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SUMMARY
A method is presented for creating randomly generated polynomial functions to be used as a test bed of simulated
response surfaces. The need for the test bed to perform empirical comparisons of experimental design strategies is
discussed and the methods used to create the surfaces are explained. An important feature of the test bed is that the
user can control some of the characteristics of the surfaces without directly controlling the surface functions. This
allows the user to choose the types of surfaces on which a simulation study is run while preserving the random
nature of the surfaces needed for a valid simulation study. Copyright 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The experimental study of a response surface for
finding optimal or at least desirable settings for the
factors is known as Response Surface Methodology
(RSM) (see Myers and Montgomery [1]). Many
classes of experimental designs have been developed
for RSM, such as factorials, fractional factorials, Box–
Behnken designs, and central composite designs. A
natural question isHow well do these designs work?
That is, how well is the true response surface function
modeled by the results of an experimental design?
While this may seem like a simple question, in practice
it is very difficult to answer because the true response
surface function is almost never known. One way
that researchers have tried to compensate for this
problem is to assume a form for the response surface
function and then create experimental designs that
will optimally fit a function with that form. Many
different criteria (usually involving minimization of
the variance of some estimators) have been proposed
for design optimization [2].

Optimal experimental design is difficult to apply
when the form of the response surface is unknown
or when the criteria of interest depend on the true
response surface function. The concept of optimal
design also encounters difficulty when, instead of
a single experimental design, a design strategy
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composed of several stages of experimentation is
used, as in traditional RSM (see Box and Wilson
[3]). We are interested in using a simulation to
determine how an experimental design or a design
strategy performs when presented with different types
of response surface functions. To this end, we have
developed a test bed that will randomly generate
polynomial functions to represent response surfaces in
a simulation study. The characteristics of the surface
functions created by the test bed are controllable,
allowing researchers to specify the types of surface
functions on which design strategies will be tested.
When an experimental design is applied to a response
surface created by the test bed, random errors from
a user-specified error distribution are added to the
response to simulate observations with noise. In
a simulation study, this allows us to compare the
fitted surface from an experimental design with
the true response surface function to determine the
performance of that design.

An important contribution of this research is the
ability to control the types of surface functions created
by a simulation. Our methods do not precisely control
the surface functions, but instead probabilistically
control aspects such as the response range and the
maximum number of stationary points. Through this
control, we are able to create a wide variety of
surface types for testing experimental designs. The
test bed can then be used to determine how well a
particular experimental design performs on specific
functional forms or to obtain performance results
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that demonstrate the experimental design’s robustness
across a wide variety of response surface functions.

Work similar to ours was carried out by Smith [4,5],
who studied optimization techniques in a simulation
environment using empirical studies, and Barton [6],
who compared several minimization algorithms on a
set of test problems in the presence of random noise.

The work of Hamada and Wu [7] also gives
some insight on the expected form of response
surface functions. They examined Plackett–Burman
designs to obtain information on interactions from
initial screening designs, and base their work on
the principles ofeffect sparsityand effect heredity.
Effect sparsity refers to the conjecture that only a
few of the many proposed factors are very important
in determining the outcome of an experiment. Effect
heredity refers to the relationship between the main
effects and any two-factor interactions. Hamada and
Wu [7] assumed that if a two-factor interaction is
significant, then at least one of the main effects
involved in the interaction is also significant. They
go on to introduce ways to obtain information on
such interactions from screening designs, including
using several real-life examples that back up these
principles. Subsequently, Chipmanet al [8] extended
this idea to higher-order interactions.

The next section presents a discussion of the
surface characteristics that the user can control when
using the test bed. Section3 contains a detailed
description of our methodology, and Section4
provides some examples of how the user input affects
the characteristics of the simulated surfaces.

2. SURFACE CHARACTERISTICS AND
CONTROL

One of the main issues addressed in this paper is
how to create a randomly generated response surface
function and still maintain some control over the
characteristics of the surface. We have chosen to
restrict the test bed to polynomial functions because
polynomials can be used to represent a wide variety
of surfaces. Also, since polynomial models are most
often used to model response surfaces, it follows that
many practitioners believe that polynomial functions
capture the most significant features of the true
response surfaces in their applications. We create the
polynomial surface functions in two steps. The first
step creates the form of the function; that is, all terms
that are in the polynomial are selected. The result is
a polynomial function where all non-zero terms are
defined, but the coefficients are symbols, not numbers.
This function is what we call thesurface form. The

second step assigns numerical values to the symbolic
coefficients. Once the numerical values are assigned
to the coefficients, a response surface is completely
defined and we will continue to call this theresponse
surface function.

When using the test bed to create random response
surface functions, the user is given partial control of
the six following key surface characteristics:

(1) effect sparcity;
(2) bumpiness;
(3) response range;
(4) flatness;
(5) effect heredity;
(6) random error.

Each of these characteristics is now described in the
context of the test bed.

The first characteristic to be controlled is effect
sparcity. In the test bed, effect sparcity is the
proportion of the factors under consideration that are
active. An active factor is defined as a factor that
appears in at least one term of the response surface
function.

Another important characteristic to control is the
bumpinessof the surface. We use the termbumpiness
loosely to refer to the prevalence of maximum,
minimum, and inflection points on the surface. We
feel that neither uni-modal surface functions nor multi-
dimensional cosine functions have stationary points
that are placed randomly enough to reflect real-world
surfaces. However, some control on the maximum
number of stationary points is necessary.

A third feature of the surfaces that we want to
control is the range of the response. To accomplish this
we first define theregion of operabilityas the range of
factor values over which we will define values of the
response. Restricting the region of operability gives us
the opportunity to control the range of the response
over a finite set. Even with this restriction, controlling
the range of the response values is a difficult problem,
especially when the polynomial function has many
higher-order terms. Our methods allow the user to
specify a target range for the response, denotedRy .
We do not guarantee that the response will remain in
Ry over the region of operability, but instead ensure
that most of the surface is in the target range.

We next define a concept calledflatness, which is
the extent to which local deviations in the surface are
small with respect to the target response range,Ry , in
the region of operability. For the test bed, flatness is a
number, denotedr, that is specified by the user. Asr
is increased, the height of the local maxima and depth
of the local minima on the surface are both decreased.
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Effect heredityis the relationship between higher
and lower order effects. If we think of a two-factor
interaction as the effect that changing the level of
one factor has on the main effect of another factor,
then it seems unlikely that an interaction term will
appear when both main effect terms are null. The
test bed provides the opportunity to explore the
potential impact that this assumption may have on
various design and analysis strategies. Control of
effect heredity is carried out through user-specified
conditional probabilities.

The last characteristic that we are interested in
controlling is the random error of the observed
response. When experiments are run on physical
systems, the observations of the response are subject to
error. We want to include an error distribution with the
surface functions that we create in order to make the
surfaces more realistic and to help determine which
experimental designs or design strategies perform the
best in the presence of noise. However, it is important
that this error distribution be controllable relative to
the underlying surface. Thus, the error distribution is
directly specified by the user and it is up to the user to
set this distribution in proper relationship to the target
response range,Ry .

3. DESCRIPTION OF THE TEST BED
METHODOLOGY

The test bed consists of a computer program that
produces a ‘true’ response surface function whose
characteristics are probabilistically controlled by user
inputs. The following notation is introduced to
describe the test bed.

Let xi = (xi,1, xi,2, . . . , xi,k)
′ represent a vector

of values for thek independent variables in a single
run of an experiment and let the(n × k) matrix X
represent an experiment withn runs, where theith
row ofX corresponds toX′

i . Without loss of generality,
we assume that all variables are continuous. Lete =
(e1, e2, . . . , en)

′ be a vector of error terms with joint
density functionfe(·|ξ), where the vectorξ represents
the parameters of the distribution. Now lety =
(y1, y2, . . . , yn)

′ be a vector of values of the response
of interest whereyi is the response corresponding
to the values of the independent variables in vector
xi . Then we define the true response surface at any
point xi to be g(xi ). The functiong(xi ) is defined
over the regionC in Rk, whereC is the region of
operability. The functiong(xi ) is a full polynomial
function in all k factors which includes all terms up
to orderd (d = 6 in the test bed). The coefficients of
g, represented by thew-length vector of parametersγ

in Rw, are determined by user input, wherew can be
calculated as

w =
d∑

i=2

(
k

i

)
+ kd

The functiong(xi ) is then written asg(xi , γ ). The
response is determined by

yi = g(xi , γ ) + ei

whereei is theith element ofe ∼ fe(·|ξ).
Figure1 is a block diagram of the test bed, which

shows how user input and random number generation
is combined to produce a vector,y, of observed values
for an experimental design,X.

Using the notation above, we now describe in detail
how the user input and random number streams are
used to create a response surface function with the
desired effect sparcity, effect heredity, response range,
bumpiness, flatness, and error distribution. Sinceg is
always a full sixth-order polynomial ink factors, the
only control that the user has over the response surface
function is through the assignment of the parameter
values inγ . As discussed previously, these values are
assigned in two steps. The first step is the surface form
selection, which determines the coefficients inγ that
will be assigned a value of zero, effectively removing
certain terms from the response surface function. The
result of this step is the surface form, which is a
polynomial function with symbolic coefficients on
each non-zero term. The second step is the response
surface generation, which assigns real numbers to the
non-zero coefficients in the surface form. The result of
this step is the response surface function, which is a
specific instance of the surface form.

3.1. Surface form selection

Figure2 shows the five sub-steps (in the numbered
boxes) of surface form selection. In sub-step 1 of
Figure 2, the user begins characterizing a surface
form by stating the number of factors,k, that are of
interest and the region of operability of each factor.
The maximum number of factors in the test bed is 15,
which is also the default number of factors.

Let l = (l1, l2, . . . , lk) be a vector whose elements
represent the lower bounds on the region of operability
for each of thek factors, with a default value of
l = (0, 0, . . . , 0). Also, letu = (u1, u2, . . . , uk) be a
vector whose elements represent the upper bounds on
the region of operability with a default value ofu =
(100, 100, . . . , 100). Then the region of operability is
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Figure 1. The basic structure and construction of the response surface simulator

Figure 2. Flowchart of the process of converting user input into a surface form
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defined as

C = {x = (x1, x2, . . . , xk) | l1 ≤ x1 ≤ u1,

l2 ≤ x2 ≤ u2, . . . , lk ≤ xk ≤ uk}
Now let ly be the target lower bound on the response
range anduy be the target upper bound on the response
range. ThenRy = {y | ly ≤ y ≤ uy} is the
target response range. This range will be used to scale
the response surface such that a substantial portion of
g(xi , γ ) is within Ry in the region of operability. The
default for the response range is[0, 100].

As an example, assume thatk = 3. Then after
sub-step 1,g(xi , γ ) would have 84 terms and can be
written as

y = γ0 + γ
(1)
1 x1 + γ

(1)
2 x2 + γ

(1)
3 x3

+ γ12x1x2 + · · · + γ
(2)
1 x2

1 + · · · + γ
(6)
3 x6

3

whereγ
(i)
j refers to coefficient of theith order main

effect term for factorj andγijk is the coefficient for
the interaction between factorsi, j , and k. In the
test bed’s current implementation, interaction terms
are limited to second and third order. The main effect
terms up through to sixth order are retained at this
stage.

In sub-step 2, the user provides inputs to control
the number of thek available factors that are active.
A potentially active factoris defined as a factor
that has a non-zero probability of appearing in the
surface form in sub-steps 4 and 5 of the surface form
selection procedure (see below). If, during sub-steps
4 and 5, a term containing one of the potentially
active factors is selected to have a non-zero value,
that factor will appear in the response surface function
and thus becomes an active factor. Factors not chosen
to be potentially active cannot appear in the response
surface function and thus areinactive factors.

The number of potentially active factors,f , is
randomly determined. The user, however, provides a
range of integer values and a probability for each
of these integers to becomef . The default for the
range of integers is{1, 2, . . . , k} and, by default, the
distribution is discrete uniform, where any integer in
the range is equally likely to becomef . The range
of integers may be changed to any range of integers
between 1 andk. Oncef is chosen, the active factors
are picked randomly from the set of all factors such
that each of thek factors has an equal chance to
become a potentially active factor, as shown in sub-
step 3 of Figure2. If, for example,k = 3, f = 2, and
the first two factors were chosen to be in the model,

the surface form after sub-step 3 would be

y = γ0 + γ
(1)
1 x1 + γ

(1)
2 x2 + γ12x1x2 + γ

(2)
1 x2

1

+ γ
(2)
2 x2

2 + γ112x
2
1x2 + γ122x1x

2
2 + γ

(3)
1 x3

1

+ γ
(3)
2 x3

2 + γ
(4)
1 x4

1 + γ
(4)
2 x4

2 + γ
(5)
1 x5

1 + γ
(5)
2 x5

2

+ γ
(6)
1 x6

1 + γ
(6)
2 x6

2

Next, as shown in sub-step 4 of Figure2, the test
bed determines which of the main effect terms in the
surface form will have a value of zero and which will
have a non-zero value. A surface form may contain any
main effect term up to sixth order, and the user must
provide a set of probabilities that help to determine
the non-zero terms. Effect heredity and the number
of possible stationary points in the surface form are
affected by this stage of the surface form selection
procedure.

To specify the main effects that are to appear in the
surface form, the user first supplies the probability,
s1,1, that a potentially active factor will have a first-
order (linear) term. Notice that this implies that a
factor does not have to have a first-order main effect
to be considered active. For terms of higher (second
to sixth) order, the user must supply two conditional
probabilities. The first is the conditional probability
that a higher-order term, such asx4

2, follows a main
effect term in the same active factor of one order lower,
like x3

2. Such terms are known asfollowers because
they follow from the previous terms in the model. We
will denote these probabilitiessi,1 for i = 2, 3, . . . , 6.
More formally,

si,1 = Pr(γ (i)
j 6= 0 | γ

(i−1)
j 6= 0)

for 1 ≤ j ≤ f and 2≤ i ≤ 6

For convenience of notation, we have reordered the
factors such that the firstf factors are the potentially
active factors.

The second probability is the conditional proba-
bility that a higher-order term of a potentially active
factor appears when that factor does not have a term
of one order lower. These probabilities are denoted
si,2 for i = 2, 3, . . . , 6. Such terms are known asnon-
followers. We define these probabilities as

si,2 = Pr(γ (i)
j 6= 0 | γ

(i−1)
j = 0)

for 1 ≤ j ≤ f and 2≤ i ≤ 6

The default value of the first conditional probability
is one, and the default for the second conditional
probability is zero, giving a full sixth-order model
in the main effect terms, but each of these may
be changed to any value on the range[0, 1].
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These conditional probabilities are split to give
users the flexibility to control how strongly effect
heredity applies to the surface form. The conditional
probabilities are placed in a(6 × 2) matrix S, with
elementssi,j , wheres1,2 = 0 and all other elements
are defined as above. In the example input shown in
Figure2, the matrixS is

S =




0.90(1.00) 0.00(0.00)
0.75(1.00) 0.50(0.00)
0.75(1.00) 0.50(0.00)
0.75(1.00) 0.50(0.00)
0.75(1.00) 0.50(0.00)
0.75(1.00) 0.50(0.00)




where the values in parentheses in the figure are the
default values for each of the elements. Returning to
our example, if thisSmatrix were applied, the surface
form after sub-step 4 may be

y = γ0 + γ
(1)
1 x1 + γ

(1)
2 x2 + γ12x1x2 + γ112x

2
1x2

+ γ122x1x
2
2 + γ

(2)
2 x2

2 + γ
(3)
1 x3

1 + γ
(3)
2 x3

2

+ γ
(4)
1 x4

1 + γ
(4)
2 x4

2 + γ
(5)
2 x5

2 + γ
(6)
2 x6

2

reflecting that many of the higher-order terms were
randomly chosen to have a non-zero value. Some,
however, were eliminated from the surface form by
setting their coefficient equal to zero.

After the main effect terms are selected, the test bed
selects the interaction terms in the surface form, as
shown in sub-step 5 of Figure2. Since we currently
limit interactions in the test bed to order three, all
coefficients for interactions above order three are set
to zero. The first probability for the second-order
interactions is the conditional probability that a higher-
order term follows from a first-order main effect that
has already been selected to appear in the model.
Following in this context means that a second-order
interaction can be formed by multiplying any single
potentially active factor by a main effect that is already
in the model. The other probability for the second-
order interactions is the conditional probability that
a second-order term appears that is made up of two
potentially active factors that do not have main effect
terms in the model. These terms are known as non-
followers. These probabilities are designatedt1,1 and
t1,2 and are defined as

t1,1 = Pr(γij 6= 0 | γ
(1)
i 6= 0 ∪ γ

(1)
j 6= 0)

for 1 ≤ i < j ≤ f

and

t1,2 = Pr(γij 6= 0 | γ
(1)
i = 0 ∩ γ

(1)
j = 0)

for 1 ≤ i < j ≤ f

Similarly, the first conditional probability specified
by the user for the third-order interactions is the
conditional probability that an interaction appears
that contains a second-order term that is present in
the surface form. It is important to remember that
these third-order interaction terms can follow from
either second-order interaction terms or second-order
main effect terms in the surface form. The other
conditional probability for third-order interactions is
the conditional probability that an interaction appears
that does not contain a second-order term that is
present in the model. These non-following third-order
interactions may contain active factors that have first-
order main effects, but no factor combinations that are
found in any second-order terms in the model. These
two conditional probabilities are designatedt2,1 and
t2,2 and are defined as

t2,1 = Pr(γijk 6= 0 | γij 6= 0 ∪ γik 6= 0 ∪ γjk 6= 0)

wherei ≤ j ≤ k andi 6= k

and

t2,2 = Pr(γijk 6= 0 | γij = 0 ∩ γik = 0 ∩ γjk = 0)

wherei ≤ j ≤ k andi 6= k

In the above definitions, assume that ifi = j , then
γij = γ

(2)
i .

Once again, the default values for the first
conditional probability is one for each order, and
the default for the second conditional probability is
zero for each order, but these can be changed to any
valid probability. These conditional probabilities form
a(2×2) matrixT, with elementsti,j as defined above.
In the example input shown in Figure2, the matrixT
takes on the value

T =
[
0.40(1.00) 0.10(0.00)
0.15(1.00) 0.50(0.00)

]

where the values in parentheses in the figure are the
default values for each of the elements. After thisT
matrix is applied to our example, the final version of
the surface form may look like

y = γ0 + γ
(1)
1 x1 + γ

(1)
2 x2 + γ

(2)
2 x2

2 + γ
(3)
1 x3

1

+ γ
(3)
2 x3

2 + γ
(4)
1 x4

1 + γ
(4)
2 x4

2 + γ
(5)
2 x5

2 + γ
(6)
2 x6

2
(1)

demonstrating that the second-order interaction term
had a 60% chance of having its coefficient set equal
to zero, on the condition that it would follow the main
effect terms ofx1 andx2.

The surface form is now fully defined and will
be denotedg∗(xi , γ

∗) to indicate that all terms that
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have been assigned coefficients of zero in the model
selection procedure have been removed from the
function and the parameter vector. Consequently,γ ∗
is a much smaller vector thanγ .

3.2. Response surface function generation

The creation of the surface form addresses the effect
sparcity, the effect heredity, and the bumpiness desired
by the user. However, the range of the response and
the flatness of the surface will be primarily affected by
the generation of the response surface function. This
is the function that results when values are assigned to
the coefficients,γ ∗ in the surface form.

We have chosen a regression technique for
assigning values to the coefficients,γ ∗, in the surface
forms. The method, roughly stated, chooses many
points at random in and around the region of
operability. Each of these points is randomly assigned
a response value in the user-specified range. The
surface form,g∗(xi , γ

∗), is then fitted to these points
using a least-squares fit forγ ∗. Since the response
values are contained in the user-specified region, the
fitted surface is also approximately contained in the
region.

The method begins by defining thesurface creation
regionas a region larger than the region of operability
by 30% in each direction for each potentially active
factor. Letv′ = (v1, v2, . . . , vf ) wherevi = (ui −
li)

∗0.30 for 1 ≤ i ≤ f . The surface creation region
then would be

D = {x = (x1, x2, . . . , xf ) | (l1 − v1)

≤ x1 ≤ (u1 + v1), (l2 − v2) ≤ x2 ≤ (u2 + v2),

. . . , (lf − vf ) ≤ xf ≤ (uf + vf )}
Thus, if the default region of operability for a

variable,[0, 100], is used, the surface creation region
is [−30, 130]. The surface creation region is larger
than the region of operability to reduce the effect
of steep slopes in the surface near the edges of the
region of operability. The region was expanded by
30% in each direction based on our experience with
the edge behavior of fitted polynomial surfaces. A
smaller expansion would increase the risk of steep
slopes near the boundaries and a larger expansion
might require more points (adding computation time
and data storage needs) to adequately cover the surface
creation region.

Once the surface creation region is defined, we
select points at random in this region and assign these
points random response values that are uniformly
distributed in Ry . Recall thatf is the number of

potentially active factors from the model selection
procedure and thus represents the dimension of the
subspace in which the surface resides. Letp be the
number of non-zero terms in the surface form, i.e.
the length of the vectorγ ∗, and letr be the flatness
index chosen by the user (flatness has a default value
of two). To give the surface appropriate flatness in the
space of active factors, the number of random points
for fitting the regression is set atp∗r∗f , where this
term is always rounded up to an integer value.

Notice that there arep∗(r∗f − 1) error degrees of
freedom in the regression, so the value ofr must be
greater than 1/f so that the error degrees of freedom
for the regression is greater than zero. In the context
of fitting a response surface function to a surface
form, this is similar to allowing for an average ofr∗f
degrees of freedom per parameter. While this allows
us to relate the number of points in the regression
to the number of parameters estimated, determining
how the points are spaced over the surface creation
region requires a different point of view. In a sense, we
can describe how densely the surface creation region
is populated by sample points by considering the
distance between any point and its nearest neighbor.
Since all points are chosen randomly and uniformly,
this distance increases as the dimension of the factor
space increases [9]. So, the nearest-neighbor distance
is approximately proportional tor∗p, allowing control
of the density of the points in the factor space by
changingr.

The random points chosen are stored in a matrix
Xr with dimension (p∗r∗f ) × (f ). Let the ith
row of Xr be a row vector,x′

ri, selected randomly
from a multivariate uniform distribution spanning the
surface creation region,D. Since each row is anf -
length row vector and there arep∗r∗f rows, then
(p∗r∗f 2) random numbers are generated to createXr .
In addition, a vector of responsesyr of lengthp∗r∗f
is created where each elementyri is chosen randomly
and uniformly fromRy .

Let h(xi ) be a vector-valued function such that
g∗(xi , γ

∗) = h′(xi )γ
∗. For example, if we were

fitting a response surface function to the surface
form represented in equation (1), h(xi ) would be a
transformation such that:

h′(x1, x2) = (1, x1, x2, x
2
2, x3

1, x3
2, x4

1, x4
2, x5

2, x6
2)

To assign values to thep elements ofγ ∗, we create
a ((p∗r∗f ) × (p)) matrix, H, such that theith
row of H is a p-length vectorh′(xri). The fitted
coefficients for the response surface function are then
γ ∗

r = (H′H)−1H′yr The response surface function
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Table 1. Levels of the treatments used in the bumpiness experiment

Levels

Treatment 0 1 2 3 4 5 6

Smatrix (S) Just All linear, All linear, All linear, Low Medium All
linear some all quadratic some probability probability up to

quadratic quadratic of all up to of all up to sixth
or cubic sixth order sixth order order

T matrix (T) None All two-factor N/A N/A N/A N/A N/A
and three-factor

interactions

N/A = not applicable.

is g∗(xi , γ
∗
r ) = h′(xi )γ

∗
r . Clearly many different

response surface functions can be generated from the
same surface form by choosing a new set of points to
create a newH andyr , just as many surface forms can
be created from the sameS andT matrices.

Once the response surface function is defined,
responses can be observed with or without adding an
error term. The error term distribution is completely
determined by user inputs. Typical examples may be
normal or uniform. The default form of the error
distribution is N(0, 1) and the user has the option
to change the mean or variance or to make the
error model a different distribution. Other options
for controlling the error distribution may be pursued
in future research. S-Plusr (see [10]) code of the
implementation of this test bed may be found at
http://www.iems.nwu.edu/ bea/testbed.

4. EXAMPLES AND DISCUSSION

In this section, we provide some examples of the use of
the input controls to change the characteristics of the
surfaces. TheS andT matrices control the bumpiness
under the conjecture that increasing the number
of higher-order terms in the underlying surfaces
created will increase the bumpiness of these surfaces.
We created surfaces by systematically varying these
matrices to increase the number of higher-order terms.
Seven differentS matrices were used, ranging from
one that only allowed linear terms in the model to one
that included all higher-order terms up to sixth-order
in the model. Two differentT matrices were used; one
allowed no interactions and the other included all two-
and three-factor interactions. If we think of these as
two treatments with the levels shown in Table1, all
combinations of levels of the two treatments were used
and thus 14 types of surfaces were created.

To demonstrate how theS and T matrices affect
the bumpiness of the surface, a sample of each of

the 14 surfaces was selected and a three-dimensional
surface plot was drawn for one pair of factors per
surface. To allow for plotting, all other factors are
held constant at the center point values (50) and
the response surface is shown over the region of
operability of the selected factors. These surfaces are
shown in Figure3 without any error component so that
the variations in the true response surface functions
can be seen.

In Figure3, the first column shows the surfaces for
each level of theS-matrix factor with theT-matrix
factor set at its low level (no interactions). The surface
at the lowest level of theS-matrix factor is simply a
plane cutting through space, so there is no bumpiness,
while the surface at the highest level of this factor
was very bumpy with local minima and maxima. The
second column in Figure3 shows surfaces for each
level of theS-matrix factor at the high level of theT-
matrix factor (all two- and three-factor interactions).
Although the difference is subtle, the two columns do
demonstrate how adding interactions to the surfaces
changes them. In the second column, surfaces twist as
interaction effects become important.

In similar ways, the other test bed controls can be
shown to produce surfaces that have characteristics
that conform to the users desires (see [11]). This is an
important capability, because the test bed’s intended
use is to compare the effectiveness of experimental
design strategies through simulation studies. The
strategies often rely on assumptions on the underlying
nature of the surfaces, such as the presence of strong
linear effects, local minimum and maximum points,
and sparse interactions. Creating surface functions that
to varying degrees reflect or violate these assumptions
allows the user to determine how effective the strategy
is when the assumptions hold and how robust the
strategies are when they do not.

In McDaniel and Ankenman’s paper [12], the test
bed described in this paper is used to study a problem
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Figure 3. Comparison of the surface bumpiness for the different
levels of theSmatrix and theT matrix

we call thesmall factor changeproblem. This is a
problem that is often encountered when the response
of interest must be changed by a certain amount,
but because of other considerations the change in
the factor settings must be minimized. The question
that we are interested in isWhat is an appropriate
experimental design strategy to use when faced with
this problem?A large scale simulation was run which
included seven different design strategies and 1225
different response surface functions created by the
test bed. A version of the traditional response surface
methodology was shown to be the best performer for
solving the small factor change problem.
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