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This article introduces a new class of experimental designs, called split factorials, which allow for the 
estimation of both response surface effects (fixed effects of crossed factors) and variance components 
arising from nested random effects. With an economical run size, split factorials provide flexibility 
in dividing the degrees of freedom among the different estimations. For a split factorial design, it 
is shown that the OLS estimators for the fixed effects are BLUE and that the variance component 
estimators from the mean squared errors on the ANOVA table are minimum variance among unbiased 
quadratic estimators. An application involving concrete mixing demonstrates the use of a split factorial 
experiment. 

KEY WORDS: Blocking schemes; Fractional factorials; Mixed effects model; Nested factors; REML; 
Split factorial; Staggered nested factorial. 

In many experimental settings, the measured response is 
affected not only by the fixed effects of crossed factors, but 
also by the random effects (usually nested) of sampling and 
measurement procedures. For example, in an experiment to 
study certain critical dimensions on a molded part, machine 
settings such as mold zone temperatures or screw speed could 
be the crossed factors of interest while shift-to-shift variation, 
part-to-part variation, and measurement-to-measurement vari- 
ation might be the random effects of interest. The fixed effect 
estimates can be used to optimize the process, and knowing 
which variation source is largest could help to focus quality 
improvement efforts. 

The fixed effects of crossed factors are often studied with 
2k-P experiments, where k is the number of crossed factors, p 
is the degree of fractionation, and 2k-p is the number of design 
points. The variances of nested random effects are called vari- 
ance components (see Searle, Casella, and McCulloch 1992) 
and are estimated typically by means of hierarchical or nested 
designs (see Fig. 1). If the ith nested random factor in a q- 
stage hierarchical design has the same number of levels, mi, at 
each level of the (i - )st factor, then the design is balanced. 
If m; = m for all i, then the design will have mq observations. 
Figure 1 shows a balanced hierarchical design for two random 
factors: batches and samples nested within batches. 

Both crossed factor effects and variance components could 
be estimated from an mq nested design at each design point in 
a 2k-P design, requiring m4 x 2k-p observations, which often 
is not feasible or economical. 

In this article, we construct a new class of experimental 
designs, called split factorial designs. A split factorial is a 

subset of an mq x 2k-p experiment that preserves the ability 
to estimate both the crossed factor effects (with a specified 
resolution) and the q variance components. Although other 
subsets could be used for these situations, the split factorial 
is chosen here because it is easy to design, run, and analyze. 
These desirable properties result because the split factorial 
retains many of the characteristics of balanced designs includ- 
ing equal numbers of observations at each of the 2k-P design 
points, the use of simple methods for parameter estimation, 
and an easily understood structure that can facilitate imple- 
mentation of the experiment. 

In the next section, a design methodology for split factorial 
experiments is introduced. Section 2 discusses analysis of split 
factorial designs and compares split factorials with existing 
designs for the few practical cases where they are comparable. 
In Section 3, an experiment involving concrete mixing, with 
three crossed factors and two variance components, motivates 
and demonstrates the use of split factorial experiments. A dis- 
cussion section concludes the article. 

1. DESIGN METHODOLOGY 

A methodology for designing a split factorial experiment 
with k crossed factors, each at two levels, and q = 2d (where 
d is an integer) variance components associated with nested 
random effects starts with a 2k-P design with n observations at 
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Table 2. The 2(3+2)- (2+0) x 2 Split Factorial Using B1 = AB and 

B2 = AC for Splitting 

Sample Sample Sample Sample Sample Sample Sample Sample Sample 
1 2 3 1 2 3 1 2 3 

Figure 1. A Balanced Nested Design for m1 = 3 Batches and m2 = 3 
Samples. 

each point. The 2k-P design points are split into q subexper- 
iments by d blocking (splitting) generators. The experiment 
is then called a 2(k+d)-(d+p) x n split factorial. Each subex- 

periment gathers information on only one of the q variance 
components. The design steps for a 2(k+d)-(d+P) x n split fac- 
torial are as follows: 

1. Select n and p such that 2k-p degrees of freedom (df) 
are enough for estimating the fixed effects and (n - 1)2k-d-p 
df are sufficient for each variance component. 

2. Choose a 2(k+d)-(d+p) blocked factorial using blocking 
generators from a reference such as Bisgaard (1994), Sun, 
Wu, and Chen (1997), or Sitter, Chen, and Feder (1997). The 
q blocks (here called subexperiments) will each have 2k-d-P 

design points. 
3. Let the variance components (1 to q) be such that the 

random effects of the (i + 1)st variance component are nested 
under the effects of the ith variance component. 

4. In the ith subexperiment (i = 1, .. , q), a nested design 
that branches only at the ith level (into n branches) will be 
run at each of the 2k-d-p design points. 

Example 1: This split factorial is too small for actual use, 
but it is useful for demonstration of the design procedures. Let 
a 23 experiment (k = 3, p = 0) be split into four subexperi- 
ments for four variance components (q = 4, d = 2) with n = 3 
observations at each design point. The blocking generators 
B, = AB and B2 = AC can be used to split the experiment 
into subexperiments, each with two design points (see Tables 1 
and 2). Figure 2 shows the nesting structure at each design 
point. As described in design step 4, the nesting structures 
branch at only one level, and the branching level is different 
for each subexperiment. For example, the nesting structures 
at the two design points in subexperiment 3 are circled in 
Figure 2 and branch only at the third level of nesting. 

Table 1. Coding for Converting Two Columns, B, and B2, from a 
Two-Level Factorial Into a Single Column Designating 

Subexperiment or Block 

Subexperiment, 
B1 B2 Level, or Block 

-1 -1 > 1 
1 -1 > 2 

-1 1 > 3 
1 1 - > 4 
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Design 
point A B C B = AB B2 = AC Subexp. 

( -1 1 - 1 1 1 4 
() 1 -1 -1 -1 -1 1 
(a) -1 1 -1 -1 1 3 

) 1 1 -1 1 -1 2 
) -1 -1 1 1 -1 2 

( 1 -1 1 -1 1 3 
(7 -1 1 1 -1 -1 1 

1 1 1 1 1 4 

2. ANALYSIS OF SPLIT FACTORIAL DESIGNS 

In this section, a linear mixed effects model is presented for 
the analysis of a split factorial. Using this model, estimation 
and tests of the variance components are discussed, including 
the difficulty of avoiding negative variance estimates. Correla- 
tion between the fixed effects estimators is discussed, and then 
the estimates of the variance components are used to perform 
approximate tests for the fixed effects. Finally, split facto- 
rials are compared with an alternative experimental design 
methodology. 

Model and Variance Structure 

A response model for a 2(k+d)-(d+p) x n split factorial is 

q 

y = Xb + L Ziui, 
i=l 

(1) 

where r = 2k-P, X is an nr x r matrix of estimable response 
surface contrasts including a constant column, and b is a vec- 
tor of r unknown coefficient parameters. The matrix Zi is 
an (nr x inr+(q-i)r) indicator matrix associated with the ith 

q 
variance component, and ui is a vector of length inr+(q-)r q 

consisting of normally distributed independent random effect 
parameters associated with the ith variance component such 
that ui - N(O, Io2). Each random effect in ui is nested under 
the treatment combinations and the (i- 1) random effects 
above it. The usual random error term is uq. The quantity 
inr+(q-i)r is derived by observing that there are nr levels of the 

q q 
ith random factor in the first i subexperiments and r levels in 
the remaining (q - i) subexperiments. 

Assuming that the variance components do not depend on 
the crossed factors, then 

q 

V = Var(y) = L o'ZiZ.( 
i=l 

Given k factors, 2k-p design points, q variance components, 
and n observations per design point, then expressions for X 
and Zi can be derived for a split factorial design. Let X, be 
the full rank r x r model matrix (including the constant) for a 
single replicate of the 2k-p design; then XlX = X1XI = rIr, 
where Ir is the r x r identity matrix. The observations are 
ordered such that X = X,l ln, where 1, is an n-length vector 
of ones and 0 represents the Kronecker product. Let x',, be 
the row in X1, that corresponds to the tth observation in the 

Batch 1 Batch 2 Batch 3 
0 1 | 

46 
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ent 3 | >C- rt Guide to Nesting 

* 4jjI-^ .^ 1Branches 

)r35 6 Ja le v at level 1 

^1__ r,-J( Branches 
at level 2 

(J^I)) .i^ ~ a?~ '~ J Branches 
at level 3 

irJ ^-j- Branches 

.1 A I 
- _ .1 _r L at level 4 

Figure 2. The Nesting Structure for k 3, p = 0, q 4, n =3. 

sth subexperiment. Now sort the rows of XI in ascending order 
first by t and then by s such that 

Xl = 

, I 

xll 
X 

2, 1 

q, I 

X' 1,2 

X' 2. 2 

X - q. r/q_ 

and thus 

I,1 Q ln - 
x ?ln 

X1,2 01, 

x11,01, 2.2 1,,n 

The Kronecker sum is defined such that P Q = [P [0 Q] 
for any matrices P and Q. If this notation is extended to a 
Kronecker summation, then the ordering in (3) leads to 

Zi - Ir/lq In E n )) (4) 

Estimation and Testing of Variance Components 
The variance component estimators can be derived by 

the method of moments from the expected mean squares in 
Table 3. In the table, the sum of squares for the ith level of 
nesting is given by 

SSI = E (Yygm** ..- Y*..*)2 
g-= m 

and 

SS = ? *... JE... .. *- _ ... *)2 SSi- - - . Z i (Yg ...lm** ....* Yg .**.. * 
g=1 I m h 

for i =2 ...q, 

where g is the subscript related to the design points (treatment 
combinations) of the crossed design, and 1, m, and h are the 
subscripts related to the (i - 1)st, ith, and qth level of nesting, 
respectively. The star subscript indicates averaging over that 
level of nesting. 

Due to the simplicity of the expected mean squares for a 
split factorial, the method of moments estimator for o02 is 
o7 = MS- MSji+ for i = 1 to q- 1. Under normality, these 
ANOVA estimators are not only unbiased, but also are the 
uniformly minimum variance unbiased translation-invariant 
quadratic (UMVUIQ) estimators (see Appendix B). 

Tests for the variance components are also simple under 
normality. It can be shown that all terms in SSi are zero except 
those deriving from observations in subexperiment i. Since 
each subexperiment is balanced when treated alone, each of 
the sums of squares for variance components in Table 3 when 
divided by its expected mean square has a chi-squared distri- 
bution with (n - 1)2k-d-P degrees of freedom. Thus, standard 
F-tests as shown in Table 3 can be used to test if any variance 
component is zero. 

Searle et al. (1992, p. 130) discuss various methods when 
variance estimates are negative. A common strategy is to 
assume that the corresponding variance components are zero 
or at least negligible. Alternatively, maximum likelihood 
methods like those implemented in many software packages 
always produce non-negative estimates. Negative estimates 
will tend to occur unless the variance components with lower 
subscripts are substantially larger than those with higher 
subscripts. In split factorials, increasing either n or r will 
reduce the occurrence of negative estimates. Under normality, 
Searle et al. (1992, p. 137) provide an expression which, 
when applied to the split factorial ANOVA table in Table 3, 
shows that 

,q-(i+l) 2 
2-,j=o q-j Pr{-2 < O} =Pr Ff, f < 2 q -' o-J 2 

where f = (n- 1)2k-d- and Fff has an F-distribution with f 
and f degrees of freedom. Clearly, one needs some knowledge 
of the relative size of the variance components to determine 
the probability of negative variance estimates. 

When all ANOVA estimates are positive and normality is 
assumed, they are equivalent to restricted maximum likelihood 
(REML) estimates of the variance components, because 
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Table 3. ANOVA Table for a Split Factorial 

Source df SS MS Expected MS F Ratio 

Fixed effects (not 2-p SSFE MSFE b X Xb/2k P + E (n- -( ) o2 

corrected for the mean) i=1 
Variance component 1 (n - 1)2k-d-p SS1 MS1 ,o j F = MS1/MS2 

Variance component i (n -1)2 kd-P SS MS, io/ -j F = MS/MS,i 

Error (var. comp. q) (n -1)2k-d-p SSq MSq o 
Total n2k-p SST 

each subexperiment, treated alone, contains balanced data 
(see Anderson, Henderson, Pukelshiem, and Searle 1984). 
REML estimators are consistent and have an approximately 
normal distribution in large samples (Searle et al., 1992). This 
equivalence provides a closed-form expression for the REML 
estimates. 

Estimation, Correlation, and Tests of Fixed Effects 

The condition under which the OLS estimators of the 
parameters in b are the best linear unbiased estimators (BLUE) 
is that an invertible matrix A exists such that V-'X = XA 
(Seber 1977, p. 63). Appendix A shows that this condition is 
satisfied for data from a split factorial. Thus, estimating the 
coefficients of the response surface can be done by simple 
OLS regression techniques: 

b = (X'V-'X)-'X'V-y = (X'X)-X'y = -X'y. (5) nr 

In addition to the usual confounding caused by the fraction- 
ation in the 2k-p design, there will also be nonzero covariance 
between certain fixed effect estimators due to the covariance 
between certain observations in the split factorial. The effect 
estimators that are correlated can be determined by creating a 
new defining relation for the experiment, called a correlation 
relation, that uses all the generators including the d genera- 
tors that are used to split the factorial into subexperiments. 
However, the splitting generators use a different operator "-" 
which means "correlated with." Suppose, for example, the 
defining relation of a factorial design is I = ABCF and the 
splitting generators are B, - ABE, B2- BCDE. Since there 
are no expected block effects, these effects are eliminated. The 
words ABE and BCDE are then used to extend the defining 
relation (see Box, Hunter, and Hunter 1978, p. 409) to a cor- 
relation relation as follows: 

I = ABCF - ABE - CEF - BCDE 

- ADEF - ACD - BDF. 

Multiplying any effect by this correlation relation shows the 
confounding and correlation pattern. Concepts similar to reso- 
lution and aberration (see Fries and Hunter 1980) can now be 
used to select splitting generators for split factorials. 

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1 

The sign 
the variance- 
which is 

and amount of correlation will be evident in 
-covariance matrix for the coefficient estimators, 

H = Var(b) = (X'V- X)-'. (6) 

Commonly, the estimates of the variance components derived 
by the method of moments above are used in (2) to obtain a 
V that can be substituted for V in (6). Let b, be the tth ele- 
ment of b. Under the null hypothesis that b = 0, the expected 
mean square associated with b, can be shown to be EYi= 
(n - i(n- 1))oa2. However, if any of the effects in the correla- 
tion string for b, are non-null, they will bias the mean square. 
Assuming all the effects in the correlation string are null, an 
approximate F-test that b = 0 can be performed using the test 
statistic Ft = b2/h,,, where h,, is the tth diagonal element of 
H = (X'V-'X)-'. Equivalently, 

Ft = MSFE t/ (n- ))MS/, 
i=1 q (7) 

where MSFE, is the mean square due only to the tth factor. 
It can be shown that the denominator in (7) is equal to a'm, 
where the ith elements of m and a are mi = MSi and 

n-(n-l)/q 
I -(n-)/q 

for i = 1, 

else, 

respectively. Satterthwaite's approximation now can be used 
to determine appropriate degrees of freedom for this approx- 
imate F-test. The numerator has one degree of freedom and 
the denominator degrees of freedom are approximated by 

d(n 
- 

1)2k-d-P (a'm)2 
dfdenominator q 

(aimi)2 
i=l 

Comparison With Existing Design Methodology 

The only class of designs in the literature for this type of 
experimentation is the staggered nested factorial proposed by 
Smith and Beverly (1981). Staggered nested designs were first 
introduced by Bainbridge (1965) and are unbalanced hierar- 
chical nested designs with a single branch at each level of 
nesting. These designs split the degrees of freedom equally 
among the variance components. The staggered nested facto- 
rial places a staggered nested design at each point of a crossed 
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3 i...../ D .../......., 

Split Factorial Staggered Nested Factorial 

Guide to Nesting 

-t 3 batches, I smpl. each 

-rE I batch, 3 samples 

- 1 batch, 2 samples & 
1 batch, 1 sample 

Figure 3. Comparable Designs for k = 3, p = O, q = 2, n = 3. 

factor design. Staggered nested factorials exist only if n, the 
number of observations at each design point, is q + 1, where 
q is the number of variance components. For two designs to 
be comparable, they must have the same crossed design and 
equal degrees for each of the variance components. Thus, for 
any split factorial with q = 2 and n = 3, there is a compa- 
rable staggered nested factorial. Comparable designs for a 23 
crossed design are shown in Figure 3. Table 4 shows that the 
staggered nested design produces lower variance estimators 
than the split factorial and, further, is orthogonal if the crossed 
factor design is orthogonal (unlike the split factorial). How- 
ever, due to the imbalance of the staggered nested design, the 
OLS estimators for the fixed effects will not be BLUE, as they 
are for the split factorial, and there is no guarantee that the 
ANOVA estimators of the variance components are UMVUIQ. 

For Table 4, the variances of the variance component esti- 
mators can be found from the formulas provided in Searle 
et al. (1992, Appendix F.1, part c). Since the variance com- 
ponents are nested under the treatment combinations, we can 
ignore the fixed effects for this calculation. Using their model 
and notation, 

Yij = !~ + ti + eij' 

i= 1,2, ...,a and j= 1,2,.... , 

Eni = N, Eni2- =S2, En/ = S3, 

where a is the total number of batches in the experiment. Both 
the staggered nested factorial and the split factorial will have 
a = 2r, and N = 3r, where r is the number of design points 
in the crossed factor design. For the split factorial, ni = 1 for 
3r/2 of the batches and ni = 3 for the remaining r/2 batches; 
thus S2 = 6r and S3 = 15r. For the staggered nested facto- 
rial, ni = 1 for r of the batches and ni = 2 for the remaining 

batches; thus S2 = 5r and S3 = 9r. Let r = o/of2. Substituting 
these values into the formulas provided by Searle et al. (1992) 
and simplifying gives 

Varsplit (ol) 

2(1 -5r+6r2-4rr+6r2 6 r- 62+6r2T2) 
r(3r- 2)2 

Varstag (o) 

2(9 - 45r + 54r2 - 30rT + 54r2T - 29rT2 + 45r2T2) 

r(9r -5)2 

and the difference, DvI = Varsplit(o2) - Varstag(O2), is 

D,v = 2(-11 + 73r- 156r2 + 108r3 + 20r - 66r2 

+ 54r3 - 34rr2 + 162r2r2 - 225r3T2 

+ 81r4T2)/r(3r - 2)2(9r - 5)2 

For r > 2, it can be shown that Dvl is a parabola in T whose 
minimum point is greater than zero. Since Dvl is positive for 
all o2 and o2, any staggered nested factorial with q = 2 and 
n = 3 will have a smaller variance for &2 than the competing 
split factorial. Similar results were found by simulation for the 
case of q = 4 and n = 5. 

For these cases, and for the case of three variance compo- 
nents (q = 3 and n = 4) where no comparable split factorial 
exists, the staggered nested factorials are preferable designs 
unless a simple analysis is very important. There are, how- 
ever, many other cases where n / q + 1 and staggered nested 
designs are not available. In particular, for the practical case 
of q = 2 and n = 2, there is no comparable design for the 
split factorial. The existence and optimality of designs when 
n - q + 1 and n > 2 is left for future research. 

Table 4. Comparison of Split Factorial and Staggered Nested Factorial 

Staggered Nested Difference 
Split Factorial Factorial (Split-Staggered) 

Var(,)V s 2o-12+o2. 
2 

2o1+.2o-a2o2 o1(22 +.22) Var(bs) Vs V :-2; 
(q=2, n=3) 3r r(4o + 3o-2) 3r(4o2 + 3o) >0 V 02 (q = 2, n = 3) ' 

Var(&s2) Varsplt (V.2) Vars ()2) (2) 
(q = 2, n =3) >0 V0o-2,-2 

Var(&22) 
2o 2o 0, 

V2,2 

(q =2,n=3) r r 

NOTE: r is the number of design points in the crossed factor design. 
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Table 5. The Full 64-Run Design for the Concrete Permeability Experiment 

1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

Code 2 W/C ratio Max. ag. Smpl. 1 Smpl. 2 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
1 
1 
1 
1 
1 
1 
1 
1 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

Batch 2 

Smpl. 1 Smpl. 2 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

NOTE: x indicates an observation. 

3. CONCRETE PERMEABILITY APPLICATION 

The split factorial designs were motivated by an experiment 
run at the NSF Center for Advanced Cement-Based Materials 
at Northwestern University as a part of a joint project with 
the National Institute of Statistical Sciences. The response is 
the electric charge (in Coulombs) passing through a sample 
in the rapid chloride permeability test (RCPT); see ASTM 
(1991). Lower charge implies lower permeability of concrete 
to chloride ions and thus better performance. For exposition 
purposes, this application has been simplified. The full dataset 
is in Appendix 3.5 of Jaiswal (1998). 

Concrete is made by combining water, cement, and 
aggregate (rocks, sand) of various sizes. The experiment 
included two levels of water-to-cement ratio (W/C), four 
aggregate grades, and two maximum aggregate sizes. The 
goal of the experiment was to relate these variables to the 
chloride permeability and to estimate the batch-to-batch and 

Guide to Nesting 

Batch 1 2Sample 1 
Sample 2 

Batch 2 Sample 2 
Sample 1 

41/ 

Aggregate Grade 

2 - 
" 

sample-to-sample variance components. Since the RCPT is 

destructive, no repeated measurements can be made, and thus 
measurement error is confounded with the sample-to-sample 
variance component. For simplicity, we assume measurement 
error is negligible. Two primary reasons for estimating the 
variance components were (1) to understand the variation of 

permeability in concrete structures where multiple batches 
of concrete are poured together and (2) to gain intuition on 
whether the mixing or casting process might produce larger 
variation. 

A design with four observations at each of the 16 design 
points is presented in Table 5 and shown graphically in 

Figure 4. Table 1 is used again to convert two columns A and 
B, from the 24 full factorial, into a single column, X, for the 
four-level factor. Many authors have described this procedure, 
including Ankenman (1999) and Montgomery (1997, p. 364). 
Although this full design was desirable, resource constraints 

required a design with only 32 observations. If the design 

MI 
e 

,- Max. Aggregate Size 

Water-to-Cement Ratio 1 

Figure 4. The Full Design. 
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Table 6. The Split Factorial Design for the Concrete Permeability Experiment 

X A B C D Batch 1 Batch 2 

Recipe # Grade Code 1 Code 2 W/C ratio Max. ag. B, -ACD Subexp. Smpl. 1 Smpl. 2 Smpl. 1 Smpl. 2 

1 1 -1 -1 -1 -1 1 x x 
10 2 1 -1 -1 1 -1 1x x 
3 3 -1 1 -1 -1 -1 1 x x 

12 4 1 1 -1 1 -1 1x x 
13 1 - 1 1 1 1 x x 
6 2 1 -1 1 -1 -1 1x x 

15 3 -1 1 1 1 -1 1x 
8 4 1 1 1 -1 -1x x 
9 1 -1 1 -1 1 2x x 
2 2 1 -1 -1 -1 2 x x 

11 3 -1 1 1 1 2 x x 
4 4 1 1 1 1 2 x x 
5 1 1 1 1 -1 1 x 

14 2 1 -1 1 1 1 2 x x 
7 3 -1 1 1 -1 1 2 x x 

16 4 1 1 1 2 x x 

NOTE: x indicates an observation. 

were reduced by simply eliminating one-half of the recipes 
from the full design, many interaction terms would not be 
estimable. 

The split factorial, shown in Table 6 and Figure 5, also 
reduces the design to 32 runs. The design has k = 4 two-level 
factors, two of which are converted to a four-level factor. It 
has n = 2 observations at each design point, and there are 
two subexperiments, so d = 1 and q = 2. Since it is a full 
factorial, p = 0, there is no defining relation, r = 2k- = 16, 
and the correlation relation is I - ACD. For the split factorial, 
all response surface effects can be estimated, though some of 
these estimators are correlated. There are 8 degrees of freedom 
for estimating each variance component. 

Figure 6 shows the measured charge (in Coulombs) for 
the observations in the split factorial. Lower aggregate grade 
levels and larger maximum aggregate size reduce the charge, 
suggesting that including larger aggregate improves perfor- 
mance. 

Guide to Nesting 

Batch 1, Sample 1 
Sample 2 

Batch2 
- 

Sample 

I 

Sample 1 

The variance components can be estimated from the mean 

square in Table 7 as "2 = 272,891- 135,560 = 137,331 
and &2 = 135,560. In this case, the variance components are 

roughly the same size. The F-test in Table 7 has a p-value of 
0.17, suggesting the batch-to-batch variance may be zero, or, 
in any event, is not much larger than the sample-to-sample 
variance. 

Table 8 shows the approximate tests for the fixed effects, 
using Satterthwaite's method (cf. Section 2). For this 
example, a' = (3/2 -1/2) and m' = (272891.18 135559.75), 
and thus the denominator for the F-test in (7) is a'm = 
341557.18 and dfdenominator = 5.42. The tests suggest that 
Factor D, the maximum aggregate size, and factor X, the 
aggregate grade, have significant effects, confirming the 
observations from the cube plot in Figure 6. Both the 
quadratic and cubic terms for aggregate grade were found to 
be insignificant; thus only the linear contrast (X in Table 6) 

4 

Aggregate Grade 

2 

1 Max. Aggregate Size 

-1 Water-to-Cement Ratio 1 

Figure 5. Split Factorial Design for the Concrete Permeability Experiment. 
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-1 Water to Cement Ratio 1 

Figure 6. A Cube Plot of the Data From the Concrete Experiment. 

and maximum aggregate size (D in Table 6) are included in 
the response surface model, 

Permeability = 3987 + 654X - 826 D. 

This model allows for predictions of the permeability in the 

experimental region. More description of the results can be 
found in Jaiswal et al. (2000). 

4. DISCUSSION AND EXTENSIONS 

Split factorial designs have attractive characteristics for esti- 
mating both response surface effects and variance compo- 
nents. (1) The experimenter can divide the degrees of freedom 
between the response surface effects and the variance compo- 
nents. (2) Each variance component is estimated with equal 
degrees of freedom. (3) The ANOVA and OLS estimates are 
often adequate, resulting in simple analysis. (4) The symmetry 
of the split factorial facilitates the implementation and analysis 
of the experiment. 

To illustrate (4) above, note that due to the symmetry of the 
split factorial, the estimate of the sample-to-sample variance 

is just the pooled variance of the pairs of observations in the 
shaded circles in Figure 6. Similarly the pooled variance from 
the unshaded circles is the estimate of the sum of the two vari- 
ance components. Although missing observations change the 
correlation structure of the fixed effect estimators, they do not 
affect the property that the OLS estimators for the fixed effects 
are BLUE or that the ANOVA estimators are UMVUIQ, since 

they change only the size of the identity matrices and length 
of the vectors of ones in Equations (3) and (4). However, 
adding observations, such as an additional sample to any batch 
in subexperiment 1 on Table 6, can destroy these properties. 
With such an addition, generalized least squares and REML 
estimates would be needed for the fixed effects and variance 

components, respectively. 
More flexibility can be introduced into the split factorial 

designs by allowing each subexperiment to have a different 
number, ni, of observations at each design point, resulting 
in (ni - 1)2k-d-p degrees of freedom in the sum of squares 
for the ith variance component and a total number of 

qL ni2k-d-P observations. =1 

Table 7. The ANOVA Table for the Concrete Permeability Example 

Source DF Type I SS Type I MS EMS F p 

X 3 17387343.84 5795781.28 
C 1 94721.28 94721.28 
D 1 21801455.28 21801455.28 
X* C 3 2957371.09 985790.36 
X*D 3 4013875.59 1337958.53 
C *D 1 1168538.28 1168538.28 
X* C *D 3 1102912.09 367637.36 
BATCH (X* C D) 8 2183129.50 272891.18 0-2 + 2 2.01 .17 
Sample (BATCH) 8 1084478.00 135559.75 (T2 
Corrected total 31 51793824.96 
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Table 8. Tests for Fixed Effects 

Source NDF DDF Type III F Pr > F 

X 
C 
D 
X*C 
X*D 
C*D 
X*C*D 

3 
1 
1 
3 
3 
1 
3 

5.42 
5.42 
5.42 
5.42 
5.42 
5.42 
5.42 

16.97 
.28 

63.83 
2.89 
3.92 
3.42 
1.08 

.0036 

.6193 

.0003 

.1339 

.0809 

.1191 

.4332 

APPENDIX A: PROOF THAT OLS ESTIMATORS 
ARE BLUE FOR THE FIXED EFFECTS 

IN A SPLIT FACTORIAL 

The well-known condition, under which the OLS estima- 
tors of fixed effects from a model matrix, X, are BLUE, is 
that there exists an invertible matrix A such that V-'X = XA, 
where V = Var(y). See Seber (1977, p. 63). 

For a split factorial, we will show that V-'X = XA for 

1 
A= -X1AlXl, r 

where X, is the full r x r model matrix (including the constant 
column) for a single replicate of a 2k-p design and A, is an 
r x r diagonal matrix. 

Given the ordering of X in (3) for a split factorial and the 
resulting Z in (4), then 

rlq / i q ? \ 
2 1 

O-i2 1, (1) ai2 j Zizi. = (ffiI) (D ED (ffl n ) ) 
t=l s=I s=i+ I 

(A.1) 

From (2) and (A. 1), it can be seen that V = ?=l (al n +1jJn), 
where aj = E Io= and and j =r = 2k-P. Assume 
that O' > 0. Since o2 > 0 Vi, it follows that aj > 0, j > 
0 Vj. The inverse of V is then 

r 

V--l = 0 (WI;n + Pj,), (A.2) 
j=i 

where 

a* = I/ay and 3* = aS= ui a ~J ~aj(aj + nflj) 

Let AI be an r x r diagonal matrix such that 8, = a* + n/3 
is the jth diagonal element of A1; then using (A.2), 

V-'X= AX, (A.3) 

where A = A 0In. Since 8j = 1/(aj + np), then Sij > 0; 
thus both A1 and A are invertible. Using (A.3) and XiX = 
X'XI = rlr, then 

XA = (XI 01n) (X' AiX 1 )I 

= AIX1 0Inln = (A1 ?In) (XI 0ln) 

=AX =V-'X. 

Since A-' = X'l1 'X,, A is invertible and therefore, the 
OLS estimators of the coefficients b in (1) are BLUE, if X is 
the model matrix of a split factorial. 

APPENDIX B: PROOF THAT ANOVA ESTIMATORS 
OF THE VARIANCE COMPONENTS FOR 

SPLIT FACTORIALS ARE UMVUIQ 

The proof of this result follows the argument given in Searle 
et al. (1992, pp. 417-421). It is necessary to assume that there 
is no kurtosis associated with the random effects. 

The argument has two steps, both of which involve 
constructing a linearized version of the quadratic ANOVA esti- 
mators of the variance components. The proof in Appendix A 
implies that the argument on pp. 420-421 of Searle et al. 
(1992) is true for the ANOVA estimators for split factorial 
variance components, and hence that they are the best 
quadratic unbiased estimators of these variance components. 
By construction they are invariant, and to show that they 
have uniformly minimum variance among all such estimators, 
a condition specified by Seely (1971) must be satisfied. 
The remainder of this appendix shows that this condition is 
satisfied, and that hence the ANOVA estimators are UMVUIQ 
estimators. 

For this proof, we use the model in (1). Using X, as in (3), 

X(X'X)-IX'= -XX = - (X 0 (X1 1n) 1X )= (Ir J). 
nr nr in 

Let us define a matrix M = (Inr-X(X'X)-IX'). Some manip- 
ulation shows that 

M - Ir/ q - 

v=1 

Seely's condition concerns the set, 

q 

Q= ji ciMZiZiM ce E), 

of all linear combinations of the MZiZIM matrices. Searle 
et al. refer to Theorem 6 of Kleffe and Pincus (1974) to state 
that if f is a quadratic subspace of symmetric matrices, then 
UMVUIQ estimators exist. A quadratic subspace is a set of 
matrices is such that if any matrix B is in the set, then B2 is 
also in the set. Using Lemma 1 condition (c) of Seely (1971), 
f is a quadratic subspace if 

(M M)(MZWZWM)(MZ M) 

q 

= c, W, MZsZ1M 
s=l 

Vv, w, (B.1) 

where {cv, W } is a q x q x q tensor of constants. The condi- 
tion, simply stated, is that the product of any pair of MZZ'M 
matrices is some linear combination of the set of original 
MZZ'M matrices. 

We will now show that any split factorial experiment will 
satisfy this condition. Using the expression for Zi in (4), 

ZiZi = I r/q (i(In) ( n)). 

Since (In - J,)Jn = 0, where 0, is an n x n matrix of zeros, 
then 

M'ZZIM = Ir/q n ((I n J)(n n( )) 
TEC RICS, F Y 22, =i+l 
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Note that (I - JJ)(I, - J) = (I,- Jj). Thus if v < w, 
then 

(MZL,ZvM) (MZW,ZM) = (MZ,Z' M) (MZZ',,M) 

=MZ z;M, 

and the condition is satisfied. 
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