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COMPUTER MODELS OF A PROD-
UCT OR PROCESS THAT IS BEING
DEVELOPED CAN FACILITATE EF-

FORTS TO REDUCE DEVELOP-
MENT TIME AND COST.
HOWEVER, THE USE OF COM-
PUTER SIMULATION MODELS IS
OFTEN LIMITED TO AD HOC, ONE-
FACTOR-AT-A-TIME EXPLORA-
TION RATHER THAN SYSTEMATIC
OPTIMIZATION. IN THIS ARTICLE,
THE AUTHORS USE A COMPRES-
SION MOLDING PROCESS MODEL
TO DEMONSTRATE A SEQUEN-
TIAL STRATEGY BASED ON RE-
SPONSE SURFACE METHODOLOGY
THAT CAN BE USED FOR OPTI~
MIZING COMPLEX COMPUTER

MODELS.

uring the past decade, spectacular improve-

ment in computer technology has fundamen-

tally changed the way engineers work.
Today, computer simulation of physical processes has
become a standard tool of many design and manufac-
turing engineers. Powerful computer-aided design
(CAD) tools, finite element analysis (FEA) programs,
spreadsheets, and high-level deterministic and sto-
chastic simulation packages make possible computa-
tions and detailed analyses of engineering problems
not dreamed of just a few years ago. The earlier these
tools are put to use in the product development cycle,
the more impact they will have. Ideally, they will be
used during the initial product and process design.

In the design phase, it is important to be able to
compute or simulate the consequences of a given set
of engineering specifications. However, once it is pos-
sible to evaluate the consequences of the specifica-
tions, the next questi!on is, ““What happens if we
change the specificaﬁons?” In other words, how sen-
sitive (or rugged or robust) is the design to changes in
the specifications and, taking this one step further,

what is the predicted optimum design? It is this
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second stage of sensitivity analysis and optimization of

complex computer models, often called computer exper-
imentation, that we discuss in this article.

Most engineers conduct computer experiments
using a “one-factor-at-a-time’” approach, changing
each factor in turn while leaving all others constant.
This approach is highly inefficient, not very systematic,
and may not lead to an optimum design solution. As an
alternative, it has been suggested that an approximate
prediction function be developed for a complex com-
puter model. This simpler function can then be used to
find the best design [1]. However, for optimization it is
not necessary to find a prediction function for the entire
range of the computer model. Instead, if the response is
reasonably well behaved, we only need to determine the
local gradient and then iteratively pursue the direction
of maximum benefit.

In this article, we demonstrate an iterative optimi-
zation approach, based on the philosophy and related
statistical techniques of response surface methodology
(RSM) [2, 3], a “hill-climbing” optimization technique
developed and used extensively in physical experimen-
tation [4]. In RSM, the response surface is defined as
the set of all possible response values. RSM typically
starts with the experimenter’s best guess for factor set-
tings and then uses designed experiments to ““climb”
the response surface until a local optimum is reached.
There is no guarantee that this is a global optimtm,
and some other starting point may vield a different
local optimum. However, in many cases the experi-
menter’s best guess for factor conditions is the only rea-
sonable starting point. Thus, unless one is willing to
risk running extraneous experiments finding other local
optima which are likely to be less desirable, the local
optima is accepted as a significant quality improvement
and the experiment is ended. The RSM approach, in the
context of computer experiments, provides engineers
with two important benefits. First, it is a systematic and
efficient way to find a good starting point for proto-
typing. Second, RSM provides valuable information
about how the design factors affect the response in the
region around the computer generated optimum point.

To demonstrate our approach, we apply RSM to a
finite element model of the material flow of a compres-
sion molding process. We first provide a discussion of a
finite element analysis model. Then we show, step-by-
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step, the use of RSM for finding an optimum starting
location for a prototype molding process. After the opti-
mum conditions are reached, we provide an analysis of
the geometry of the response surface near the predicted
optimum. Finally, we discuss the general applicability
of the sequential approach for the optimization of com-
plex computer models. We have chosen a relatively sim-
ple example to demonstrate the concepts. However, the
example illustrates the general idea of optimization of
complex computer models of products and processes.

TECHNICAL BACKGROUND FOR THE EXAMPLE

The auto industry is increasingly using compres-
sion-molded, fiber-reinforced polymer components in
their products. A typical example, which we will use for
our demonstration, is a hood scoop. For the production
of high quality parts, it is important to understand-the
flow pattern of the material during the molding process
because undesirable flow patterns can lead to cracks
and surface blemishes. The automobile hood scoop used
for our example is shown in Figure 1.

Finite element modeling is a computer-intensive
method of approximating a complicated system through
time and space, by breaking it down into a mesh of
small elements and finding approximate solutions to the
governing differential equations for each element. In
our case, the governing equations are the conservation
of mass and momentum, and the parameters being cal-
culated are pressure, velocity, and node filling time. For
our computations, we used CADPRESS, a finite ele-
ment/control volume simulation package [5].

The finite element mesh of the hood scoop used
for the analysis is shown in Figure 2. Because of the
symmetry of the product, it was only necessary to simu-
late half of the mold. The left half-mold represented in
Fig. 2 was approximately 66 centimeters in length and
32 centimeters in width. The charge being used before
our optimization, referred to as the original charge, is
highlighted in the center of Fig. 2. Each element (tri-
angular area in Fig. 2) of the mesh is numbered and
was used for the calculation of the material pressure,
velocity, and fiber orientation as the mold fills. The
time from the beginning of the simulation until the
flow front crosses each node (line vertex in Fig. 2) was
called the filling time of that node, and these times were
recorded by the computer during the simulation.




Fig. 1. The hood scoop.

Figures 3 and 4 display sample graphical output of the
simulation model showing the flow pattern and fiber
orientation, respectively, for the original charge. The
fiber orientation of the final part, shown in Fig. 4, was
represented by figure eight-shaped symbols which are
polar plots of the fiber orientation distribution of each
element. The length of the symbol placed in each ele-
ment shows the extent of fiber orientation, and the
direction of the symbol shows the main angle of orien-
tation in that element. A short symbol indicates random
orientation, and a long symbol represents highly ori-
ented fibers in that element.

OBJECTIVES AND RESPONSES

Experience, as well as theoretical studies, shows
that random (uniform) orientation of the fibers in the
polymer provides more homogeneous strength in the
finished part. Important factors influencing the fiber
orientation in the molded part are charge size, shape,
and placement in the mold. Before the start of the com-
pression molding, the fibers are assumed to be oriented
randomly and uniformly. However, due to the materi-
al’s flow and depending on the type of flow generated,
the fibers have a tendency to become oriented in partic-
ular directions during compression, making the product
susceptible to breakage [6].

Although completely impractical, one way to en-
sure random orientation in the final part is to use a
charge that is identical to the final shape. This, of
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Fig. 2. The finite element mesh and the original charge.
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Fig. 3. Flow of the original charge.

course, 1s not a useful solution since material flow is
required to obtain the shape of the product and to
achieve smooth surface characteristics. To ensure sub-
stantial flow during molding, we imposed the constraint
that the charge area should be no more that 30% of the
mold area.

In addition to the pictorial responses of Figs. 3
and 4 that qualitatively show the mold filling and the
fiber orientation, two numerical responses were devel-
oped to quantify these responses. The first numerical
response indicates the uniformity of the mold filling.
Uniform mold filling is important in order to reduce the
velocity gradients which cause fiber orientation. Ideally,
every point on the flow front should reach the mold
wall at the same time, but in practice the mold wall fill-
ing times will vary. To control filling uniformity, we
therefore developed a numerical response, called fill
time tolerance, which is proportional to the standard
deviation of the filling times of all of the mold wall

Fig. 4. Fiber orientation of the original charge.

nodes. To increase uniformity in mold filling and thus
more random fiber orientation, the fill time tolerance
should be minimized. For the original charge, the
model predicted a fill time tolerance of 1.129 seconds.

A second response was the average fiber orienta-
tion. This response was computed by first finding the
height of the peak in the distribution of fiber directions
in each element. These heights indicate the extent of
fiber orientation in each element and determine the
length of the figure eight-shaped symbols in each ele-
ment in Fig. 4. We then averaged these heights across
all elements to obtain the average fiber orientation. For
the original charge, the average fiber orientation had a
numerical value of 0.849.

EXPERIMENTAL FACTORS AND CONSTRAINTS
A large number of factors could be considered in

the optimization of the compression-molding process.

However, the most relevant factors for the control of the
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actual production are the charge area as a percentage of
the mold area (A), the length-to-width ratio of the
charge (L), and the position of the center of the charge
as measured in centimeters from the bottom of the mold
(P).

To set up and execute the computer experiments,
several assumptions had to be made and a set of con-
straints imposed to limit the size and complexity of the
optimization procedure. Throughout the experimenta-
tion, it was assumed that:

* All runs were made with a vertical mold closing
speed of 1 centimeter/second.

¢ The mold was assumed to be flat and of uniform
thickness.

* The charge volume was equal to the closed mold
volume.

* The charge was of uniform thickness.
* Only one charge was allowed in the mold.

* The temperature of the mold was assumed to be
constant.

® The charge was always rectangular in shape.

These assumptions were considered realistic and with-
out major effect on the practical applicability of the
experimental results.

OVERVIEW OF THE EXPERIMENTAL METHOD
Response surface methodology is a sequential ap-
proach to optimization that proceeds through several
phases. For a systematic overview of RSM see [3]. Here
we only provide a conceptual overview. The first phase
of the optimization process consists of a series of small
experiments, usually two-level factorials like that shown
in Figure 5a. When analyzing a two-level factorial ex-
periment, the main effect of a factor is usually defined
as the average change in the response as the factor is
changed from its low to its high level. Assessing the rel-
ative size of these main effects is typically the first step
in the analysis. If the optimum factor settings are far
from the initial conditions, the response surface is likely
to be steep with relatively less curvature. In such cases,
the main effects of the factors, which are two times the
slope of the response function, are usually relatively
large and provide adequate information to determine
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Fig. 5. A central composite design. (a) Cube portion; (b) center and

star portion; (¢) complete design.

the approximate direction of steepest ascent or descent.
If large numbers of factors are being studied, fractional
factorial designs can be used to reduce the number of
experimental trials required for calculating the main
effects [8].

The factor settings for each experiment are deter-
mined based on the direction of maximum benefit
established in the preceding experiment. When the ex-
periment is run, a new direction is established, and the
cycle continues until a point of diminishing marginal
return is reached. Most practical problems have multi-
ple responses. Thus, we must judge the relative impor-
tance of each response to determine the direction of
maximum benefit.

When near-optimal conditions are reached, there
1s usually relatively more curvature in the response sur-
face. The second order derivatives are therefore likely to
be relatively larger when compared to the first order
terms. When this occurs, it marks the beginning of the
second phase of a RSM study, in which a second order
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polynomial model for the response needs to be esti-
mated. Such models allow for more detailed study of
curvature and possible determination of local optima,
ridges, valleys, or other types of local properties. In
order to estimate a second order model, two-level fac-
torials are augmented with center and star points as
indicated in Fig. 5b. The combined design shown in
Fig. 5¢, called a central composite design, is well suited
for the estimation of second order models.

A key advantage of RSM over large, comprehen-
sive, one-shot experiments, is the sequential nature of
the decision-making. This approach allows the experi-
menter to gain as much knowledge as possible from a
few initial trials before committing additional experi-
mental resources. After each small experiment, the ex-
perimenter can reevaluate the factors, responses, and
even objectives, thus allowing opportunities for creative
thinking, balancing conflicting objectives, and reducing
the number of wasteful trials.

In the compression-molding example to be dis-
cussed below, four experiments were designed and ana-
lyzed. The first three experiments were two-level, three-
factor (2%) factorial designs in which the levels of each
factor in each experiment were set based on the insight
gained from the analysis of the previous experiment.
The fourth and last experiment was a central composite
design built using the 2° (cube) design from the third
experiment augmented by center and star points. As
we started this particular project, the hood scoop was
already in production, with charge location and size
somewhat “optimized” based on experience. Thus, we
used the current charge location and size as a starting
point for our numerical optimization. In other cases, we
may have to use our best judgment to determine a start-
ing location.

THE EXPERIMENTAL PROGRESSION

We will now discuss the actual steps of our com-
puter experiment for the finite element model of the
hood scoop. A critical part of the response surface
methodology approach is the human interaction with
the model during the sequence of experiments. To em-
phasize this aspect, we will provide a detailed descrip-
tion of the experimental progression and the judgments
and decisions that were reached at various stages.

Recall that we were using three factors, the charge

area as a percentage of the mold area (4), the length-
to-width ratio of the charge (L), and the position of the
center of the charge as measured in centimeters from
the bottom of the mold (P). Our starting point was the
original charge, which had an area 16% the size of the
mold area, a length-to-width ratio of 0.827, and a posi-
tion of 20.6 centimeters from the bottom of the mold.
For this starting point, the model predicted a fill time
tolerance of 1.129 seconds and an average fiber orien-
tation response of 0.849. Note that this last index was
only a relative measure of “goodness,” which in itself
does not mean much, but can be compared with results
from previous experiments to check for progress.

As already indicated, the first experiment was a 2°
factorial set up near the original process conditions. At
that stage, it was conjectured that larger charge areas,
larger length-to-width ratios, and higher charge posi-
tions would produce better results. Therefore, the factor
levels for the experiment were chosen in these directions
with respect to the original charge. Figure 6 shows the
relationship of the experimental design points of the
first experiment to the original charge in the three-
dimensional space spanned by x4, 27, and zp, which are

25 A

®  Original charge

——  First factorial experiment

Fig. 6. The first experiment.
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Fig. 7. (a) Cube plot of mold flow and fill time tolerance (Experiment 1); (b) cube plot of fiber orientation plots and average fiber orientation

(Experiment 1).

the axes for the factors 4, L, and P, respectively. Note
that although the original 2° design would usually form
a regular rectangular cuboid, the actual design geome-
try is somewhat distorted. The distortion is caused by
the discrete nature of the finite element mesh. Thus 4,
L, and P cannot be changed completely at will. In most
cases, small deviations from the standard design will
have little effect on the data analysis. However, if these
deviations become large many of the standard graphical
and statistical methods used to analyze two-level facto-
rials become less useful and multiple linear regression
techniques should instead be used.

Graphical methods, like those presented in [9]
were used for the analysis of the first experiment. In
particular, cube plots with both the pictorial and quan-
tified responses on each corner (see Figure 7) helped to
determine the direction of steepest descent for each re-
sponse and a suitable compromise direction for pro-
ceeding to the next experiment. Also, dot plots were
made of the main effects and interaction effects, which
measure the amount that the main effect of a certain
factor changes when a second factor is varied [9]. For

K

example, AP represents the interaction effect which
measures the change in the main effect of A when the P
is changed from low to high. The dot plots, shown in
Figure 8, were used to compare the relative sizes of the
effects. Ideally, such dot plots show a cluster of small,
relatively unimportant effects located near zero and a
few larger, more important effects distributed further
away from zero. Thus, the dot plots help to identify
which factors have a large effect on the quantified
responses.

From the dot plot in Fig. 8a, we decided that L
was the factor which was most important for reducing
the fill time tolerance. Since L had little or no effect on
the other responses, L was increased for the second set
of experiments. In fact it was increased substantially
because it was conjectured that the charge ought to re-
semble the shape of the mold which has a much higher
length-to-width ratio than the original charge.

Figure 8b is the corresponding dot plot of effects
on average fiber orientation. It shows that increasing
factor A had a large negative effect. Therefore, since the
objective was to decrease the fiber orientation to obtain
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Fig. 8. Dot plots of effects (Experiment 1). (a) Fill time tolerance;

(b) Average fiber orientation.

a more random pattern, we decided to increase this fac-
tor in the second experiment. However, the increase was
limited because the charge area was constrained to be
less than 30% of the mold area.

The cube plot in Fig. 7a shows that when the
charge was placed in the upper part of the mold, the
flow front always reached the upper edge of the mold
long before it reached the lower edge of the mold. When
the charge was low in the mold, the converse happened.
This imbalance in the filling of the upper and lower
edges of the mold caused the fill time tolerance to be
large. Thus, it was decided that the range used for vary-
ing P was too large.

The second experiment, also a 23 design, was set
up based on the findings stated above. Its relative posi-
tion to the first experiment in the x4, 2,, and xp space
is indicated in Figure 9. During the second experiment,
the average fiber orientation response was found to be
unstable as it was currently being calculated. In order
to reduce computation time in the first experiment, the
convective derivative from the fiber orientation model
had been dropped and only the last steps of the mold-
filling were included in the fiber orientation calculation.

30
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0.5
is
20
35

® Original Charge
——  First factorial experiment
—— Second factorial experiment

= Third factorial experiment

Fig. 9. The factorial experiments.

This required the experimenter to select the number of
nodes that were considered to be the last to fill based on
the filling pattern computed by the simulation program.
However, during the second experiment, we noticed
that the average fiber orientation was quite sensitive to
the number of nodes chosen by the experimenter. Vary-
ing the number of nodes used was enough to change a
trial from among the best to among the worst runs in
the entire experiment with respect to average fiber ori-
entation. Therefore, since the average fiber orientation
was so sensitive to a relatively arbitrary decision, we
lost confidence in this measure as a reliable optimiza-
tion criterion. We felt that the value of this second
numerical response was not worth the additional calcu-
lation time for adding back the convective derivative.
We therefore discontinued the use of the average fiber
orientation as a response.

Having eliminated the average fiber orientation,
the minimization of the fill time tolerance now became
our key objective. The analysis of the cube plot showed
that in every trial of the second experiment, the flow
front reached the top of the mold long before it reached
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the bottom, thus increasing the f{ill time tolerance. This
indicated that the levels selected for the position, P,
were too high and should be reduced.

The third experiment was set up based on the
analysis from the second experiment. The same levels of
A and L as in the second experiment were used. How-
ever, lower levels of P were chosen because the second
experiment showed that positions near the center of the
mold (zp = 33 centimeters) reduced the fill time toler-
ance. Thus, the two levels of position for the third
experiment were set at 29 and 34 centimeters, respec-
tively. This “centering’ can be seen in Fig. 9, which
shows the spatial location of the third experiment rela-
tive to the first and the second experiments.

The results of the third factorial experiment
showed that we had now significantly improved the fill
time tolerance. Using the original charge, the predicted
fill time tolerance had been 1.129 seconds; the range of
predicted fill time tolerances from the first experiment
was 0.49 to 1.00 seconds, and the raﬁge from the sec-
ond experiment was 0.36 to 1.52. For the third experi-
ment, this range had dropped, and was 0.35 to 0.64
seconds. Also, the dot plot of effects for experiment
three was made and is shown in Figure 10. We see that
several of the interaction effects are of the same magni-
tude or larger than the main effects. Both the drop in
the range of the response and the increased relative
magnitude of the interaction effects indicate that an
optimum might be close and that it would be appropri-
ate to move on to the second phase of experimentation
using second order models.

The objective of the fourth experiment was to
model the response ““fill time tolerance” using a second
order model. The factorial design from the third experi-
ment was augmented with a center point and six star
points to form a central composite design. Figure 11
shows the fourth experiment and the spatial location of
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Fig. 10. Dot plot of effects (Experiment 3). Fill time tolerance.
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Fig. 11. The entire experimental progression.

the entire experimental progression. As in the previous
experiments, it was not possible to choose the factors
entirely at will due to the discrete nature of the finite
element mesh. The design, therefore, is not exactly a
central composite design. In the first three experiments,
this slight distortion of the design was found to have
lictle effect on the analysis. However, with the more
complicated central composite design, the design distor-
tion was more important and the analysis was carried
out using multiple linear regression techniques.

THE NEAR OPTIMUM RESPONSE SURFACE

As mentioned above, fill time tolerance is defined
as a measure proportional to the standard deviation of
the filling times of the boundary nodes. To stabilize the
variance of this response [7], it was therefore suggested
that the fill time tolerance be transformed by taking its
natural logarithm before fitting the second order model.
This transformation would have been appropriate ear-
lier in the experimentation, but was not suggested until
this point in the experimental progression. After this




Table 1. The Design Points and Data from the
Fourth Experiment

Fill Time Tol

FTT)

Trial# =z, xy, zp (seconds) In(FTT)
1 156 129 308 0.357 —-1.030
2 232 1.25 2838 0.409 —-0.895
3 141 206 2838 0.643 —0.442
4 219 1.80 3038 0.370 —0.994
5 156 129 35.0 0.491 -0.711
6 23.2 125 330 0.361 —1.018
7 141 206 33.0 0.495 -0.703
8 21.9 1.80 35.0 0.523 ~0.648
9 18.8 155 33.0 0.362 -1.017

10 11.7 171 31.0 0.465 —0.766
11 273 144 310 0.311 -1.167
12 195 1.03 31.0 0.422 —0.863
13 187 274 33.0 0.596 -0.518
14 18.8 154 289 0.481 -0.733
15 188 154 371 0.693 -0.367

transformation, the data (Table 1) were fit to a second
order model of the form:

3 . 3 3
w=by+ Engi—l- 2 2 byjxx; + &
i=1 i=1j=1
= bo + ble + beL + b;gxp + b12xAxL + b13xA:cp
+ bgng.fI:p + b11xA2 + bgngQ + bggl‘pg + e (1)
where w is the natural log of the fill time tolerance and
is an error term. The model, fitted by standard regres-
sion methods, is:
w=2558 = 0.101zy — 0.138z, — 1.60x, — 0.027z42,,
+0.005z4z, + 0.001z2p — 0.00052,4
+0.227x;% + 0.024z5° + ¢ (2)
In order to interpret this surface, a canonical

analysis was performed. (For details see Appendix 1).
The analysis showed that the surface has a minimum

along two canonical axes and a slight maximum along
the third. Hence, it is a generalized saddle-shaped sur-
face. In practical terms, for any given value of area, A,
there is a setting for L and P which will miimize the
fill time tolerance. Using Eqs. (A10) and (A11) in ‘
Appendix 1, Table 2 shows these optimum settings for

several values of Ay. In the first column, A, the percent

area of the charge can represent the half-charge with

respect to the half-mold or the actual charge with re-

spect to the full mold. The second column shows L,,,,,

the optimum length-to-width ratio given Ay. Since the
length-to-width ratio used is half of the length-to-width

ratio of the actual charge in the full mold, the third

column of Table 2 was added showing the optimum

length-to-width ratio of the charge in the full mold. The

fourth column shows P,,,, the optimum position given
Ag. The last column gives the expected value of the fill
time tolerance at the levels specified for Ay, L,,,, and
P, Note that these equations are only valid within a
small region around the optimal conditions.

In order to get a geometric understanding of the
response surface near its optimum, a three-dimensional
plot of a surface contour of the response was created.
Figure 12 shows the surface contour where fill time tol-
erance is equal to 0.4 seconds. The region inside this
surface is where fill time tolerance is minimized. Thus,
for any given value of x;, = A, the minimum response
will be at the center of the surface contour.

By studying the results summarized in Table 2
and the surface of Fig. 12, the following conclusions

Table 2. The Predicted Optimum and Optimal
Settings for L and P given a Charge Area 4,

EXPECTED
L, Lo, P,, Fill Time Tol.
Ay (1/2MOLD) (FULLMOLD) (CM)  (seconds)
10 0.81 0.41 32.7 0.37
12 0.93 0.46 32.5 0.38
14 1.05 0.52 32.3 0.38
16 1.16 0.58 32.1 0.38
18 1.28 0.64 31.9 0.38
20 1.40 0.70 31.8 0.37
22 151 0.76 31.6 035
24 1.63 0.81 31.4 0.34
26 175 0.87 312 0.32
28 1.86 0.93 31.0 0.30
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Fig. 12. The response surface contour (fill time tolerance = 0.4

seconds).

were reached concerning the behavior of fill time toler-
ance in the region of the third and fourth experiments:

¢ The response surface in Fig. 12 reveals that the
area of minimum fill time tolerance increases as
the charge area increases. This means that for
large charge areas the importance of the shape and
location of the charge is reduced. Thus, if it is
costly to control the shape or location of the
charge in production, a large charge area could be
used and the other factors could be allowed to
vary without significantly affecting the uniformity
of the mold-filling.

¢ The last column of Table 2 shows that the relative
difference in time between the minimum fill time
tolerance of the large charge and that of the small
charge is most likely insignificant. Therefore,
small charge areas can be used without seriously
reducing the uniformity of the mold filling. How-
ever, it will require tighter control of the factors L
and P to obtain the minimum fill time tolerance
with small charge areas.

* Noting that the center of the mold is located at a
position of 33 centimeters, column four of Table 2

shows that the optimum position is close to the
center and does not change much with charge
area. Thus, the charge should be centered regard-
less of size. This is a reasonable and, in retrospect,
an expected result.

e The third column of Table 2 indicates that a 1:2
length-to-width ratio is optimal when a small
charge area is used. However, as the charge area
increases, the optimum charge shape begins to
approach a square to match the mold’s shape.
This result was not obvious and may provide valu-
able insight into the system dynamics of the actual
physical process used for prototype testing.

Note that the simulation does not give any predic-
tion of surface characteristics. Thus, the most useful
way to use the results of the above model optimization
is to choose a charge area which gives the best possible
surface characteristics. Then given the charge area, we

~ recommend using the corresponding length-to-width

ratio given in Table 2 and placing the charge in the
center of the mold. Thus, a starting point for physical
prototype testing has been located and the analysis has
provided some general understanding of the system to
aid in that testing.

CONCLUSION

Creating a computer model is an important first
step for designing quality into a product or process.
However the next logical step is to optimize that model.
Here engineers may, for lack of a better method, resort
to a “try this-try that” one-factor-at-a-time approach.
In this article, we have discussed an alternative method
for computer experimentation and model optimization
based on iterative learning which we, through several
practical applications, have found valuable. Used se-
quentially, RSM can save time and more often leads to
optimal solutions and better understanding.

It may be suggested that our approach be devel-
oped into a fully automated algorithm, which would
eliminate the human interaction at each step of the ex-
periment. However, we are hesitant to promote such an
approach. The human interaction and application of
common sense judgment at each step is important be-
cause sometimes new aspects of the model’s behavior is
learned which may change our objectives or give us new
ideas. It was for this reason that we included details of
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the experimental progression including the elimination
of a response and our realization, only at the last step of
experimentation, that the log transformation would be
appropriate for our remaining response. We have found
that the experimenter can balance the objectives and
constructively interface with the computer model and,
thus, reduce the risk of inappropriate solutions.
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APPENDIX 1
The data of Table 1 were fit to a second order
model of the form:

w=by+b'x+x'Bx+e¢ (A1)

where w is the natural log of the fill time tolerance, ¢ is
an error term, X' = (x4, &7, Tp), b’ = (b4, by, b3), and

b 1 1
S ogbe 5b
B= %‘bl?, bos %bgg
1 2
5013 5bas b

A second order response surface model like the
one shown in (A1) can be difficult to interpret. The
geometric shape of the surface is not readily apparent
from the coefficients in the model. By reexpressing the-
model in canonical form, which corresponds to relocat-
ing the coordinate system at the stationary point of the
fitted response surface and appropriately rotating the
axes, the interpretation is greatly simplified {3, 10]. In
the canonical form, the response surface model is ex-
pressed in pure quadratic terms in an equation of the
form:

w=w,+7' Az + ¢ (AZ)
where z is a new three dimensional axis system, z’ =
(21, 29, z3), W, 1s predicted response at the stationary
point, and A is a 3x3 diagonal matrix. The origin of the
z axis system is the stationary point of (A1) and is given
by:

x, = —1%B b (A3)

The three eigenvalues of B are the diagonal terms of A
and the corresponding eigenvectors of B, m;, m,, and
mg, are formed into a matrix, M, as follows: M = [m,,
my, my]. The x axes system is then rotated and shifted
to form the z axes by the following equation:

z=M(x~x,) (A4)
In the form of (A2), the fitted surface for w is:
= —0.97 + 0.228z7 + 0.024z3 — 0.001z3 (A5)

With the response equation in this form, a few obser-
vations can give a geometric understanding of the re-
sponse surface and its minimum. First, note the signs of
the coefficients. Since the coefficients for z; and z, are
positive, & will be minimum when z; and =z, are zero,
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that is, on the z3-axis. The equation for the predicted
response on the z3-axis is then:

w=—0.97 — 0.001z3 (A6)

Since the sign of the coefficient for z; is negative,
the response on the z3-axis is maximum at z = 0, the
stationary point. We also note that the coefficient of z3
is relatively small. It may be that the amount that the
response changes along the z3-axis is not practically
significant.

The inverse of the M’ matrix is M. Thus, Eq. (A4)

can be rearranged as follows:

x = Mz + x; (A7)
With z, and z, set to zero, (A7) becomes
X = mg3z3 + X,, (A8)

where, for this example,

~0.994 15.0
m; = | —0.058 | andx,=| 1.1].
0.090 32.2

Since =3 is a linear combination of the physical factors,
it is hard to choose a z3 which has intuitive meaning.
Instead, a charge area, Ay, is chosen. Using (A8), the
value of z5 on the z3-axis which has a charge area of A
can be calculated to be:

23 = —1.0064, + 15.13 (A9)

Using (A8) and (A9), the values of L-and P which
would be on the z3-axis at the point where x, = A, and,
thus, an optimum for the given A, can be found. These
values, called L,,, and P,,,, can be calculated using the
equations below:

Lope = 0.0584 + 0.23 (A10)

Pype = —0.0904¢ + 33.57 (A11)
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These equations are used to create Table 2, which
is helpful in the interpretation of the near-optimal
conditions.
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