A Bayesian Stopping Rule for a Single Arm Study:
with a Case Study of Stem Cell Transplantation

Chao-Yin Chen Kathryn Chaloner
University of Minnesota University of Iowa
May-15-2002
• A Case Study: MT9928

Transplantation of Umbilical Cord Blood from Related and Unrelated Donors by Wagner et al. (2001)

— Goal: investigate the use of umbilical cord blood as a source of stem cells for transplantation

— Two strata:
 > one stratum for a **higher dose**, with maximum sample size of \(n = 46 \)
 > one for a **lower dose**, with maximum sample size of \(n = 20 \).
— Statistical Analysis

⊙ A small single arm study

⊙ Maximum sample size for the study is fixed—required by Institutional Review Board (IRB)

⊙ A sequential stopping rule to examine each patient in turn

⊙ The primary concern and the goal:

$$\Pr (\text{Graft Failure of Day 45}) < 10\% \text{ with an upper limit of } 20\%$$
— Stopping rules used are derived from the program *Best* by Goldman and Hannan (2001)

▷ For the higher dose group: \{ – – 3 4 11 19 20 38 46 \}

▷ For the lower dose group: \{ – – 3 11 20 \}

⊙ For Type I error = 0.05 maximize power of

\[H_0: p = 0.10 \quad \text{vs.} \quad H_1: p = 0.20 \]

⊙ The stopping rule for stratum with \(n = 46 \):

\{ – – 3 4 11 19 20 38 46\} with power = 0.6202,

 e.g. If FSSSFFF \(\implies\) Do **NOT** stop, continuing enroll the 8\(^{th}\) patient

⊙ The stopping rule for stratum with \(n = 20 \):

\{ – – 3 11 20\} with power = 0.3858 (too low!)

 e.g. If FSSSFFF \(\implies\) **Stop** at the 7\(^{th}\) patient

Different sample size \(\implies\) Different rules
Motivation:

Unless there is prior information that strata are different the stopping rule for a particular outcome (e.g. FSSSFFF) should be identical.

\[
\begin{align*}
\text{Small sample size} & \quad \Rightarrow \\
\text{Use prior information to improve stopping rule and statistical analysis} & \quad \Rightarrow \\
\text{A Bayesian stopping rule}
\end{align*}
\]
The Proposed Method and Program

Prior:

\[p \sim \text{Beta}(a, b) \]

Conditional:

\[x_i \mid p \sim \text{indep. Bernoulli}(p), i = 1, 2, \ldots, n \]

Posterior:

\[p \mid X \sim \text{Beta} \left(a + \sum x_i, b + n - \sum x_i \right) \]
• Bayesian stopping rule:

▷ Stop if $Pr(p \leq 0.10|data) \leq p_2$ (e.g. 0.3)

and if $Pr(p \geq 0.20|data) \geq p_3$ (e.g. 0.5)

▷ Stop if, for the new treatment, the posterior probability of graft failure of 10% or less is $\leq 0.30 = p_2$ and posterior probability of graft failure of 20% or more is $\geq 0.50 = p_3$

▷ Otherwise, conclusion is unclear, so continue to use new treatment.
Ex: Suppose for stratum 1 (higher dose) the prior (in **red**) is with mean = 0.1 and s.d. = 0.09 (≃ Beta(1.01, 9.10)) and for stratum 2 (lower dose) the prior (in **blue**) is with mean = 0.15 and s.d. = 0.09 (≃ Beta(2.21, 12.53)). \(p_0 = 0.10 \) is marked in black and \(p_1 = 0.20 \) is in **green**.
Ex (continued): If $p_2 = 0.30$ and $p_3 = 0.50$ are chosen, Bayesian stopping rules are:

▷ For the higher dose stratum: $\{-3, 8, 13, 18, 23, 28, 33, 38, 43, 46\}$

 size = 0.0896 (compared to 0.0492)

 power = 0.5649 (compared to 0.6202)

 e.g. Stop if FSSFF (compared to “Continuing enroll the 8th”)

▷ For the lower dose stratum: $\{-5, 10, 15, 20\}$

 size = 0.1375 (compared to 0.0496)

 power = 0.5214 (compared to 0.3858)

 e.g. Stop if FSSFF (compared to “Stop at the 7th”)

Different prior information \Rightarrow Different rules
If for both strata the prior information is the same (i.e.
≈ Beta(1.01, 9.10)) the stopping rules are:

▷ For the higher dose stratum: \{ -3 8 13 18 23 28 33 38 43 46 \}
▷ For the lower dose stratum: \{ -3 8 13 18 20 \}

Same prior information \implies same stopping rules
Outline of Technical Report

- Background and Motivation
- The Proposed Method and Program (in R)
- Case Study—A Bayesian Stopping Rule for MT9928
- Tables Showing rules for different prior distributions, different p_2 and p_3
- Compare rules by
 1. Size
 2. Power
 3. Average Sample Size (ASN)
 4. Expected Relative Loss (ERL)
Conclusion

With some prior knowledge stopping rules can be improved upon.

R Program is available at:

with functions: mbetaplot, sizepower, and stopping
References

http://home.clara.net/sisa/sprt.htm.