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ABSTRACT 

Consider the problem of identifying important factors in-
fluencing a response in a simulation experiment where the 
number of factors is large. When the direction of the effect 
of factors is known, the method of sequential bifurcation is 
effective for quickly removing non-influential factors. 
Though good, the method is not fully efficient in that not 
all the information available is fully utilized. We present a 
method based on a polytope construction that makes use of 
all available information and which is therefore more effi-
cient. In this paper we focus on the deterministic case to 
highlight its theoretical foundation. The method can how-
ever be extended to the stochastic case. Numerical exam-
ples are given comparing the new method with sequential 
bifurcation showing its improved performance. 

1 INTRODUCTION 

We consider the use of a linear model to represent the output 
of an simulation experiment where there are a large number 
of factors, but where many of the factors are expected to 
have little or no influence on the response output. In many 
discrete event simulations the direction of influence of each 
factor is known. For example, in a manufacturing process, 
two factors affecting the output rate of the process are the 
speed of operation of a machine and the number of machines 
available. Both these factors can be expected to increase 
output rate if they are increased. Thus the directions of 
their effects on the output of interest are known. 

When the direction of influence of each factor is known, 
the method of sequential bifurcation is a simple but effective 
method of making simulation runs that enables elimination 
of non-influential factors not just one at a time but often in 
large groups simultaneously. The original method was pro-
posed and studied in Kleijnen and Bettonvil (1997) for the 
deterministic case. Cheng (1997) gave a version for stochas-
tic case. A more general version for the stochastic case has 
been given by Wan, Ankenman and Nelson (2006).  

The use of sequential bifurcation can lead to signifi-
cant speed up in identifying non-influential factors and 

more generally in estimating factor effects. However it is 
clearly not a fully efficient process in that factor effects are 
only initially determined to be either zero or non-zero. This 
is satisfactory for effects that are zero, as they are then 
completely identified and estimated. But non-zero effects 
are only estimated when they are completely isolated and 
not before. This is not usually fully efficient as combina-
tions of observations may allow non-zero effects to be 
identified; a process not utilized in sequential bifurcation. 

In this paper we make the process fully efficient, still 
by adding observations sequentially one at a time, but at 
each step we characterize the full space of possible factor 
coefficients that could give rise to the current set of obser-
vations. We do this by regarding each such feasible combi-
nation of factor coefficients, as being a vector point β  in 
Euclidean space. Viewed this way, the set of all feasible 
factor coefficient combinations, turns out to be a convex 
polytope, that is, a region (possibly unbounded) in Euclid-
ean space defined by a finite number of linear inequalities: 

dAβ ≥ . The number of constraints increases as more ob-
servations are added, and the polytope shrinks. A reduction 
in the dimension of the polytope usually (but not always) 
corresponds to the identification of certain factor effect 
values. The polytope converges to a final degenerate zero-
dimensional point at which stage all factor effects have 
been determined. The process is thus efficient in the sense 
that all the available information about possible factor co-
efficient values are characterised by the polytope. 

However the rate of convergence is dependent on the 
choice of factor settings used in each succeeding simula-
tion run. There are therefore interesting issues concerning 
the design of experiments, if factor effects are to be deter-
mined rapidly. 

In the next section we set out the theory for the deter-
ministic case. In Section 3 we describe the practical algo-
rithm, and in Section 4 we give some numerical examples 
comparing our polytope method with sequential bifurcation. 
Section 5 sets out some conclusions and discusses some on-
going work to extend the method to the stochastic case.  
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2 THE LINEAR MODEL 

Though it is not really necessary for the method to work, 
we shall for ease of exposition adopt a fairly explicit 
framework for our overall simulation experiment. 
 We suppose that the simulation comprises up to a 
maximum of  k runs each providing an observation of the 
form 

 kixY
k

j
ijji ..., ,2 ,1   ,

1

1
0 =+= ∑

−

=

ββ . (1) 

Here iY  is the observed response in the ith run; jx , 

1..., ,2 ,1 −= kj  are (k-1) factors, with ijx  the level of fac-

tor j in the ith run; and 1.., ,1 ,0  , −= kjjβ , are the  un-
known coefficient values that we wish to identify.  
 Our key assumption is that we know the direction of 
the each factor effect. We can therefore, if necessary with a 
change of sign to xj, assume with no loss of generality that  
 
 1.., ,1 ,0  ,0 −=≥ kjjβ . (2) 
 
 We can write the system more compactly in matrix 
form as 
 XβY = , 
 
where we follow standard design of experiments terminol-
ogy and call X  the design matrix with, as its first column, 
the vector with all entries equal to unity. We shall refer to 
the combination of factor levels used in a given run as a 
design point. 
 We adopt the sequential bifurcation assumption 
(which is not strictly necessary here) that each factor is ap-
plied at one of two levels scaled to be +1 and 1− . 
 We shall also assume that, were we to carry out the 
full set of k runs, we would definitely be able to identify all 
k of the jβ  values. This is equivalent to assuming that X  is 
non-singular with full rank k. The hope of course is that if 
we choose the right design we will be able to make use of 
the positivity assumption (2) and identify all the jβ  values 
in considerably less than k runs. 
 Our method is sequential, so suppose that the experi-
ment has reached the stage where observations have been 
taken at m design points and there are n coefficients yet to 
be estimated. Let the current design matrix corresponding 
to these m design points and n coefficients be 
 
 ] [ 21 DDD =  
 
where D1 is the square matrix formed from the first m rows 
and m columns. We assume that the columns are sorted so 
that D1 is nonsingular and so has inverse 1

1
−D . Let the true 

coefficients be β and the m observations to date be y. For 

the deterministic case that we are considering, the observa-
tions therefore have the form 
 
 Dβy = . (3) 
 
Our objective is to find β . 
 The general solution of the equation (3) is well known 
(see Searle, 1971) to be expressible as: 
 
 zGDIGDββ )(~

nn −+= ×  (4) 
 
where G is a generalized inverse of D and z is an n - di-
mensional column vector of arbitrary 'spanning' variables. 
A convenient generalized inverse G of D is: 
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Taking G in the form (5) we have that GD takes the simple 
form: 
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(where  mm×I is the )( mm ×  identity matrix). 
 Now replace Dβ  in (4) by y  (from (3)), and use the 
fact that all components have to be positive by assumption. 
This yields the set of constraints that has to be satisfied by 
the spanning variables as: 
 
 0zGDIGy ≥−+ × )( nn . (7) 
 
Using (6) in (7) and writing 
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we have the general solution: 
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This simplifies to 
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Thus (7) reduces to  
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a system of n constraints involving just (n - m) of spanning 
variables. 
 This system defines a polytope containing the un-
known correct solution, *β  say, i.e. 
 

 0
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for some unknown *v .  
 Observe now that we can simply test to see if any of 

iβ  are fixed at a given value by the inequalities (9). Each 
such coefficient must then be at its correct value and so be 
determined. In particular any inequality which is always 
active will correspond to a fixed zero jβ which must there-
fore be at its correct null (i.e. zero) value. 
 This observation provides the means by which we can 
identify those coefficients that each additional observation 
fixes, taking into account all previous observations. 
 However we still have to come up with an efficient 
way of implementing this observation. We discuss this in 
the next section.  

3 IDENTIFICATION OF COEFFICIENTS 

There are various ways of determining which coefficients 
are fixed by (9). We present one method that we have 
found to be effective and reasonably efficient computa-
tionally. 
 We consider the constraints in the following form: 
 

 
0v
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We now split the vector yD-1

1 (which comprises known 
numeric values) into three subvectors 
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where all components of pθ  are strictly positive, all the 
components of qθ  are exactly zero, and all the components 
of rθ  are strictly negative. We use the subscript to indicate 
the dimension of the component. Thus for example we as-
sume that there are p strictly positive components. (We 

also have p + q + r = m.) The constraints therefore take the 
form 
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where qp AA  ,  and rA  are the relevant submatrices of 

2
1

1 DD−  in (10). 
 To illustrate the discussion consider the 3-factor ex-
ample where X is the design matrix 
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and suppose that 0  ,0  ,0 3210 >==> ββββ  so that 
 
 .30 ii xy ββ +=  
 
At the stage when just two observations have been ob-
tained, we have that 

  
1   1
1   1   

  and   
11
1   1

21 ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

= DD ,  

 
302301   and  ββββ +=+= yy . We find that (10) takes the 

form  
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In this case ppp 0vAθ ≥−  in (12) reduces to the single 
equation  0230 ≥−+ vββ , whilst qq 0vA ≥  reduces to the 
single equation 0 1 ≥− v . There are no equations in the set 

rrr 0vAθ ≥− , whilst mn−≥ 0v  reduces to 0   ,0 21 ≥≥ vv . 
 For the general case, note that if we drop some of the 
constraints from the set (12), this relaxes the set of con-
straints and so widens the set of possible solutions. Thus if 
we omit certain constraints and still find certain coeffi-
cients determined, then they must be at their correct value. 
 We focus first on those v which are always null by 
considering the reduced system 
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There is no point in including the constraints 

ppp 0vAθ ≥−  in this check for null v’s, because 0θ >p , 
which implies that ppp 0vAθ >− for all sufficiently small 
v. Thus these constraints are never active in such a check. 
Also we do not include rrr 0vAθ ≥−  as 0θ <r , and as 
we are only trying to detect nulls we will not be in a posi-
tion to identify such a constraint as being always active 
with a fixed and positive left-hand side. These constraints 
wold be of interest if we were trying to identify non-nulls, 
but we are not doing so here. Their omission does not in-
validate the overall process, but may make it less efficient. 
Based on numerical experiments, we conjecture that the 
loss of efficiency, if any, is not great. 

 Note also that in this test for null v's we may find that 
certain of the constraints qq 0vA ≥  are always active. For 
any such constraint this must mean that the corresponding 
component iβ  is null as well. 
 This last possibility occurs in example (13), when (14) 
reduces to 
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v
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We see that the first two constraints are always active, 
showing that 021 == ββ . 
 In general the method of Freund, Roundy and Todd 
(1985) can be used to find all the nulls with just one linear 
program. For convenience we set out their Proposition 1 
here in a simplified form that is sufficient for our purpose. 
 
 Proposition. Consider the linear program: 
 
  y1

yx

T

,
 max  (15a) 

subject to            
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Then the set of always active constraints in the set of ine-
qualities 
 

 
   

0Ax ≤
 

has indices that comprise precisely the set 
 
 }0  |{ * =iyi  
 
where ),( ** yx  is any (optimal) solution of (15a and b).    □ 
 All nulls found in the above way can be suppressed 
from the constraints.  

 If no nulls are found, then the procedure stops (except 
that we can identify trivial cases va iii θ −=β~ , belonging 
to the first set of constraints pppp 0vAθβ ≥−=~ , where 

0a =i , when iβ  is obviously fixed at ii θβ = ). However 
if some nulls are found, then it may place sufficient restric-
tions to allow certain of the coefficients corresponding to 
constraints in the first set, pppp 0vAθβ ≥−=~ , to be iden-
tified as fixed. There seems no easy way of doing this with 
a single test. However each component iβ  belonging to 

pβ  can be tested separately as follows to see if it is fixed 
(and strictly positive). 
 Let iβ  be one of the components belonging to pβ . 
Then 
 va iii θβ −=  
 
where 0>iθ . If therefore va i  is identically zero, we must 
have ii θβ = . Let us therefore consider the following two 
sets of constraints separately: 
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If in both cases the first constraint is always active, then 

0va =i  and so iβ  must be fixed and equal to iθ always, 

and thus equal to *
iβ , its true value. The linear program-

ming method (15) can be used again for each of the two 
tests. 
 In the example (13) the two sets of constraints (16) can 
be set up for i = 1 only and we have simply 
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From the first set we see that the first inequality is always 
active as we must have both 0 and 0 22 ≥≥− vv . However 
the second set of inequalities only requires 02 ≥v  so that 
the first inequality in this second set is not always active. 
Thus 0β  is not yet identified, and because 2v  is not yet 
identified either, 3β  is not yet identified either. To identify 
these coefficients a further observation or observations are 
required. We will return to this example shortly.  
 In summary we see that our proposed method reduces 
to essentially two steps. 
 
 Step 1. Use (15) to identify which of the constraints in 
(14) are always active. Each always-active constraint cor-
responds to a null iβ . If there are no nulls the process 
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stops for this stage, except for trivial components of 

pppp 0vAθβ ≥−=~ , where 0a =i ; when iβ  is obviously 
fixed at ii θβ = . 
 
 Step 2. If there are nulls then, for each i, consider each 
one of the two sets of constraints in (16) separately, again 
using (15) to see which constraints are always active.. If 
the first constraint in the two sets are both always active 
then the corresponding iβ  is fixed and positive. 
 
These two steps are carried out as each new observation is 
obtained, until the values of all coefficients have been 
found. 
 A point to note is that once a coefficient has been 
identified, then that factor can be dropped from further 
consideration in the linear model. Moreover dropping fac-
tors in this way can mean that some of the design points 
already used may become linearly dependent. In this situa-
tion we can also drop any observation already obtained, but 
which corresponds to a design point that is linearly de-
pendent on other points that have been already observed. 
 In example (13), with just two observations we were 
able to conclude that 021 == ββ . When we add a third 
observation we can therefore at the same time drop the first 
and second factors from further consideration. The full de-
sign matrix with three observations 
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can thus be reduced to  
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where the asterisks indicate the suppressed first and second 
factors. But clearly in this reduced form the first two rows 
are identical and so are linearly dependent. We can thus 
thus suppress the second row as well and work with the 
further reduced matrix: 
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which is essentially a nonsingular )22( ×  matrix. It is ob-
vious in this case that the third observation together with 
the first observation and the fact that 021 == ββ  will al-

low both 30  and ββ  to be determined. Thus in this example 
all four coefficients have been identified with just three ob-
servations. 

4 NUMERICAL EXAMPLES 

We consider some numerical examples to illustrate the 
working of the polytope method and to compare it with se-
quential bifurcation. We shall consider four examples with 
31 factors and one with 127. 
 As they are for illustration only and because we are 
considering just the deterministic case we can for simplic-
ity take any non-zero coefficient to have value unity, all 
others being zero. Also, for the deterministic case the issue 
of sample size does not arise. For the more general case 
where the responses are observed with error, which we will 
address in a separate paper, a small pilot study would be 
required to gauge the magnitude of the observational error, 
so that sufficient observations are used at each design point 
to be able to detect coefficient values deemed to be practi-
cally significant. 
 We also need to select a suitable full design matrix X 
for the polytope method. In the stochastic case, the method 
has a clear advantage over sequential bifurcation in that we 
can employ a design with good characteristics. In our case 
we use orthogonal designs. Moreover we can take advan-
tage of any prior information about the likely importance 
of certain coefficients by ranking them in their expected 
order of importance, and then also ranking the design 
points in lexicographic order to try to match the coefficient 
ordering. Thus, though of course in such a small example it 
makes little difference, the design matrix (13) should have 
rows re-ordered to be 
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The purpose of this reordering is to try to ensure that most 
of the null variables will correspond to higher numbered 
factors. The design will then identify these more quickly. 
 Note, as has been done in example (13), that it is best 
to start with all factors at their +1 settings. If then all the 
coefficients are zero, this one run will immediately detect 
them all as being zero. Moreover, even if not all zero, the 
value of the response in this first run will immediately set a 
common upper bound on all the coefficient values, as no 

iβ  can then be greater than y1 . Though we have not made 
use of this fact, taking the first design point in this form 
ensures the polytope will always be a (bounded) polyhe-
dron. 
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 The entire general procedure described in this section 
has been implemented as an Excel VBA macro and tested 
on numerous examples. We give some examples to illus-
trate the method in operation and to compare it with se-
quential bifurcation. In the examples below SB refers to 
sequential bifurcation and PM to the polytope method. 
 
Example 1  Here k = 31, with 4 non-null β ’s 
 14310 ==== ββββ  
SB took 10 observations, PM took 9. 
 
Example 2  Here k = 31, with 6 non-null β ’s 
 1864310 ====== ββββββ . 
SB took 14 observations, PM took 12. 
 
Example 3  Here k = 31, with 8 non-null β ’s 
 12721864310 ======== ββββββββ . 
SB took 21 observations, PM took 17. 
 
Example 4  Here k = 31,  with 10 non-null β ’s 
 127211917864310 ========== ββββββββββ . 
SB took 24 observations, PM took 18. 
 
It will be seen from these examples that when the number 
of non-null coefficients is small (and ranged to one end in 
the order in which the coefficients appear) then there is lit-
tle difference between the two methods, though the poly-
tope method does do better. However as the number of 
non-null coefficients increases and as they become more 
spread in their positions in the list of all coefficients, then 
the difference widens with the polytope method becoming 
significantly more advantageous. 
 Figure 1 shows the sequence of observations and the 
resulting identification of coefficient values in the sequen-
tial bifurcation case for Example 4. Figure 2 shows the cor-
responding sequence for the same example using the poly-
tope method. 
 Our fifth and last example is where there are 127 fac-
tors. 
  
Example 5 Here k = 127, with 14 non-null β ’s 

 
1

1

121117104103846559

34864310

=======
=======
βββββββ

βββββββ
 

SB took 50 observations, PM took 37. 
 

It will be seen that in this case the polytope method has 
performed significantly better. 
 

 
Figure 1: The Sequence of Coefficient Determinations for 
Example 4 Using the Sequential Bifurcation Method. 
(Reading from the top down, each row is an additional ob-
servation. Yellow – null coefficient identified, blue – non-
null coefficient identified.) 
 

 
Figure 2: The Sequence of Coefficient Determinations for 
Example 4 Using the Polytope Method. (Reading from the 
top down, each row is an additional observation. Yellow – 
null coefficient identified, blue – non-null coefficient iden-
tified.) 

5 CONCLUSIONS 

We have presented a method for identifying the coeffi-
cients of a deterministic linear model that makes full use of 
available information. The theory indicates that the method 
will be superior to the sequential bifurcation method. The 
(admittedly limited) numerical comparisons indicate that 
the improvement is a worthwhile one. 

Though we have only discussed the deterministic case 
the method is capable of extension to the stochastic case, 
and this will be the subject of a further article. 

The examples presented in this article were calculated 
using VBA macros in an Excel Worksheet. The worksheet 
is available from the authors. 
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