yj(x) = β0 +M(x)+ εj(x),
with β0 unknown. To make the k-point model tractable we let ΣM = τ 2

Ik where Ik denotes the
k × k identity matrix. This form of ΣM indicates that the design points are spatially uncorrelated
with one another, which might be plausible if the design points are widely separated in the region
of interest. The following results can be shown:

The BLUP of Y(x0) is

Ŷ(x0) =
1

k

k∑

i=1

Ȳ(xi) +
τ 2

(
V

n
(1 − ρ) + τ 2

)
(

k∑

i=1

riȲ(xi) −
1

k

(
k∑

i=1

Ȳ(xi)

)(
k∑

i=1

ri

))
(9)

with MSE

MSE⋆ = τ 2 +
τ 4

(V

n
(1 − ρ) + τ 2)



1

k

(
k∑

i=1

ri

)2

−
k∑

i=1

ri
2





+
V

n
((k − 1)ρ + 1) + τ 2

k
− 2τ 2

(
1

k

k∑

i=1

ri

)
.

Notice that for the spatial variance-covariance matrix of (Y(x0), Ȳ(x1), . . . , Ȳ(xk))
⊤ to be positive

definite, it must be that
∑k

i=1 r2
i < 1. We show in Chen, et al. (2010) that under this condition

dMSE⋆/dρ is positive for any ρ ∈ [0, 1], hence CRN increases MSE⋆.
The BLUE of β0 corresponding to the BLUP of Y(x0) is

β̂0 =
1

k

k∑

i=1

Ȳ(xi) (10)

and its variance is easily shown to be an increasing function of ρ.
Similar to the analysis of gradient estimation in Section 3.1, we continue to use the Gaussian

correlation function. In addition, because now x ∈ ℜp, we make a further simplifying assumption
that θ, the spatial correlation parameter, is the same across all dimensions; i.e., θj = θ, j =

1, 2, . . . , p. Let ∇̂sk =
(
∇̂sk1

, ∇̂sk2

, . . . , ∇̂skp

)⊤
denote the gradient of Ŷ(x0) at x0 in the

stochastic kriging setting; notice that now ∇̂sk is a random vector in ℜp. We can show that for
j = 1, 2, . . . , p, the jth component of the gradient is

∇̂skj
=

∂Ŷ(x0)

∂x0j

=
−2θτ 2

(τ 2 + V

n
(1 − ρ))

·
k∑

i=1

((
Ȳ(xi) −

1

k

k∑

h=1

Ȳ(xh)

)
(x0j − xij)ri

)

where the ith point xi = (xi1, xi2, . . . , xip)
⊤ is a vector in ℜp, i = 0, 1, . . . , k. Notice that

ri = e−θ
∑p

j=1
(x

0j
−x

ij
)2 is the spatial correlation between xi and x0. Recall that we assume that the

design points are spatially uncorrelated.
Now for p > 2, we continue to use ∇̂sk(∞) as the benchmark to evaluate the gradient estimation

in the stochastic kriging setting. We define the following inner product to measure the “distance”
between the two random vectors ∇̂sk(n) and ∇̂sk(∞) at prediction point x0 ∈ ℜp and call it the
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mean squared difference between these two gradient estimators. We can show

〈∇̂sk(n) − ∇̂sk(∞), ∇̂sk(n) − ∇̂sk(∞)〉 =
p∑

j=1

E
[(
∇̂skj

(n) − ∇̂skj
(∞)

)2
]

=
4θ2

(
1

V

n
(1−ρ)

+ 1
τ2

)
p∑

j=1




k∑

i=1

(x0j − xij)
2r2

i −
1

k

(
k∑

i=1

(x0j − xij)ri

)2


 .

As in Section 3.1, we arrive at the conclusion that for this k-point intercept model, CRN decreases
the mean squared difference between these two gradient estimators.

4 TREND MODELS

Although many practitioners use intercept models for kriging, it remains to be seen what models
will be most effective when noise is introduced. Also, in linear regression models, CRN is known
to be most helpful for estimating slope parameters and so it seems likely that CRN will perform
best under a trend model that, like a regression model, includes slope parameters. For these reasons
and for completeness, we next study the effects of CRN on stochastic kriging with a trend model.

4.1 A Two-Point Trend Model

Consider the two-point trend model Yj(x) = β0 + β1x + M(x) + εj(x) with β0 and β1 unknown,
so that Y(x0) = β0 + β1x0 + M(x0) is the unknown response that we want to predict at point x0.
Without loss of generality, suppose that x1 < x2. Then we can show the following results:

The BLUP of Y(x0) is

Ŷ(x0) =
Ȳ(x2)(x0 − x1) + Ȳ(x1)(x2 − x0)

(x2 − x1)
(11)

with MSE

MSE⋆ = 2τ 2 +
V

n
− 2ab

(a + b)2

[
τ 2(1 − r12) +

V

n
(1 − ρ)

]
− 2τ 2

(a + b)
(ar1 + br2) (12)

where a = x2 − x0, b = x0 − x1, a + b = x2 − x1. Equation (12) implies that for this two-point
trend model, when x0 ∈ (x1, x2), CRN increases MSE⋆; however, if we do extrapolation, i.e.,
x0 /∈ (x1, x2), then CRN will decrease MSE⋆.

The BLUE of β = (β0, β1)
⊤ corresponding to the BLUP of Y(x0) is

β̂ =
1

(x2 − x1)

(
x2Ȳ(x1) − x1Ȳ(x2)
Ȳ(x2) − Ȳ(x1)

)
. (13)

It follows that

Var(β̂0) =

(
τ 2 +

V

n

)
+

2x1x2

(x2 − x1)2

[
τ 2(1 − r12) +

V

n
(1 − ρ)

]
(14)

Var(β̂1) =
2
[
τ 2(1 − r12) + V

n
(1 − ρ)

]

(x2 − x1)2
(15)

and

Cov(β̂0, β̂1) =
−(x1 + x2)

[
τ 2(1 − r12) + V

n
(1 − ρ)

]

(x2 − x1)2
.
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From Equation (15), we see that CRN reduces the variance of β̂1. Also notice that Equation (14)
implies that if x1x2 < 0, so that 0 interior to the design space, then CRN inflates the variance of
β̂0, while if x1x2 > 0, so that β̂0 is an extrapolated prediction of the response at x = 0, then CRN
decreases the variance of β̂0.

Finally, following the analysis in Section 3.1, we can show that the mean squared difference
between the gradient estimators obtained when the number of replications n is finite and when
n → ∞ is

E
[
∇̂sk(n) − ∇̂sk(∞)

]2
=

2V(1 − ρ)

n(x1 − x2)2
. (16)

Equation (16) shows that CRN decreases the mean squared difference between these two estimators.
It is worth noting that here the extrinsic spatial variance τ 2 has no influence on this mean squared
difference at all.

4.2 A k-Point Trend Model

For the two-point trend model we were able to draw conclusions similar to those we found for
the intercept model and an additional conclusion related to the estimation of the slope parameters.
Specifically, we found that CRN is detrimental to response surface prediction at any point inside
the region of experimentation since it increases the MSE of prediction, but CRN is beneficial to
estimation of the slope parameter by decreasing the variance of its estimator and beneficial to
gradient estimation since it decreases the effect of noise. As with the intercept model we can
extend the conclusions of the two-point trend model to a k-point (k ≥ 2) trend model if additional
restrictions are made.

Consider the k-point trend model Yj(x) = β0 +
∑p

d=1 βdxd + M(x) + εj(x), where p ≥ 2,
ΣM = τ 2

Ik and ΣM(x0, ·) = τ 2(r0, r0, . . . , r0)
⊤. This scenario might be plausible if the design

points are widely separated, say at the extremes of the region of interest, while x0 is central.
Suppose that we have a k × (p + 1) orthogonal design matrix D :

D =




1 x11 . . . x1p

1 x21 . . . x2p
...

...
. . .

...
1 xk1 . . . xkp




which means that the column vectors of D are pairwise orthogonal. Such an assumption on D

makes the analysis tractable enough to give the following results:
The BLUE of β = (β0, β1, · · · , βp)

⊤ corresponding to the BLUP of Y(x0) is

β̂ = (D⊤
Σ

−1
D)−1

D
⊤
Σ

−1Ȳ (17)

where Σ = ΣM + Σε. More explicitly,

β̂0 =
1

k

k∑

i=1

Ȳ(xi) (18)

and

β̂j =

∑k
i=1 xijȲ(xi)∑k

i=1 x2
ij

, j = 1, 2, . . . , p. (19)

The resulting BLUP of Y(x0) is

Ŷ(x0) = f(x0)
⊤β̂ (20)
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where f(x0) = (1, x01, x02, . . . , x0p)
⊤. The corresponding optimal MSE is

MSE⋆ = τ 2



1 +
1

k
+

p∑

j=1

x2
0j∑k

i=1 x2
ij

− 2r0



+
1

k

V

n



1 + k
p∑

j=1

x2
0j∑k

i=1 x2
ij





+
1

k

V

n
ρ



(k − 1) − k
p∑

j=1

x2
0j∑k

i=1 x2
ij



 .

Notice that if

k − 1

k
>

p∑

j=1

x2
0j∑k

i=1 x2
ij

(21)

then CRN increases MSE⋆.
To help interpret this result, consider a k = 2p factorial design where the design points

xij ∈ {−1, +1}. Then Equation (21) reduces to
∑p

j=1 x2
0j < k − 1. Therefore, CRN will inflate

the MSE⋆ of Ŷ(x0) at prediction points inside a sphere of radius
√

2p − 1 centered at the origin
(which is also the center of the experiment design). Notice that for p > 1 we have

√
2p − 1 >

√
p,

the radius of the sphere that just contains the design points and is the usual prediction region of
interest. Also notice that when p = 1 we recover the condition for the two-point trend model, for
which we have more general results available in Section 4.1 without the orthogonality assumption.

We next focus on the effect of CRN on Cov(β̂). Because of the orthogonality assumption, the
expression for Cov(β̂) becomes much simpler. It can be shown that

Cov(β̂) = (D⊤
Σ

−1
D )−1 =




V

n
[1+(k−1)ρ]+τ2

k
0 . . . 0

0
V

n
(1−ρ)+τ2

∑k

i=1
x2

i1

. . . 0

...
...

. . .
...

0 0 . . .
V

n
(1−ρ)+τ2

∑k

i=1
x2

ip




(22)

hence we arrive at a similar conclusion to the one obtained in Section 4.1: CRN reduces the
variances of β̂1, β̂2, · · · , β̂p. Here the first diagonal term manifests that CRN increases Var(β̂0),
which is consistent with Section 4.1 since 0 is interior to the design space.

Now let

∇̂sk = (∇̂sk1

, ∇̂sk2

, . . . , ∇̂skp
)⊤

denote the gradient of Ŷ(x0) at x0 in the stochastic kriging setting. We can show that for j =
1, 2, . . . , p, the jth component of the gradient is

∇̂skj
=

∂Ŷ(x0)

∂x0j

=
dΣM(x0, ·)

dx0j

Σ
−1(Ȳ − Dβ̂) + β̂j

= β̂j.

Following the analysis in Section 3.2, we define the following inner product to measure the
“distance” between the two random vectors ∇̂sk(n) and ∇̂sk(∞) at prediction point x0:

〈∇̂sk(n) − ∇̂sk(∞), ∇̂sk(n) − ∇̂sk(∞)〉 =
p∑

j=1

E
[(
∇̂skj

(n) − ∇̂skj
(∞)

)2
]
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=
V

n
(1 − ρ)

p∑

j=1

(
k∑

i=1

x2
ij

)−1

. (23)

Equation (23) shows that CRN decreases the mean squared difference between these two gradient
estimators. Similar to the result in Section 4.1, we see that only the intrinsic noise affects this
mean squared difference, whereas the extrinsic spatial variance has no influence on it at all.

5 CONCLUSIONS

CRN is one of the most widely used variance reduction techniques; in fact, with most simulation
software one would have to carefully program the simulation to avoid using it. Therefore, it is
important to understand its effect on a metamodeling technique, such as stochastic kriging.

The models analyzed in this paper provide compelling evidence that CRN leads to less precise
predictions, better gradient estimation, and better estimation of the “slope” terms in any trend
model.

Throughout this paper we have assumed that the parameters of the random field M—specifically
τ 2 and θ—were known, as well as the intrinsic varianceV. In Chen et al. (2010) we assess empirically
the impact of CRN when these parameters are estimated as well, which it turns out does not change
the general conclusions above.
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