
100

Screening for Dispersion Effects by Sequential Bifurcation

BRUCE E. ANKENMAN, Northwestern University
RUSSELL C.H. CHENG, University of Southampton
SUSAN M. LEWIS, University of Southampton

The mean of the output of interest obtained from a run of a computer simulation model of a system or process
often depends on many factors; many times however only a few of these factors are important. Sequential
bifurcation is a method that has been considered by several authors for identifying these important factors
using as few runs of the simulation model as possible. In this paper, we propose a new sequential bifurcation
procedure whose steps use a key stopping rule that can be calculated explicitly, something not available in
the best methods previously considered. Moreover we show how this stopping rule can also be easily modified
to efficiently identify those factors that are important in influencing the variability rather than the mean of
the output. In empirical studies, the new method performs better than previously published fully sequential
bifurcation methods in terms of achieving the prescribed Type I error. It also achieves higher power for
detecting moderately large effects using fewer replications than earlier methods. To achieve this control for
midrange effects, the new method sometimes requires more replications than other methods in the case
where there are many very large effects.

Additional Key Words and Phrases: Stopping rules; Controlled sequential bifurcation; Simulation, Multi-
plicative variance model, Fixed width confidence intervals

1. INTRODUCTION
We consider use of the linear statistical model in the exploratory study of system per-
formance when this performance depends on a large number of explanatory factors
but only a few of these factors are likely to have an important effect. The system could
be anything, but recent literature has shown that the linear model can be particularly
helpful in early stage screening for important factors in simulation models of physical
or organizational systems such as manufacturing processes or logistical networks.

We assume performance to be measured as a univariate output response Y , obtained
from runs of a simulation model, and the problem is to identify those factors which
have a substantial effect using as few runs as possible. We shall call this the location
effects problem.

For many systems the direction of influence of each factor is known. For example,
in a manufacturing system, two factors affecting the output rate of the system are
the speed of operation of a machine and the number of machines available. Increasing
these factors can be expected to increase output rate. Thus the direction of influence of
their effects on the output of interest are known.

When the direction of influence of each factor is known, the method of sequential
bifurcation (SB) is a simple but effective way of making simulation runs step by step
in a way that enables elimination of non-influential factors not just one at a time but
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often in large groups simultaneously. The full set of factors is systematically divided
into smaller and smaller subsets, each of which either does not contain any factors
whose effect is important or still contains one or more factors whose effect is important.
In the first case, all the factors in the subset can be eliminated as being unimportant.
In the second case, unless the subset contains only one effect, it is further subdivided.

The original SB method was proposed and studied in Bettonvil and Kleijnen [1997]
for the deterministic case. Cheng [1997] gave a version for the stochastic case. More
general versions for the stochastic case, notably the controlled sequential bifurcation
(CSB) method given by Wan et al. [2006] and an improvement of this called CSB-
X given in Wan et al. [2010] both of which control the power of detecting important
effects at each step and the overall Type I error, all under heterogeneous variance
conditions. In subsequent work, Wan and Ankenman [2007], Shen and Wan [2009],
Sanchez et al. [2009], Shen et al. [2010] incorporate fuller exploratory refinements
such as the inclusion of fractional factorial designs (FFDs). Although such augmented
approaches are more comprehensive and are a useful addition, they arguably lose some
of the essential simplicity of SB which remains attractive for initial exploratory work.

In summary, CSB-X appears to be the most attractive published pure SB method
to date for handling the location effects problem. This paper focuses on the pure SB
approach and makes the following three contributions to the methodology:

(i) We propose an alternative method which we shall call the Anscombe Fully Se-
quential Bifurcation Method (AFSB). This works in a similar way to CSB-X in that
both methods use a sequential stopping rule to decide how many additional simulation
runs to add at each step of the algorithm. The main difference is that the rule used in
AFSB is based on a result by Anscombe [1953], which is explicit and so is more eas-
ily calculated than the one used in CSB-X which requires the simultaneous solution
of a pair of double-integral equations. Anscombe’s result is an asymptotic one which
is however second order accurate compared with the well known stopping rule dis-
cussed by Chow and Robbins [1965], which is only first order accurate. Both the Chow
and Robbins’ result and Anscombe’s result can only be directly applied to construct
symmetric confidence intervals (CIs). We include theoretical results showing how the
results of both Chow and Robbins and Anscombe can be extended to non-symmetric
CIs. We believe our results are new, and they underpin our proposed procedures at
least asymptotically.

(ii) We shall call the problem of identifying those factors that are important in influ-
encing, not the mean, but the variability of the output, the dispersion effects problem.
It is easy to modify the AFSB method to handle this problem. Interestingly the result-
ing algorithm takes a more explicit and simpler form than that for the location effects
problem. We again need to know the direction of influence of each factor, only now
on the variability. For instance, in the previously mentioned manufacturing example,
we might be able to assume that an improved output rate will also lead to increased
variability in the output, so that an increase in the speed of operation of a machine, or
in the number of machines, will both lead to an increase in output variability. If the
experimenter is uncomfortable with this assumption, the methods proposed here could
be set in a more general procedure like the one discussed in Shen et al. [2010].

(iii) We shall show that the CSB-X algorithm, as set out in Wan et al. [2010], contains
some redundancy in that the runs specified to be added at each step may not actually
all be required in applying the stopping rule. The power or Type I error properties of
the method are not altered by the removal of this redundancy, which simply concerns
the way additional runs are added, and is independent of the stopping rule used. This
accelerated use of the stopping rule is implemented in the AFSB algorithm.

The “X” in CSB-X refers to the fact that the method incorporates a foldover method
for eliminating bias in the estimation of main effects when interaction effects are
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present. To simplify exposition, we have not included foldover in our formulation of
AFSB, though it could be incorporated in just the same way. In comparisons, to avoid
confusion, we shall refer to CSB-X when implemented without foldover as the CFSB
(short for Controlled Fully Sequential Bifurcation) method.

We should point out here that the statistical model being investigated is a very basic
one involving a linear model with normal errors and only two levels for each indepen-
dent variable. This model however is the one used by previous authors with whose
work we wish to compare the methods presented in this paper. Moreover the meth-
ods that we discuss are intended for and are suited to exploratory work. Once factors
deemed important have been identified, additional work using more complex models
may then be needed. For example if a factor needs to be explored at additional levels,
this could be handled by treating it as multiple factors each having just two levels.

In Section 2 we set out the SB process in detail and introduce the linear model to be
used in the statistical analysis, We also describe the AFSB method as applied to the
location effects problem. In Section 3 we show how the AFSB method can be modified
to tackle the dispersion effects problem.

Some simple examples are given in Section 4 showing the AFSB method provides
reasonable control, for both the location and dispersion effects problem, of the two
types of statistical error and to give readily interpretable results. A realistic example
with 92 factors is also discussed. Some final comments are set out in Section 5.

2. THE SB METHOD
In this section we set out the SB algorithm in detail. The algorithm operates by car-
rying out a step by step partition of the set of all factors into successively smaller
subsets. This process is recursive. At each step a subset of the current partition is
selected at random and examined. The result of the examination determines the im-
portance or otherwise of the factors in the subset as a whole and also how to carry out
the next step of the partition. We begin with a more detailed description of the overall
algorithm.

2.1. SB Algorithm
The algorithm partitions the factors into subsets. The order of factors is fixed through-
out all the steps of the partitioning process. For simplicity a factor will be labeled
by its index position j in the ordered list {j = 1, ..., k}. This order is assumed to be
arbitrary, but as noted by previous authors, if prior information enables the factors
to be labeled in either increasing or decreasing order of importance, the efficiency of
the SB method will be improved. The increased efficiency comes when small effects
are grouped together in the subsets. In numerical investigations not shown in detail
in this paper, we found that when factors are put in decreasing order, the number of
design points and observations can be reduced by 20-30%. Since proper ordering re-
quires prior knowledge of the effect sizes, factors will be put in arbitrary order for the
numerical examples in this paper.

As with all sequential bifurcation methods that involve random error, the order of
the factors and the method of partitioning will affect the specific factors that are de-
clared important or not important. The properties of SB that relate to the probability
of Type I and Type II error hold in general but do not guarantee that the procedure is
invariant to factor order or partitioning strategy.

Each subset formed in the partitioning process is made up of a number of contiguous
factors in the ordered list. We denote the subset of factors j = k0, k0+1, ..., k1 by {k0, k1}
where k0 ≤ k1. At each step of the partitioning process a subset is selected at random,
{k0, k1} say, and examined using a routine E(k0, k1), to be specified later.
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The following specification of the SB algorithm focuses on how the subset partition-
ing is carried out, showing the way E(k0, k1) appears in this process.

SB Algorithm (Partitioning)
Step 0. Let S be the set of subsets into which the k factors are partitioned. Initialize S
to contain the one subset {1, k}.
Step 1. Remove a subset from S and denote it by {k0, k1}. (Thus when this step is
carried out for the first time, {k0 = 1, k1 = k}.) Examine this subset using E(k0, k1),
a routine that includes making additional simulation runs and which returns a value
when it is finished. There are three possible outcomes:

If E(k0, k1) = 0 all the factors j = k0, k0 + 1, ..., k1 are classified as unimportant and
eliminated from all further examination.

If E(k0, k1) = 1 and k0 = k1, then there is only one factor k0, in the subset and this is
classified as important and thus requires no additional testing.

If E(k0, k1) = 1 and k0 < k1, then {k0, k1} is split into two subsets {k0, k′} and {k′ +
1, k1}. Different authors use different rules for setting k′. For example, Kleijnen et al.
[2006] always choose a k′ to make the number of factors in the set {k0, k′} to be equal
to a power of two. We will use k′ = b(k0 +k1)/2c so that the two subsets are of the same
size if k0 + k1 is odd. These two subsets are then placed into the set of subsets, S.
Step 2. The process is repeated from Step 1 until there are no subsets left in S.
At the end of the algorithm each factor will have been classified as either important or
unimportant.

Set out in this way it can be seen that the partitioning of subsets is distinct from
the precise form that the routine E(·) takes. We can therefore discuss the routine quite
separately but before doing so we need to describe our assumptions about the form of
the observations obtained from simulation runs in order to understand how the routine
makes additional simulation runs and classifies factors.

2.2. Statistical Model of Simulation Output
The observations used in the routine E(·) are assumed to be of the form

Yi = β0 +

k∑
j=1

βjxij + εi (1)

= β0 + βTxi + εi(xi) i = 1, 2, ..., n (2)

when n simulation runs have been made. Here Yi is the observed response in the ith
run; there are k factors, and xij is the level of factor j in the ith run; β0 is a general
mean; and βj , j = 1, 2, ..., k, are the unknown factor location effects. In the vector form
we have written β = (β1, β2, ..., βk)T and xi = (xi1, xi2, ..., xik)T .

The εi(xi) are observational errors. We assume that they are normally distributed,
N(0, σ2(xi)), and that the standard deviation takes the form

log σ(xi) = γ0 +

k∑
j=1

γjxij = γ0 + γTxi (3)

with γj , j = 1, 2, ..., k unknown factor dispersion effects.
For the location effects problem our key assumption is that we know the direction of

each factor effect. We can therefore, if necessary with a change of sign to xj , assume
with no loss of generality that

βj ≥ 0, j = 1, 2, ..., k. (4)
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Similarly, when considering the dispersion effects problem, our key assumption will
be, if necessary with a change of sign to xj , that

γj ≥ 0, j = 1, 2, ..., k. (5)

To be clear, in this paper we will address the dispersion effect problem and the location
effects problem separately and not attempt to simultaneously identify both location
and dispersion effects with the same set of tests. This allows xj to have a different
sign for location effects testing than it has for dispersion effects testing and thus both
(4) and (5) can hold. Although there might be substantial computational efficiency in
attempting to tackle both of these problems at the same time, we leave this for future
research.

We shall refer to the combination of factor levels used in a given run as a design
point. We assume, without loss of generality, that each factor is applied at one of two
levels scaled to be 0 and +1.

As in most SB procedures in the recent literature, the only design points we use take
the form x(l), 0 ≤ l ≤ k, with components

xj = 1 if 1 ≤ j ≤ l
= 0 if l < j ≤ k

with the understanding that x(0) has all components xj = 0, j = 1, 2, ..., k and x(k)
has all components xj = 1, j = 1, 2, ..., k. It will be convenient to refer to such a design
point as design point l. In Ankenman et al. [2006], design points of other forms are
considered for the case of deterministic responses.

The use of design points of the type x(l) enables a simple estimate of the sum

µ(k0, k1) =

k1∑
j=k0

βj

to be constructed by taking observations in pairs, one at x(k1)

Y (k1) = β0 + βTx(k1) + ε[x(k1)]

= β0 +

k1∑
j=1

βj + ε[x(k1)]

and one at x(k0 − 1)

Y (k0 − 1) = β0 + βTx(k0 − 1) + ε[x(k0 − 1)]

= β0 +

k0−1∑
j=1

βj + ε[x(k0 − 1)].

The difference is

d(k0, k1) = Y (k1)− Y (k0 − 1) =

k1∑
j=k0

βj + ε(k0, k1)

= µ(k0, k1) + ε(k0, k1) (6)

where we have written

ε(k0, k1) = ε[x(k1)]− ε[x(k0 − 1)],
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which is clearly normal as it is a linear combination of normally distributed random
variables. The variance of ε(k0, k1) depends only on k0, k1, and so can be written as
σ2(k0, k1).

Writing di(k0, k1), i = 1, 2, ..., n, for the differences, each of the form in (6), of n pairs
of observations, and their average difference

Dn(k0, k1) = n−1
n∑
i=1

di(k0, k1) = µ(k0, k1) + n−1
n∑
i=1

εi(k0, k1) (7)

estimates µ(k0, k1) with increasing accuracy as n increases. All the terms βj contribut-
ing to µ(k0, k1) are non-negative so that if Dn(k0, k1) is small we can say that none
of the factors k0, k0 + 1, ..., k1 are important. If Dn(k0, k1) is large we can say that at
least one is important, but the important factor can only be identified if k0 = k1. From
(7), Dn(k0, k1) is also normally distributed since its error is an average of independent
normally distributed errors. Its variance is a function of σ2 and is treated as known or
estimated depending on whether σ2 is known or estimated.

We can now describe the routine E(k0, k1).

2.3. The Routine E(k0, k1)

In our proposed method, AFSB, the routine E(k0, k1) applied to a selected subset
{k0, k1} operates by making additional simulation runs at either or both the design
points k0 − 1 and k1. After an additional run is made, a call is made to the function
StopTest(·). This has two parts. First, it uses a stopping rule, to be described later, to
decide whether to stop making additional runs. If the decision is to add a further run,
the StopTest function returns a value of −1.

If no further runs are to be made, the second part of StopTest(·) is applied, which
carries out an (statistical) importance test, also described later, to declare if the sub-
set of factors under consideration is unimportant or (possibly) important, returning
respectively the value 0 or 1. The routine E(·) is exited at this point and the function
E(·) takes on the value of StopTest.

The following formal description of E(·) focuses on how runs are added in E(·), and
where StopTest(·) is applied.

In just this section alone, to avoid having to use sub-subscripts we write L = k0 − 1
and U = k1. Let nL and nU be the number of observations already made at design
points L and U on entry into E(k0, k1). The value m is the minimum number of obser-
vations required at both design points when applying the stop rule to allow a variance
estimate to be calculated. Based on a large numerical study to be described we have
set m = 5 in the numerical examples given later. The precise form of E(k0, k1) is as
follows.

Function E(k0, k1)
[L ≡ k0 − 1, U ≡ k1]
n = 0
E = −1
Do {

Increment n
If(nL < n ≤ nU ){Add a run at L; Increment nL} E(1)
ElseIf(nU < n ≤ nL){Add a run at U ; Increment nU} E(2)
ElseIf(n > nL){Add a run at L and at U ; Increment both nL and nU} E(3)
If(n ≥ m [and nL = nU = n]){E = StopTest(n, k0, k1)} E(4)
}While(E = −1)
Return E
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In the Do loop, n is increased one step at a time from n = 1. Steps E(1), E(2) and E(3)
add observations at whichever design point, L or U , has fewer observations, until the
number of observations at both are equal, after which observations are added to both
levels. This way of adding observations means that, as n is increased, there are always
at least n observations at each of the design points L and U.

Our method, AFSB, is exactly the SB Algorithm of the previous section incorporating
E(·) but excluding the conditions set out in the square brackets of step E(4). StopTest,
which appears in E(4), will therefore be called immediately when n reaches the min-
imum value m, and will then be called for every n ≥ m. Note that it is possible that
nL and nU are already both non-zero when a set {k0, k1} is first examined because pre-
vious examination of adjoining sets have already resulted in observations being made
at L and U . In such cases, not requiring that n = nL = nU means we do not require
n ≥ max(nL, nU ) before the stopping rule is applied. This can be more efficient, as we
can stop with m ≤ n < max(nL, nU ) or even with m ≤ n < min(nL, nU ). In these latter
cases only the first n observations at L and at U are used.

The CFSB method as given in (Wan et al. [2010], Figure 3) adds runs in a similar
way to E(k0, k1), but with a different StopTest, and with a step E(4) that includes the
conditions in square brackets. Thus n has to satisfy n ≥ max(m,nL, nU ) before the
StopTest calculation is called, a less efficient condition than in the AFSB method, as
it sometimes will require an n to be reached that is greater than needed before any
testing starts. Numerical experimentation suggests that a saving of 15% - 25% in com-
putational effort is typically obtained using the more efficient, but equally effective
AFSB condition. Moreover, numerical results fully reported below indicate the satis-
factory practical performance of AFSB with regard to size and power.

We are now in a position to discuss the StopTest function used in the AFSB method.

2.4. Stopping Rules using Fixed Width Confidence Intervals
The first function of StopTest is to decide if further runs are needed in the examination
of the current subset of factors. This uses a modification of a well known approach
to the sequential construction of a CI of given width w and level of confidence. The
stopping rule is simply to stop making additional runs once a preselected CI width is
obtained. For simplicity of notation we suppress the dependence of quantities on k0 and
k1 and writeDn forDn(k0, k1), µ for µ(k0, k1), and so on. Since all the effects are positive
and we are testing for large effects, the upper limit of the CI will be primarily driven
by the specified probability of Type II error, β. This follows because we will only declare
effects unimportant if the upper limit of the CI is below a user specified threshold of
importance. Whereas the lower limit of the CI will be primarily driven by the specified
probability of Type I error, α. This is because we only misidentify an unimportant effect
as important when the lower limit of the CI is greater than a user specified threshold
of unimportance. This dependence structure often leads to an asymmetric CI. (Note
that here we have used β without a subscript to denote the probability of making a
Type II error, as is conventional. This should not be confused with the subscripted βj
used to denote coefficients in the model (1) of the observations.)

Let the CI be of form (Dn −w1, Dn +w2) where w1, w2 > 0. Conditioned on n, we can
obtain such a CI from the probability statement

Pr(zβ ≤
√
n(Dn − µ)/σ ≤ z1−α) = 1− α− β (8)

where
√
n(Dn−µ)/σ is the standardised form of Dn so that it is distributed as a N(0, 1)

variable, and where zβ and z1−α are the β and 1−α quantiles of theN(0, 1) distribution.
We shall assume that

0 < α, β < 1/2 (9)
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so that zβ < 0 and z1−α > 0. The probability statement in (8) can be written as

Pr(Dn − w1 ≤ µ ≤ Dn + w2) = 1− α− β
where we set

w1 = σz1−α/
√
n and w2 = −σzβ/

√
n. (10)

Both are positive under the assumption (9).
If the width of the interval is to be

w = w1 + w2 (11)

we must have

w1 =
z1−α

z1−α − zβ
w and w2 = − zβ

z1−α − zβ
w. (12)

Moreover replacing w1 and w2 in (11) by their expressions in (10) and then squaring
gives

n−1σ2 =
w2

(z1−α − zβ)2
. (13)

The values of α and β are user selected. Thus if σ2 is known, a CI of given width w is
obtained simply by selecting n to satisfy (13). We call this the Known Sigma Stopping
Rule.

As n is integer, rounding may be needed, but conventionally the smallest n is taken
for which the left-hand side of (13) is less than or equal to the right-hand side to ensure
an actual width no greater than w is achieved with least effort. We shall do this with
all the stopping rules we consider.

Consider now the situation where σ2 is not known. The sample variance,

s2n =
1

n− 1

n∑
i=1

(di −Dn)2 (14)

can now be used as a first order approximation for σ2. To obtain a given width w when
σ is known, n must satisfy (13). When σ is not known a simple way to determine n is
to take an initial sample of m observations, with m ≥ 2, then:

Take N as the first n ≥ m for which n−1s2n ≤
w2

(z1−α − zβ)2
. (15)

We shall call this the basic stopping rule. Here N is a random variable. For the case
α = β, Chow and Robbins [1965] show that selecting N in this way is asymptotically
consistent in the sense defined in Lemma 1 below. However Lemma 1 shows that (15)
is also asymptotically consistent when α 6= β.

Lemma 1. Let

Jn = [Dn − w1, Dn + w2] (16)

where w1 and w2 are as defined in (12). Let N be as defined in (15). If 0 < σ2 <∞ then

lim
w→0

Pr(µ ∈ JN ) = 1− α− β (asymptotic consistency).

Proof. This is given in the Online Supplement.

The original Chow and Robbins [1965] result and our extension in the Lemma are of
course just asymptotic ones becoming precise only as w → 0. We offer them partly as
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a reassurance that our methods have some theoretical foundation if only in the limit,
in the same way that other asymptotic results are used in the literature, for example
in evaluating maximum likelihood statistics. However small sample properties of the
distribution of N have been discussed quite thoroughly by Starr [1966b] and Starr
[1966a] and Woodroofe [1977] for the case α = β. In particular Starr [1966b] showed
that use of N gives reasonably accurate coverage, and that it is more efficient than
the well-known two-stage procedure proposed by Stein [1945]. The effect of (15) is to
produce somewhat narrow CIs so that the coverage is less than the nominal value of
(1− 2α). Given the simplicity of (15), its use in SB might be entertained, at least when
this use is exploratory, though some caution needs to be exercised. When (15) is used
as the stopping rule in the routine E(·, ·) of the SB algorithm, we shall call this the
basic fully sequential bifurcation (BFSB) method.

Anscombe [1953] discusses second order accurate versions of (15) which we now con-
sider. The method is not often mentioned but one might expect it to be more accurate
than (15). It is as easy to implement.

Anscombe [1953] discusses only the case α = β. We extend this to where α and β are
not necessarily equal using a stopping rule that is a generalization of that given in his
equation (A2.32); here and with other equations we refer to from Anscombe’s paper we
have added an ’A’ to the equation number to indicate its source.

The stopping rules considered by Anscombe require calculation of the sum of squares
in the formula for the sample variance (14). We follow Anscombe’s method of doing this
by using the d1, d2, ....dn of (7) to construct independent (actually σχ2

1) variates

Ui =
1

i(i+ 1)
{idi+1 −

i∑
j=1

dj}2 i = 1, 2, ..., n− 1, (17)

so that
∑n−1
i=1 Ui =

∑n
i=1(di − Dn)2. Thus, if further observations dn+1, dn+2, ... are

observed, the corresponding Un, Un+1, ...can be added without changing the previous
Ui.

Equation (A2.32), the general form of Anscombe’s stopping rule, is to take an initial
sample of m observations, with m ≥ 2, then:

Take N as the first n ≥ m for which sn−1 =

n−1∑
i=1

Ui ≤ cnB(1− b

n
+O(n−2)) (18)

where b and c are quantities depending on α, β and w, to be determined, and B > 1
is a constant to be selected. The version of (18) given by Anscombe actually uses β
rather than B. In anticipation of the result, we shall set B = 2 in all that follows; this
simplification avoids confusion with our use of β as a probability used in defining the
CI.

Anscombe studies the behavior of the stopping rule (18) in terms of ν where

ν =
σ2

c
+ b− 1. (19)

Here ν has the simple interpretation of being σ2/c, the number of observations needed
to achieve a CI of given width when σ2 is known, to which has been added the con-
stant b − 1. Anscombe shows that under certain assumptions (set out in the Online
Supplement), if

b = 2 + g +
1

2
(z21−α) and c =

w2

4z21−α
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where g is a certain waiting time constant, then the stopping rule (18) gives a symmet-
ric CI, In = [Dn−w/2, Dn+ w/2], of width w. Moreover we have ν = 4z21−α(σ/w)2+b−1,
so that ν →∞ as w → 0. The CI then satisfies

Pr(µ ∈ IN ) = 1− 2α+O(ν−3/2) (20)

so that it is asymptotically second order accurate.
The value of c ensures the interval width is w with a coverage of (1 − 2α) that is

correct to first order, i.e. the error is O(ν−1), whilst the value of b ensures the result is
correct to second order. With only a single parameter b available for this fine tuning,
it is clear that the result (20) is a special case, achievable because a symmetric CI
allows a particular choice of b to yield second order accuracy for both the probability
of µ being above the CI and of being below it. When α 6= β we cannot achieve second
order accuracy for both probabilities individually with a single stopping rule of the
form (18) (though it may be possible to estimate the two probabilities separately using
a single sequential procedure that stops only when both probabilities are obtained
to second order accuracy; but we have not considered this). We can however achieve
second order accuracy for just one of the probabilities, or for a combination of both, as
the following Proposition shows.
Proposition. Suppose Assumptions 1, 2 and 3 given in Anscombe [1953] p.10 hold
(the assumptions are set out in detail in the Proof of the Proposition in the Online
supplement), with p in Assumption 3 set equal to p = 3/2, and with Anscombe’s β,
which we call B, set to B = 2. For the stopping rule (18) let b = 2 + g + (τ/2), where
τ is a function of α and β that we use to generalize Anscombe’s result. Also, let c =
w2/(z1−α − zβ)2 and ν be as defined in (19), that is ν = (z1−α − zβ)2(σ/w)2 + b− 1. Let
α and β be fixed and let τ be a quantity which we can choose and which can depend on
α and β. Let σ/w →∞ so that ν →∞:
(i) If τ = z21−α, then

Pr(DN − µ ≤ w1) = 1− α+O(ν−3/2),

and

Pr(−w2 ≤ DN − µ ≤ w1) = 1− α− β +O(ν−1).

(ii) If τ = z2β , then

Pr(DN − µ ≤ −w2) = β +O(ν−3/2)

and

Pr(−w2 ≤ DN − µ ≤ w1) = 1− α− β +O(ν−1).

(iii) If τ = [z1−αϕ(z1−α)− zβϕ(zβ)]−1[z31−αϕ(z1−α)− z3βϕ(zβ)] = τ0, say, then

Pr(−w2 ≤ DN − µ ≤ w1) = 1− α− β +O(ν−3/2).

(iv) For any other (finite) value of τ , we have

Pr(−w2 ≤ DN − µ ≤ w1) = 1− α− β +O(ν−1).

We have moreover (as σ/w →∞)

E(N) =
(z1−α − zβ)2σ2

w2
+

1 + τ

2
+O(ν−1/2). (21)

Proof. This is given in the Online Supplement.

In AFSB, we use the Proposition with τ = τ0 so that the stopping rule is:
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Take N as the first n (≥ m) for which

{n[n− 2.676− (τ0/2)]}−1
n−1∑
i=1

Ui ≤
w2

(z1−α − zβ)2
. (22)

We can make an immediate comparison of the rule (22) with (15) the lefthand side of
which can be written as n(n − 1)−1

∑n−1
i=1 Ui. Thus, certainly when τ0 is positive, the

lefthand side of (22) is larger than that of (15) by a factor of (n− 1)/[n− 2.676− (τ0/2)]
for all n. This means that a larger value of N is always needed by (22); i.e. though the
CI is of fixed width, (22) always requires µ to be estimated more accurately than (15)
in forming the interval.

The rule (22) requires a CI width of w to be specified. We set w = ∆1 − ∆0, where
(∆0,∆1), with 0 < ∆0 < ∆1, is a user-specified interval. In AFSB, ∆0 is a threshold
of unimportance (i.e. all effects that are less than ∆0 are unimportant) and ∆1 is a
threshold of importance (i.e. all effects greater than ∆1 are critically important and
thus should be identified with high probability). Effects that are between ∆0 and ∆1

are effects that are not negligible, but are small enough that declaring them insignif-
icant would not be highly detrimental. Clearly both ∆0 and ∆1 should be chosen by a
user who is familiar with the system under test and can assess the impact of ignoring
effects that fall between ∆0 and ∆1. The thresholds ∆0 and ∆1 are used in the impor-
tance test that is applied once the stopping rule (22) is satisfied, and we discuss this
next.

2.5. The Importance Test
We turn now to the importance test applied in StopTest once the stopping rule (22) is
satisfied. Once we have stopped adding further runs, we can calculate w1 and w2 as
given in (12) to obtain the upper and lower limits of the CI as

CU = Dn − w(z1−α − zβ)−1zβ (23)

and

CL = Dn − w(z1−α − zβ)−1z1−α, (24)

so that CU − CL = ∆1 −∆0 as required. We must therefore have:
Either CU ≤ ∆1 in which case we set E = 0 and eliminate all the factors k0, k0 +

1, ..., k1 as being unimportant;
Or Else CL ≥ ∆0 in which case we set E = 1 to indicate that some of the factors k0,

k0 + 1, ..., k1, might be important.
The value E is kept at its entry value of E = −1 whilst n is incremented until (22)

is satisfied. Summarizing, StopTest operates as follows:

StopTest(n, k0, k1) =

{ −1 if (22) is not satisfied
0 if (22) is satisfied and CU ≤ ∆1

1 if (22) is satisfied and CL ≥ ∆0

. (25)

This completes the description of the AFSB algorithm, the whole being summarised in
the specifications of (i) the SB Algorithm (Partitioning), (ii) the routine E(k0, k1) and
(iii) StopTest(n, k0, k1). We note five properties of the full process.

(1) At any given step, the process guards against eliminating a factor, j say, when
βj ≥ ∆1. From the form of CU we find that, if j ∈ {k0, k1}, then

Pr(CU ≤ ∆1|βj ≥ ∆1) ≤ β. (26)
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Thus at any step of the process we can be asymptotically (1 − β)100% confident that
βj will not be found unimportant if βj ≥ ∆1. Thus ∆1 is a threshold of importance,
and the importance test ensures there is small probability of elimination of factors if
βj ≥ ∆1. When just one coefficient βj is being considered we see that (26) is just a
statement that the power of the test is (1− β) at βj = ∆1.
(2) Likewise, at any given step, the test protects against any factor j being classified
as important when βj ≤ ∆0. To see this note that we never finally classify a factor as
being important until it is being considered individually (i.e. when the examination
routine is of the form E(j, j)). In this case we find that

Pr(CL ≥ ∆0|βj ≤ ∆0) ≤ α. (27)

Thus at any step of the SB process we can be asymptotically (1−α)100% confident that
βj will not be found important if βj ≤ ∆0. Thus ∆0 is a threshold of unimportance,
with the test ensuring there is small probability of classifying a factor as important
if βj ≤ ∆0. When just one coefficient βj is being considered we see that (27) is just a
statement that the size of the test is α at βj = ∆0.
(3) Any factor found important will automatically have been located to within a CI
of prescribed width w = ∆1 − ∆0. Thus the width determines the accuracy to which
coefficients found important are determined.
(4) If the difference ∆1 −∆0 is small relative to their magnitudes, we are then close to
the limiting case where ∆1 = ∆0 with this common value acting as a dividing point be-
low which a factor is deemed unimportant and above which it is considered important.
A small w does of course result in potentially greatly increased computational effort.
(5) Though not shown in (14) for notational simplicity, the calculation of the sample
variance (14) is specific to the subset {k0, k1} being examined. The AFSB algorithm
thus automatically handles the heterogeneous variance assumed in the model.

2.6. Numerical Properties of the Anscombe Stopping Rule and Test
The accuracy of the stopping rule and importance test relies on the asymptotic ac-
curacy of the Proposition. We have not tried to assess theoretically the magnitude of
the O(ν−r), r = 1/2, 1, 3/2 remainder terms appearing in the expressions given in the
Proposition. Instead we have studied the behavior of the stopping rule and importance
test numerically, estimating the actual size and power of the test as parameters are
varied. Our numerical study is sufficiently detailed to allow us, in the same spirit as
in the work of Singham and Schruben [2012] who discuss how to obtain symmetric
CIs with accurate coverage for the case α = β, to provide specific guidelines on how to
choose w and m in practice so that the target size and power settings of the importance
test are more than met. We note that AFSB is invariant to shifts in the values of ∆0

and ∆1 when w = ∆1 − ∆0 is held constant, so that we need only consider w and not
∆0 and ∆1 separately.

Figure 1 in Singham and Schruben [2012] shows that coverage accuracy improves
as w→ 0, as expected from Lemma 1, with the limit being approached from below. The
figure also shows that if w → ∞ with α = β held constant, or that if α = β → 0 with
w held constant, then the coverage becomes greater than the target value. Our own
numerical study corroborates this behavior.

We report results for three test sizes: α = 0.01, 0.05, 0.1 and for the power levels
(1 − β) = 0.8, 0.9, 0.95. The behavior of (22) depends on w and σ only through the
ratio σ/w. We have therefore, with no loss of generality, set σ = 1 to examine the
numerical behavior of both the rule and the test for w in the range [0.05, 5] and for
m = 3, 5, 7, 10, 20. These values cover the range of values likely to be of practical
use. Of special interest are the values of m as this governs the initial effort needed
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in setting up the sequential analysis. In terms of overall effort needed to carry out a
full SB analysis we would wish to set m as small as possible while ensuring that the
accuracy of the rule is maintained in terms of its size and power. For each combination
of α, β, w and m values we applied the rule to 100, 000 pairs of sequences {di ∼ N(0, 1),
i = 1, 2, ...} and {d′i ∼ N(w, 1), i = 1, 2, ...} recording how many times the final test
declared the result important. The normal distributions of di and d′i correspond to
the case ∆0 = 0 and ∆1 = w. There is no loss of generality in setting ∆0 = 0 as
the test, being translationally invariant, depends only on the difference between ∆0

and ∆1, and not on their absolute values. When the mean of the d′i is equal to w,
the proportion of times the test returned an important result in the {di} and the {d′i}
sequences respectively estimates α, the size of the test, and (1 − β), the power of the
test.

The estimated size and power of the test and the average value of N are plotted as
functions of w in Figure 1 for the nine combinations of (α, (1 − β)) values considered,
for the case m = 5. The cases m = 3, 7, 10, 20 are given in the Online Supplement. In
all these figures we have, for clarity, restricted the range of w plotted to focus on those
observed values of size and power relatively close to their target values.

The results are particularly satisfactory as far as the power is concerned. For all
combinations of (α, β,m) examined experimentally: (i) the observed power was almost
exactly the target value for the smaller values of w, with the observed power increasing
as w increases; (ii) the observed size did take values above the target value but only
in a relative small interval of the w range around w ' 0.5 , thereafter decreasing as w
increased. For the cases α = 0.1/0.05/0.01 the largest observed size over all β and w,
and for all m ≥ 5, was 0.106/0.056/0.014.

However account has also to be taken of the fact that for small w values the size of
E(N) becomes impractically large. Our recommendation is, where possible, to set m =
5, together with choice of w restricted to w ≥ 0.7/0.8/1.0 according as α = 0.1/0.05/0.01.
Doing this ensures, for all three α values, that the estimated actual size is always less
than the target value, and that the estimated actual power is always greater than the
target power. E(N) is then between 11 and 19, with in all cases, irrespective of β, E(N)
falling to 5 or 6 as w increases to w = 5.

Fuller details are reported in the Online Supplement. Thus, for example, if values of
w less than w = 0.7, are needed, we see from Figures 2 and 3 given in the Supplement
that use should not be made of α = 0.01. Using either α = 0.1 or α = 0.05 and setting
m ≥ 7 allows any value of w ≥ 0.1 to be used whilst keeping the test size less than 10%
over its target value for all the three β values we have considered. In allowing this
latitude over test size we remark that, in SB, our emphasis is on correctly identifying
important factors, so ensuring that the actual size is no larger than the target size of
the test is perhaps not quite so important as ensuring that the power is at least as
great as the target power. Note that we have not recommended use of w = 0.05 as N is
impractically large in this case. Plots of how N varies for small N are shown in Figure
4 in the Online Supplement.

The behavior of the stopping rule governs the worst case performance of SB process
as a whole in terms of the overall number of observations required. SB is intended for
use in situations there are only a small number, k say, of factors that are important,
or at least that are not unimportant. It is quite easy to see that the number of runs
needed by SB to identify these factors will be O(k), that is, roughly Mk where M is
a factor not depending on k. However M will depend on w/σ; in fact M will likely be
comparable to N, so that a rough estimate of the likely number of observations needed
for the SB process as a whole would be kE(N).Our numerical results, given here and in
the Online Supplement, highlight the importance of not choosing w too small relative
to σ if E(N) is not to be impractically large. Thus in choosing w, it will be necessary to
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have some initial idea of what the value of σ should be. It may therefore be necessary
to carry out preliminary runs to obtain an estimate of σ before choosing w.

Fig. 1. Observed size, power and N as functions of w for the stopping rule (22) and importance test of
equation (25). The three lines in each plot correspond to the three power values. All the size/power graphs
respectively decrease/increase monotonically as w increases past 1 off the plotted area.

We mention here a possible alternative using the procedure P1 given by Liu [1997].
Like Anscombe’s original procedure, this is applied to a sequence Yi, i = 1, 2, ... of inde-
pendent N(µ, σ2) variables to construct a symmetric two-sided (1−α)100% CI of given
width w = 2d for µ, but with given power (1−β) (in Liu [1997] this power is denoted by
β, but we retain our use of β here). The procedure uses a stopping rule to construct the
CI, followed by a two-sided test of whether to reject the hypothesis H0: µ = 0. The test
has power (1−β) in the sense that the probability of rejection is at least (1−β) if |µ| ≥ d.
Procedure P1,unmodified, can actually replace our stopping rule (22) and importance
test (25), however, being a two-sided procedure it is not efficient in our application,
requiring significantly more runs. It should be possible in principle to modify P1 so
that it is one sided, but the details do not look straightforward, especially as Theorem
4.1 in Woodroofe [1977] on which P1 depends, is only proved in outline in Woodroofe
[1977] with some key details not explained. We have therefore not studied this possi-
bility further as this would require a separate article to handle properly. However we
have carried out some preliminary investigation of how P1 might be modified, which
is reported in the Online Supplement.

3. THE DISPERSION EFFECTS PROBLEM
The AFSB algorithm may be modified to address the problem of estimating dispersion
effects instead of locations effects. The SB Algorithm (Partitioning) and the function
subroutine E(k0, k1) have exactly the same form as in the location effects problem. The

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Screening for Dispersion Effects by Sequential Bifurcation 39:15

only change is in StopTest(·). This still takes the form (25). However the calculation of
CL, CU and the stopping rule are modified in a way which we now describe.

In function E(k0, k1) we again obtain n pairs of observations at points x(k0 − 1) and
x(k1), namely,

Yi[x(k0 − 1)] i = 1, 2, ..., n and Yi[x(k1)] i = 1, 2, ..., n

separately, to form corresponding sequences

Vi[x(k)] =
1

i(i + 1)
{iYi+1[x(k)]−

i∑

j=1

Yj [x(k)]}2 i = 1, 2, ..., n− 1, k = k0 − 1, k1.

These expressions are simply the independent components of the sample variances
of the two sequences when decomposed (using Helmert’s transformation) into a form
convenient for updating as observations are added. Assuming the observations take
the form (1), the Vi are distributed as

Vi[x(k)] ∼ σ2
i [x(k)]Cik, k = k0 − 1, k1

where the Ci,k0−1 and Cik1 are mutually independent chi-squared variates, χ2
1, with

one degree of freedom. The sample versions of the logged standard deviations in (3)
are thus and

0.5 log Vi[x(k)] = γ0 +
k∑

j=1

γj + ξik i = 1, 2, ..., n− 1, k = k0 − 1, k1 (28)

where the ξi,k0−1, ξik1
i = 1, 2, ..., n − 1, are all mutually independent variables each

distributed as a 1
2 log(χ2

1) variable.
The sequence

hi(k0,k1) = 0.5{log Vi[x(k1)]− log Vi[x(k0 − 1)]}

=
k1∑

j=k0

γj + δi

= λ(k0, k1) + δi, i = 1, 2, ..., n− 1

is the dispersion effects equivalent of the sequence di(k0, k1) appearing in (7) that was
used to test the importance of the combined factor location effect µ(k0, k1). We can
therefore use, in direct analogue to Dn,

Hn =
1

n− 1

n−1∑

i=1

hi(k0,k1)

= λ(k0, k1) +
1

n− 1

n−1∑

i=1

δi (29)

to test the importance of λ(k0, k1) in the factor dispersion effects problem.
A remarkable feature of Hn is that the δi have distributions which are completely

known. As already noted, they are independently and identically distributed, with each
being the difference between two independent 1

2 log(χ2
1) variables. The density of each

δi is therefore given by the convolution

fδ(x) =
∫ ∞

−∞
g(x + u)g(u)du

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:16 Bruce E. Ankenman and R.C.H. Cheng and Susan M. Lewis

where g(x) = (2/π)1/2exe−e2x/2 is the density of a 1
2 log(χ2

1) variable. This reduces to
the (symmetric about 0) form

fδ(x) =
2e−x

π(1 + e−2x)
,

with variance V ar(δ) = π2/4. This density and the variance are derived in the Online
Supplement.

Convergence of the sum
∑

δi to normality is rapid as the δi are symmetric with
finite first and second moments. We show, in the Online Supplement, that the CDF
of the sum of just two δi matches the normal CDF with a maximum difference that is
less than 0.001. In the calculation of the fixed width CI we can therefore use (13), (with
standard normal quantiles zβ and z1−α) to fix the number of observations needed as:

Stop at n =
π2(z1−α − zβ)2

4w2
+ 1. (30)

We have added the unity term to account for the fact that Wn is the average of only
(n − 1) wi when the number of original Y observations is n. The formula in (30) is
the dispersion effects equivalent of the known sigma stopping rule (13) for the location
effects case.

The statistical model (1) with errors given by (3) is not the only model that can be
handled by the methods considered in this paper. Any multiplicative model can be
written in a logarithmic form that is amenable to a similar analysis. For example if
instead of the standard deviation, the variance is assumed to be

log σ2(xi) = γ0 +
k∑

j=1

γjxij = γ0 + γT xi

then the only change is that (30) becomes

n =
π2(z1−α − zβ)2

w2
+ 1.

If there is uncertainty about the model it might be safer to assume that the variance
of the δi is not known. In this case we can form a sample variance sequence from the
δi in direct analogy to the sample variance sequence Ui given in (17), i.e.

Vi =
1

i(i + 1)
{ihi+1 −

i∑

j=1

hj}2 i = 1, 2, ..., n− 2

and, as in (22), we can apply the stopping rule:
Take as N the first n ≥ m for which

{n[n− 2.676− (τ0/2)]}−1
n−2∑

i=1

Vi ≤ w2

(z1−α − zβ)2
. (31)

In the Online Supplement we present the results of a numerical study showing that
the stopping rule (31) and the size and power of the corresponding importance test
behave almost identically to those of the stopping rule (22) and its corresponding test,
so that our recommendations on how to select w and m can still be applied in the
dispersion case. Fuller details are given in the Online Supplement.

Summarising, the only changes needed for AFSB to handle the dispersion effects
problem is to replace Dn by Hn as given in (29) in the calculation of the CI limits (23)
and (24), and to replace the stopping rule (22) by (30) or possibly (31).
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We compare the use of (30) and (31) in the next section.

4. NUMERICAL EXAMPLES
In this section, we will use numerical examples to demonstrate the performance of the
various algorithms that have been presented.

For the location effects problem, we will compare four algorithms in order to compare
the effects of (1) acceleration (i.e. excluding the condition in the square brackets of
step E(4) of E(·)); (2) the use of the basic stopping criterion in (15); and (3) the use of
Anscombe‘s stopping rule in (22). Algorithm performance is measured by the ability
of an algorithm to hold the probability of Type I error to the specified level of 0.05,
while producing high power to identify effects that are larger than ∆0 = 2 and very
high power (1 − β) for identifying effects that are larger than ∆1 = 4. We will use
three experimental trials, each focusing a different range of factor sizes. The first trial
uses effect sizes from 0 to 6 to build a sense of the power across a wide range. The
second trial replicates the experimental trials by Wan et al. [2010] with factor levels
between 2 and 6 with many of the factors larger than ∆1 = 4. The third trial uses
relatively small but non-negligible factor effects between 2 and 4. We will then discuss
the performance of the location effect algorithms on a well-known Ericsson simulation
example from the literature.

For the dispersion effects problem, we use a 32 factor example to test the perfor-
mance of our proposed algorithm and we compare the use of the known sigma stopping
rule in (30) with the unknown sigma stopping rule of (31). We also test the performance
of our algorithm as the order of factors is changed since the order of factors is known to
affect the efficiency of SB procedures. Finally, we will then compare the performance
of our dispersion effect algorithms with an example based on the Ericsson simulation.

4.1. The Location Effects Problem
For the location effects problem we shall compare four algorithms:

(i) The Original CFSB (OrigCFSB) of Wan et al. [2010], i.e. CSB-X but without the
foldover. The conditions in square brackets in step E(4) of E(·) are therefore included.

(ii) Accelerated CFSB (AccelCFSB). This is CFSB as in (i), but with the conditions
in square brackets in step E(4) of E(·) omitted.

(iii) Accelerated basic fully sequential bifurcation (AccelBFSB). This is simply the
SB algorithm using the basic stopping rule (15), again with the conditions in square
brackets in step E(4) of E(·) omitted.

(iv) Accelerated AFSB (AccelAFSB). This uses the Anscombe stopping rule (22),
again with the conditions in square brackets in step E(4) of E(·) omitted.

We report the results of three experimental trials. All involve 10 factors like those
given in Table 2 of Wan et al. [2010]. In all three trials, a set of metaexperiments were
carried out, where each metaexperiment comprised 1000 identical experiments with
observations artificially generated as in (1).

4.1.1. Experimental Trial 1: Identifying a wide range of effects. The same 9 metaexperiments
for each of the four FSB methods were carried out. In each metaexperiment the val-
ues of all 10 factor coefficients were the same in all the experiments, but with this
common value changing between metaexperiments. Specifically in metaexperiment i:
i = 1, 2, ..., 9, βj = β(i), j = 1, 2, ..., 10. The nine β(i) values were 0.0, 1.0, 2.0, 2.5, 3.0,
3.5, 4.0, 5.0, 6.0. The errors were heteroscedastic with σ(γ,X) =

∑10
i=1 γjXj , where

γ = (0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) and X are the factor levels.
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Table I. Trial 1: Proportion found important out of 1000 observations for each metaexperiment.

Metaexperiment Coef. Size OrigCFSB AccelCFSB AccelBFSB AccelAFSB
1 0 0.00 0.00 0.00 0.00
2 1 0.00 0.00 0.00 0.00
3 2 0.01 0.04 0.05 0.04
4 2.5 0.05 0.11 0.19 0.18
5 3 0.26 0.34 0.43 0.43
6 3.5 0.79 0.73 0.71 0.72
7 4 0.95 0.91 0.90 0.91
8 5 1.00 0.98 1.00 1.00
9 6 1.00 0.99 1.00 1.00

Table II. Trial 1: Average number of replicates required per trial from 1000 observations.

Metaexperiment Coef. Size OrigCFSB AccelCFSB AccelBFSB AccelAFSB
1 0 1436 1414 3358 3365
2 1 11322 8244 9177 9193
3 2 18259 13180 13410 13452
4 2.5 17767 15124 13781 13837
5 3 22876 19055 13803 13842
6 3.5 21511 17913 13802 13842
7 4 15422 13315 13802 13842
8 5 8942 7799 13802 13842
9 6 6311 5548 13802 13842

The same accuracy parameters: α = 0.05, β = 0.1, ∆0 = 2, ∆1 = 4 were used in every
experiment. The proportion of time each factor is found important should therefore be
0.05 when β(i) = 2.0 ( = ∆0) and should be 0.90 when β(i) = 4.0 (= ∆1).

The results are shown in Table I. The OrigCFSB method is conservative. The
results for AccelCFSB and AccelAFSB are very similar with the proportion of time
each factor is found important for the cases β(i) = 2.0 and 4.0 close to their nominal
0.05 and 0.90 values. AccelBFSB does very well in this example and its results are
comparable to those for AccelCFSB and AccelAFSB.

The average number of replicates needed per experiment for all 9 metaexperiments
and for the four methods is given in Table II. AccelAFSB and AccelBFSB perform very
similarly and are best when all the factor coefficient values lie between ∆0 and ∆1.
AccelCFSB performs best outside this range.

4.1.2. Experimental Trial 2: Identifying large effects. In this trial just four metaexperiments
were carried out, one for each of the four methods. For all the experiments in all
four metaexperiments, the factor coefficients were the same as those used in Wan
et al. [2010], namely: 2.0, 2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5.08, 6. The errors were
heteroscedastic with σ(γ,X) =

∑10
i=1 γjXj ,with γj = βj all j.

The same accuracy parameters: α = 0.05, β = 0.1, ∆0 = 2, ∆1 = 4 were used in every
experiment.

Table III gives the number of times each factor was found important in each of the
metaexperiments, and also the average number of replications used in each experi-
ment for that metaexperiment.

In this trial a relatively large number of factor coefficients (the last four βj) are
greater than the importance threshold ∆1 = 4. This results in fewer replications
needed by both CFSB methods compared with AccelAFSB and AccelBFSB. However
AccelAFSB is more accurate at the ∆0 threshold than either CFSB method or Ac-
celBFSB, with the OrigCFSB performing especially poorly. At the ∆1 threshold and
above, OrigCFSB, AccelBFSB and AccelAFSB all display similar quite accurate power
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Table III. Trial 2: Proportion found important out of 1000 trials and average number of
replicates per experiment, for each metaexperiment.

Metaexperiment 1 2 3 4
Coef. Size OrigCFSB AccelCFSB AccelBFSB AccelAFSB

2.00 0.000 0.025 0.079 0.047
2.44 0.027 0.079 0.165 0.157
2.88 0.158 0.227 0.319 0.334
3.32 0.505 0.486 0.528 0.551
3.76 0.780 0.774 0.759 0.763
4.20 0.938 0.900 0.894 0.910
4.64 0.979 0.937 0.969 0.972
5.08 0.993 0.967 0.991 0.993
5.52 0.995 0.981 1.000 0.996
6.00 0.999 0.985 0.999 1.000

Ave. number of reps 21386 17818 26690 26731

Table IV. Trial 3: Proportion found important out of 1000 trials and average number of
replicates per experiment, for each metaexperiment.

Metaexperiment 1 2 3 4
Coef. Size OrigCFSB AccelCFSB AccelBFSB AccelAFSB

2.0 0.001 0.034 0.070 0.048
2.0 0.010 0.042 0.069 0.049
2.5 0.044 0.110 0.201 0.186
2.5 0.078 0.114 0.180 0.181
3.0 0.331 0.366 0.394 0.422
3.0 0.332 0.353 0.423 0.416
3.5 0.760 0.702 0.710 0.714
3.5 0.760 0.723 0.697 0.685
4.0 0.947 0.916 0.908 0.907
4.0 0.931 0.909 0.889 0.906

Ave. number of reps 29249 24367 19490 19544

in identifying those βj > ∆1 as being important, whilst AccelCFSB again did not per-
form well.

4.1.3. Experimental Trial 3: Identifying small, but important, effects. The layout of this trial is
the same as that in the second, comprising four metaexperiments of 1000 identical ex-
periments each using one of the four FSB methods with all experiments using α = 0.05,
β = 0.1, ∆0 = 2, ∆1 = 4 and again with heteroscedastic errors: σ(γ,X) =

∑10
i=1 γjXj ,

with γj = βj , all j.
The same βj values were used in all experiments namely: 2.0, 2.0, 2.5, 2.5, 3.0, 3.0,

3.5, 3.5, 4.0, 4.0. Thus all the βj ’s lie between ∆0 and ∆1. The results are given in
Table IV.

The conditions favour AccelAFSB as all factor coefficients lie between ∆0 and ∆1.
This results in fewer replications needed by AccelAFSB compared with AccelCFSB. Ac-
celBFSB requires the fewest replications but AccelAFSB runs it quite close. As might
be expected OrigCFSB requires the greatest number of replications.

At the ∆0 threshold, the two factors with βi = 2 should be found important about
5% of the time. This was the case for AccelAFSB. The percentage for AccelBFSB was
rather high, whilst for AccelCFSB it was somewhat low and for OrigCFSB it was very
low.

At the ∆1 threshold the two factors with βi = 4 should be found important about
90% of the time. Both AccelBFSB and AccelAFSB performed fairly accurately. The
AccelCFSB was marginally high whilst for OrigCFSB is was clearly high. Overall Ac-
celAFSB performed the best in this example.
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Table V. Ericcson Example: Average number of runs per experiment vs. Experimental
standard deviation.

Standard Deviation OrigCFSB AccelCFSB AccelBFSB AccelAFSB
0.06 134 134 134 134
0.48 226 185 163 214
0.96 762 529 448 551
1.92 2859 2011 1833 1936
2.88 6310 4432 4148 4256
3.84 11172 7935 7346 7432

Summarising all three Trials: If the expectation is that there will be many factor
coefficients larger than ∆1 and calculation of the stopping rule boundaries is not an
issue, then AccelCFSB might be preferable. But if the expectation is that most factor
coefficient values will fall in the ∆0 and ∆1 range or calculation of the stopping rule
boundaries is an issue, then AccelAFSB would be preferable.

4.1.4. Ericsson Example with 92 factors. We now consider an example based on a supply
chain simulation in the mobile communications industry at the Ericsson company in
Sweden, as reported in Kleijnen et al. [2006]. It involves 92 factors.

To simplify the study, we did not make explicit runs of the simulation model in or-
der to generate direct data for input to the SB analysis. Instead we generated data
from a metamodel of the form (1) with variance structure of the form (3) fitted to data
obtained from 128 runs obtained from the actual simulation model. Because the meta-
model was used for the dispersion as well as the location effects problems, these actual
simulation runs focused on the dispersion characteristics of the simulation model, and
were made with different settings of the dispersion coefficients as the design points
based on an orthogonal statistical design. We then fit a metamodel of the standard
deviation/variance, as given by (28), to this simulation run data (using standard re-
gression techniques). This gave (least squares) estimated values of γj : γ̂j , j = 0, 1, ..., k.
In experiments with the SB method, input data was not then generated from the simu-
lation model directly, but instead from the fitted statistical metamodel (1), with added
normal errors εi of the form (3) whose standard deviations are given using the fitted
coefficients :

σ̂(xi) = σ exp(
k∑

j=1

γ̂jxij). (32)

Thus, as far as the numerical study of the SB analysis was concerned, the estimates
γ̂j were treated as the true factor dispersion coefficients. Note however that γ̂0 is not
used directly. If it had its effect would simply have been to multiply σ̂(xi) by the factor
exp(γ̂0). We have instead included its effect in the factor σ treating this as a parameter
which we can vary between experiments.

The same 128 simulation data set used to obtain the γ̂j also provided estimates, β̂j ,
of the βj appearing in (1), so that the overall fitted metamodel produced data that
could be used in the study of both location and dispersion problems.

For the location effects problem, the above fitted model, with heterogeneous variance
structure (32), was used to generate observations in six trials each comprising four
metaexperiments carried out for each of the four SB methods compared in the previous
subsection. Each metaexperiment in the set comprised 1000 experiments all with the
same error SD parameter σ in (32), but with σ varying between the six trials taking
the specific values σ = 0.06, 0.48, 0.96, 1.92, 2.88, 3.84. The accuracy parameters were
set at α = β = 0.1, ∆0 = 0.5, ∆1 = 2 throughout.
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Table VI. Ericsson Example: Proportion of times the top ten location effects were found important vs experimental
standard deviation.

γ 0.104 -0.036 0.033 0.142 0.134 0.224 0.091 0.078 0.074 0.161
Factor ID #11 #47 #89 #85 #86 #87 #43 #45 #49 #92

σ βi 0.332 0.570 0.617 1.155 1.161 1.186 1.290 1.297 2.080 4.179
OrigCFSB 0.000 0.000 0.000 0.055 0.094 0.189 0.738 0.788 1.000 1.000

0.06 AccelCFSB 0.000 0.000 0.000 0.055 0.094 0.189 0.738 0.788 1.000 1.000
AccelBFSB 0.000 0.000 0.000 0.055 0.094 0.189 0.738 0.788 1.000 1.000
AccelAFSB 0.000 0.000 0.000 0.055 0.094 0.189 0.738 0.788 1.000 1.000
OrigCFSB 0.000 0.001 0.012 0.402 0.408 0.437 0.284 0.401 0.994 1.000

0.48 AccelCFSB 0.001 0.002 0.019 0.383 0.403 0.447 0.280 0.369 0.990 1.000
AccelBFSB 0.002 0.011 0.037 0.427 0.425 0.440 0.265 0.392 0.982 1.000
AccelAFSB 0.000 0.006 0.029 0.416 0.419 0.449 0.262 0.391 0.989 1.000
OrigCFSB 0.006 0.006 0.009 0.413 0.402 0.424 0.269 0.379 0.984 1.000

0.96 AccelCFSB 0.007 0.024 0.017 0.411 0.408 0.439 0.226 0.385 0.935 0.997
AccelBFSB 0.037 0.057 0.052 0.434 0.415 0.450 0.224 0.347 0.854 0.997
AccelAFSB 0.025 0.038 0.036 0.397 0.439 0.464 0.220 0.342 0.914 1.000
OrigCFSB 0.012 0.014 0.015 0.427 0.397 0.439 0.242 0.383 0.984 0.999

1.92 AccelCFSB 0.019 0.021 0.024 0.406 0.437 0.451 0.242 0.326 0.883 0.994
AccelBFSB 0.037 0.053 0.035 0.411 0.453 0.446 0.231 0.323 0.830 0.996
AccelAFSB 0.036 0.037 0.031 0.443 0.450 0.459 0.206 0.351 0.891 1.000
OrigCFSB 0.008 0.007 0.013 0.407 0.412 0.440 0.266 0.367 0.978 1.000

2.88 AccelCFSB 0.018 0.027 0.016 0.382 0.416 0.448 0.217 0.362 0.868 0.989
AccelBFSB 0.042 0.053 0.034 0.425 0.447 0.456 0.239 0.351 0.893 1.000
AccelAFSB 0.019 0.032 0.051 0.397 0.454 0.459 0.209 0.356 0.918 1.000
OrigCFSB 0.017 0.021 0.020 0.394 0.410 0.450 0.259 0.393 0.969 1.000

3.84 AccelCFSB 0.019 0.024 0.023 0.417 0.391 0.433 0.203 0.338 0.854 0.976
AccelBFSB 0.043 0.047 0.033 0.419 0.447 0.454 0.223 0.335 0.906 1.000
AccelAFSB 0.035 0.046 0.041 0.421 0.426 0.446 0.236 0.378 0.908 1.000

Table V shows the average number of replications required per experiments in each
of the 24 metaexperiments.

In the trial where σ was smallest with σ = 0.06, all four methods required the same
number of replications in each experiment. For all the other trials, where σ > 0.06,
Orig CFSB required the most replications whilst Accel BFSB required the fewest.
The number of replications required by the other two methods, Accel CFSB and Ac-
cel AFSB, was between these, but with Accel AFSB always only just higher than Accel
BFSB. Comparing Accel CFSB and Accel AFSB, the former performed slightly better
for lower σ, viz when σ = 0.48 and σ = 0.96, but this was reversed with Accel AFSB
requiring fewer replications than Accel CFSB for larger σ, viz when σ = 1.92, σ = 2.88
and σ = 3.84.

The performance of all four methods is quite similar in terms of identifying im-
portant factors. Table VI shows how often the 10 largest factors values were found
important for each method in each of the six trials as σ varied. All the other factors
had coefficient values well below the lower threshold value of ∆0 = 0.5. In fact the
largest number of times any was found important in any metaexperiment in any trial
was 60 compared with the 100 times that would have corresponded to the α = 0.1 error
thresholḋ of a marginally unimportant factor. In the vast majority of cases the number
of times any one of these factors was found important was well below this 100.

In Table VI, two columns are highlighted (bold). One corresponds to Factor 49 whose
true coefficient value of 2.080 is closest to the upper threshold of ∆1 = 2.0, so that,
with β = 0.1, a method that is accurate should be finding this factor important approx-
imately 90% of the time. When σ = 0.06 all methods found the factor always impor-
tant. This might be explained by the fact that the coefficient value is greater than the
threshold of importance value of ∆1 = 2.0, and for such a small σ all methods are able
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to identify the factor as being important. However we would expect the count to fall to
somewhere just above 90% as σ increases. However Orig CFSB remains consistently
high, Accel CFSB falls away to well below 90% and Accel BFSB displays the greatest
variation about 90%. Accel AFSB performance quite consistently with values about
90% once σ has increased past σ = 0.48.

The other highlighted column corresponds to factor 47 whose true coefficient value
of 0.57 is the lowest value just above the ∆0 = 0.5 threshold. In this case all the
methods seem to be biased too low, even in the case where σ = 0.06 when one might be
expecting methods to find the factor greater than 10% of the time. As sigma increases
the importance count rises for all the methods, but there is still a distinct bias in all
cases. Accel BFSB seems best followed by Accel AFSB, then Accel CFSB, then Orig
CFSB.

In conclusion Accel AFSB has performed perhaps the most satisfactorily at the upper
threshold level, but none of the methods are very satisfactory at the lower level in this
example, though Accel AFSB is the least unsatisfactory.

4.2. Dispersion Effects Problem
We now turn to the performance of AccelAFSB for the dispersion effects problem. Re-
call that we address this problem separately from the location effects problem. We
have simply chosen the case of symmetric confidence levels with α = β = 0.1 as being
typical of what might be used in practice for levels of confidence.

We also have to select the threshold levels ∆0 and ∆1 and here we have also used
values that might be adopted in practice. Note that, in the case of the dispersion effects
model, and in contrast to the location effects model, ∆0 and ∆1 are thresholds for the
coefficients γj appearing in equation (28). Thus γj = ∆i corresponds to the situation
where increasing the jth factor level from xj = 0 to xj = 1 would increase the standard
deviation by a factor exp(∆i). Thus ∆i = log(1+ai) corresponds to a change in standard
deviation of ai× 100%. As the dispersion effects are positive, we need only consider the
case where 0 < ∆0 < ∆1 so that 0 < a0 < a1.

We have used three pairs of ∆0, ∆1 values:
∆0 = log(1.1) ' 0.0953, ∆1 = log(1.25) ' 0.2231, (33)

∆0 = log(1.5) ' 0.4055, ∆1 = log(3.0) ' 1.0986 (34)
and

∆0 = log(2.0) ' 0.6931, ∆1 = log(5.0) ' 1.6094. (35)
Bearing in mind the inherent variability in the estimation of standard deviations, the
first pair represents a very stringent condition where an increase in standard deviation
of 25% is already deemed important whilst an increase can be no more than 10% if it
is to be deemed unimportant. We might consider the second pair to be what might
be used in typical practical situations, where there has to be a 200% increase in the
standard deviation for the change to be deemed important and an increase of up to
50% would be considered unimportant. The third pair might be used in exploratory
situations where there has to be a fairly extreme increase of 400% to be deemed truly
important and an increase of up to 100% would still be considered unimportant.

4.2.1. Example with 32 factors. In this example there are 32 factors and we compare the
performance of the dispersion effects algorithm using the stopping rules in (30) and
(31). We also compare the performance of our recommended stopping rule, (31), with
various orders of the factor effects.

We carried out four metaexperiments with 1000 independent experiments in each,
all using the same following settings. Eight of the factors contribute a dispersion effect
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Table VII. 32 Factor Experiment

Metaexperiment 1 2 3 4
Stopping Rule Known Sigma Anscombe Anscombe Anscombe
Factor Order Ranked Ranked Mixed Very Mixed
Prop.(coef.=log(3.0) found imp.) 0.9075 0.8919 0.8851 0.8718
Prop.(coef.=log(1.5) found imp.) 0.0823 0.0849 0.0625 0.0631
Prop.(coef.=0 found imp.) 0.0000 0.0000 0.0004 0.0007
Mean number of design points 16 16 20 22
Mean observations/design point 36 52 36 36

of γ = log(3); eight with γ = log(1.5); the remaining 16 factors all have dispersion
effect γ = 0. We set α = β = 0.1, ∆0 = log(1.5) ' 0.4055, ∆1 = log(3.0) ' 1.0986. Thus
a quarter of the effects are precisely at the lower threshold level and a quarter at the
higher threshold level.

First metaexperiment: The factors were rank ordered by size. Thus all 8 factors with
γ = log(3) were placed first, then all 8 factors with γ = log(1.5), with the remaining 16
factors where γ = 0 coming last. In each experiment the factors were classified using
the SB method with the known sigma stopping rule in (30). With the given values of α,
β, ∆0 and ∆1, we would expect roughly 90% of the trials to declare the first 8 factors
important, 90% of the trials to declare the second set of 8 factors unimportant, and
few of the remaining factors ever to be declared important. Table VII gives the results
showing the results to be much in line with what we expect. If anything, the method
is somewhat conservative at the lower threshold with less than 10% of factors at the
lower threshold incorrectly classified as important.

The average number of design points used in each trial was 16.36 and the mean
number of observation per design point was 36.

Second metaexperiment: This was exactly the same as the first experiment, except
for comparison we changed the stopping rule to (31), the case where σ is assumed
unknown. The results are given in Table VII. It will be seen that the percentage of
time each factor is found important is very similar to those in the first metaexperiment.
The main change is that the mean number of observations used per design point has
increased from 36.0 to 51.9. This result suggests, not surprisingly, that use of the known
sigma stopping rule is preferable. It may be that use of the unknown sigma stopping
rule is more robust against model misspecification as it is well-known that sequential
stopping rules are not too dependent on the precise error structure. However we have
not investigated this point in this paper. We shall use the known sigma stopping rule
in all the remaining dispersion examples considered in the paper, but in many real
experiments the unknown sigma stopping rule might be preferred to guard against
model uncertainty.

Third metaexperiment: This was exactly the same as the second metaexperiment,
with the same set of γ effects but in a mixed order namely: five at γ = log(3), then
3 at γ = 0, then 3 at γ = log(3), then 5 at γ = 0, then 5 at γ = log(1.5), then 6 at
γ = 0, then 3 at γ = log(1.5) and finally 2 at γ = 0. The results are given in Table VII.
Though not as good as in the first experiment, they still seem quite satisfactory. Here
the SB process displays a downward bias in declaring certain factors, that are actually
important, to be important less often than expected. In particular the factors at 5 and
11, which should be declared important with probability 1− β, are declared important
less frequently than they should be, whilst the factors at 21 and 28 which should be
declared unimportant with probability 1−α are declared unimportant more often than
this. The reason for this seems to be that all these factors are positioned in such a
way that they are likely to become grouped in the SB process with a large number
of unimportant factors. Their effect is then dominated by the combined effect of these
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unimportant factors. Thus, for example, 5 becomes grouped with 6, 7, and 8, whilst 28
becomes grouped with 25, 26 and 27.

It will be seen that apart from specific factors that might be affected in this way,
the majority of the factors are found important or not important the right proportion
of times indicating that the E(k0, k1) test itself operates satisfactorily. The example is
perhaps a fairly stringent test in that the non-zero factor values are so clearly grouped
at the critical ∆ values and are also ranked in a regular pattern.

Fourth metaexperiment: This again uses the same set of γ effects as in the three
metaexperiments already discussed, but with the order even more mixed. The first
three coefficients are γ1 = log(3), γ2 = log(1.5), γ3 = 0; this pattern of three is repeated
for eight groups, followed by the last eight γ′s all equal to zero. The results are given
in Table VII and are quite similar to those of the third metaexperiment. Those coeffi-
cients where γ = log(3) are found important slightly less than the nominal 90% of the
time with some more adversely affected because of grouping effects. The coefficients
where γ = log(1.5) display the same pattern in an even more marked way, being found
important somewhat less than the nominal 10% level.

The mean number of design points required to be examined has increased from 16.36
in fully ranked case, to 20 in the mixed ranking order case, and to 22.0 in the very
mixed ranking order case. The mean number of observations needed per design point
remained stable, indeed constant, at 36 in all cases.

Though artificial, this 32 factor example gives a clear indication of the basic prop-
erties of the proposed SB method, suggesting it has understandable and reasonably
robust characteristics. The example in the next section provides a more realistic in-
stance of what might occur in practice.

4.2.2. Ericsson Example. We consider the dispersion effects problem for the Ericsson
example. Recall that the data from this example is constructed after fitting a meta-
model to 128 runs of the simulation. Thus, the coefficients in this model are only esti-
mates of the true coefficients of the actual simulation. The fitted dispersion coefficient
values are labeled as ‘CoeffTrue’ in Table VIII. Of the 92 estimated γ̂j values, 49 were
positive and 43 were negative. This might appear to seriously break the positivity con-
dition (5) requiring all the γj ≥ 0, for SB to be applicable. However, of the 43 estimates
for which γ̂j < 0, only 4 had p-values less than 0.1 from the fitting of the 128 simula-
tion runs. This means that the true coefficients of the simulation may not be negative
at all. Thus condition (5) is largely satisfied, and the few significantly negative γ̂j are
what might happen in practice. The observations in the experiments were generated
from the fitted metamodel for variability including these negative dispersion effects
and thus provide a test of the SB method under realistic conditions.

The most significant positive dispersion coefficients were, in decreasing order of im-
portance, those corresponding to j = 87, 92, 85, 86 and 11, all with p-values less than
0.01.There is some overlap of these factors with those factors identified in Kleijnen et
al. (2006) as having important location effects. However this overlap is not uniform in
that some factors such as j = 88 or j = 90 identified in Kleijnen et al. (2006) as having
important location effects have insignificant fitted dispersion effects.

Table VIII shows the results of three pairs of metaexperiments, each metaexperi-
ment being made up of 1000 independent experiments.

In the first pair we set α = β = 0.1, ∆0 = log(1.1) and ∆1 = log(1.25). Only factor
87, with γ87 = .2236, is at the ∆1 = log(1.25) = 0.2231 threshold level of importance.
When the factors are placed in their original order, it can be seen that factor 87 was
found important nearly 90% of the time. When the factors are reordered according to
their ‘true’ (i.e. fitted) coefficient values, there is a some degradation in the proportion
of time factor 87 was found important, but the degradation is slight.
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Table VIII. Ericcson Factor Experiment

Metaexperiment 1 2 3 4 5 6
Factor Order Original Ranked Original Ranked Original Ranked
∆0 ln(1.10) ln(1.10) ln(1.5) ln(1.5) ln(2) ln(2)
∆1 ln(1.25) ln(1.25) ln(3.0) ln(3.0) ln(5) ln(5)
Prop.(coef. 87 found imp.) 0.896 0.882 0.001 0.014 0.000 0.002
Prop.(next highest coef found imp.) 0.531 0.379 0.000 0.007 0.000 0.001
Mean number of design points 16.1 24.7 4.1 7.2 2.6 3.7
Mean observations/design point 994 994 36 36 21 78

The main difference between the two cases is in the number of design points re-
quired, with respectively 16.1 and 24.7 observations needed per design point. Interest-
ingly it is the case where the coefficients are in ranked order that requires more design
points. This seems to be due to the fact that when a large number of coefficients, with
values either close to or in between ∆0 and ∆1, are grouped together then more obser-
vations are needed to determine their status and most importantly, there is a higher
probability that they will be found important. Thus, for example, the factors 11, 17,
25 and 43, with dispersion coefficient values between 0.0907 and 0.1044, and which are
isolated in their original positions, are rapidly eliminated as being unimportant in the
experiments of the first metaexperiment. But when they are bunched together, as in
the second metaexperiment, then they are found important a much higher proportion
of the time (though still less than 10%) and this requires the extra observations to
determine their non-zero values.

The other main feature of this first pair of metaexperiments is the very large num-
ber, 994, of observations (i.e. simulation runs) needed per design point. This is a reflec-
tion of the stringent ∆ threshold levels employed and shows that use of such threshold
values may result in an unacceptably high number of simulation runs being needed.

The second pair of metaexperiments uses the same metamodel of dispersion effects,
but the threshold levels are relaxed to the more pragmatic values: ∆0 = log(1.5) and
∆1 = log(3). In the metamodel the ‘true’ dispersion effects are all now definitely less
than ∆0 and so should be found unimportant. With factors in their original order, none
is found important more than 0.1% of the time. When ranked order is used, the results
are almost identical. The only very slight difference, occurring with one or two of the
factors with the largest dispersion coefficients. The one with the largest coefficient,
factor 87, is found important the highest proportion of the time, but even this value of
1.4% is still well below the allowed upper limit of 10%. Compared with the first pair of
metaexperiments, the main change is that the mean number of design points needed
in a trial is now only 4.1. Moreover only 36 observations are required per design point.

The final pair of metaexperiments is where the threshold levels are further relaxed
to ∆0 = log(2) and ∆1 = log(5). In these metaexperiments, whether the factors are in
ranked order or not, the coefficients are found unimportant practically all the time.
Only 2.6 design points are needed in the case where the factors are in their original or-
der, rising slightly to 3.7 design points for the case where the coefficients are in ranked
order. In both cases there is a further reduction, to 21, in the number of observations
needed per design point.

Our conclusion from this example therefore is that use of threshold levels like (34)
or (35) would allow the SB method to be used in a very practical way to provide a
rapid check of whether there is any serious heteroscedasticity in a response output of
interest.
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5. FINAL COMMENTS
In this article, we have introduced a new stopping rule based on a fixed width CI to
improve the performance of sequential bifurcation screening. We demonstrated this
method for both the location effects problem and the dispersion effects problem. We
also developed a way to accelerate sequential bifurcation procedures by modifying the
procedure to eliminate redundant observations that were commonly taken in previous
descriptions of the SB algorithm.

For the location effects problem, Accel CFSB, our accelerated version of controlled
SB originally proposed by Wan et al. [2010], and Accel AFSB, our new method, seem
the most efficient. The performance of AFSB is generally more robust particularly in
delivering stated Type I error level at the lower threshold ∆0 and producing the high-
est power with the fewest replications for identifying midrange effects. Whereas, the
Accel CFSB, is somewhat more efficient at finding very large effects. Computationally,
Accel AFSB is easier to implement than Accel CFSB as it has a stopping rule with a
boundary that can be explicitly calculated.

For the dispersion problem the modified AFSB method is easily implemented and
provides reasonable control of the size of the two types of statistical error. It thus pro-
vides an efficient and practical method of screening to check if there is any significant
heteroscedasticity in response output.

The numerical examples were obtained using algorithms implemented in VBA
macros in a spreadsheet. The spreadsheet is available from the authors.
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ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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