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Finding 2d ham sandwich cuts in linear time ∗

Benjamin Armbruster†

March 2, 2008

Abstract

A ham sandwich cut in d dimensions is a (d − 1)-dimensional hyperplane that divides each

of d objects in half. While the existence of such a hyperplane was shown in 1938, little is known

about how to find one. We are the first to show how this can be done in 2 dimensions when both

objects are (possibly overlapping) convex polygons. Our algorithm runs in O(N) time where N

is the sum of the number of sides of the two polygons. We also give a linear time algorithm for

the case when the first object is a convex polygon and the second object is a finite set of points.

1 Introduction

Traditionally a ham sandwich cut in d dimensions is a (d− 1)-dimensional hyperplane that divides

each of d objects (i.e., sets of finite Lebesgue outer measure) in half (i.e., separates each object

into two sets of equal outer measure). The corresponding ham sandwich theorem states that a ham

sandwich cut always exists (though it may not be unique). In two dimensions this theorem is also

known as the pancake theorem. Beyer and Zardecki (2004) relate the early history of the theorem

which goes back to Steinhaus et al. (1938). A simple proof of the ham sandwich theorem is in

the Wikipedia while Stone and Tukey (1942) prove a generalization. Proofs of the ham sandwich

theorem do not give exact or efficient algorithms for finding a ham sandwich cut. Since the ham

sandwich theorem is well known and has a long history, we believe that an exact and efficient

algorithm for finding a ham sandwich cut is of interest.
∗B.A. gratefully acknowledges support of an NSF Graduate Research Fellowship. The author thanks John Gunnar

Carlsson, Erick Delage, and Yinyu Ye for helpful comments.
†Department of Management Science and Engineering, Stanford University, Stanford, California 94305-4026, USA
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Stojmenović (1991) provides the first algorithm for finding a ham sandwich cut that we are

aware of.1 He considers two disjoint convex polygons in the plane with N sides in total and shows

how to find a 2-dimensional ham sandwich cut in O(N) time. This article extends his result by

removing the requirement that the polygons must be disjoint.

Related work has shown how to find a d-dimensional ham sandwich cut when the d objects are

finite sets of points. In this version of the problem, a hyperplane h is a ham sandwich cut if at most

half the points in each set lie in either of the two open half-space defined by h. Lo et al. (1994)

provide an algorithm to construct such ham sandwich cuts which for the case of two sets in the

plane with N points in total runs in O(N) time.

There is also a semi-discrete ham sandwich problem in d dimensions where only some of the d

objects are finite sets of points. In that case we seek a hyperplane h dividing in half each set of

points (i.e., the open half-planes defined by h each contain at most half the points) and dividing

in half (in terms of volume) each of the other objects. Lemma 7 of Carlsson et al. (2007) considers

the planar case where the first object is a convex polygon with m vertices and the second object

is a set containing n points where n is even. It gives an algorithm that finds a ham sandwich cut

in O(N log N) time where N := m + n. In this paper we remove the restriction that the number

of points must be even and improve the running time to O(N). Table 1 summarizes the previous

results for the planar case and the scope of this work.

object 1 object 2 running time note

convex polygon convex polygon O(N) objects disjoint;
Stojmenović (1991)

convex polygon convex polygon O(N) this article

convex polygon set of points O(N log N)
even number of points;
Carlsson et al. (2007)

convex polygon set of points O(N) this article

set of points set of points O(N) Lo et al. (1994)

Table 1: Finding different types of 2-dimensional ham sandwich cuts. Here N is the sum of the
number of sides or points of the two objects.

This paper focuses on the 2-dimensional case. We assume that the first object is a convex

polygon and the second is either another convex polygon or a finite set of points. Convex polygons
1There is earlier work on the discrete version of the ham sandwich problem described below.
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are specified by a list of vertices (and their locations) in counter-clockwise order. Our algorithms

take O(N) time to find a ham sandwich cut where N is the sum of the number of sides or points of

the two objects. The only approximation in our algorithms is computing the roots of a quadratic

equation. Because there are algorithms for computing square roots with quadratic convergence,

the ε-dependency of the solution time is log log 1
ε (which is negligible for typical floating point

precisions). In the next section we describe the algorithm and sketch the proof for the simpler case

of two convex polygons. In section 3 we deal with the more difficult case of a convex polygon and

a set of point.

2 Two Convex Polygons

We will write points and vectors in boldface and unit vectors with hats. Define x×y := x1y2−x2y1

for two-dimensional vectors. Its magnitude equals the area of the parallelogram spanned by x and

y. We will denote the unit vector with angle θ by θ̂ := (cos θ, sin θ). Many of our arguments will be

in Hough space where we specify a line {x : x · θ̂ = r} by the angle θ of its normal and its distance

from the origin r. Define the closed half-plane H(t, θ) := {x : x · θ̂ ≤ t} and the open half-plane

Ho(t, θ) := {x : x · θ̂ < t}.

θ

r

We say a line ` bisects a polygon C if half the area of C is on either side of `. For such a polygon,

the area of H(t, θ)∩C is 0 for very small t and strictly increasing for larger t until it equals the area

of C. Hence for any angle θ, there is a unique value r(θ;C) such that the line {x : x · θ̂ = r(θ;C)}

bisects C. Since the area of H(t, θ) ∩ C is a continuous function of t and θ, it follows that r(·;C)

is a continuous function describing the bisectors of C. The following lemma gives a more explicit

description of the bisectors when C is a convex polygon. Its proof is in section 2.1.

Lemma 1. If C is a convex polygon with k sides, then in O(k) time we can find an increasing

sequence of angles θ0 := 0 ≤ θ1 ≤ · · · ≤ θk < θk+1 := π and constants (vi, e1i, e2i, Bi) for

3
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i = 0, . . . , k such that for any angle θ ∈ [θi, θi+1],

r(θ;C) = vi · θ̂ + sign(e1i · θ̂)Bi

√
(e1i · θ̂)(e2i · θ̂) (1)

We use the following lemma to simultaneously solve a pair of equations of the form (1). Its

proof is in section 2.2.

Lemma 2. Suppose r(·;C1) and r(·;C2) obey (1) with constants (v1, e11, e21, B1) and (v2, e12, e22, B2)

respectively. Then in O(1) time we can find all the ham sandwich cuts of C1 and C2 and for a

given p, all the ham sandwich cuts of C1 and {p}.

We use the above two lemmas to find in the following theorem a ham sandwich cut for two

convex polygons. Line ` is a ham sandwich cut of polygons C1 and C2 if it simultaneously bisects

both polygons. Finding a ham sandwich cut means finding an angle θ such that g(θ) = 0 where we

define g(θ) := r(θ;C1)− r(θ;C2). By the intermediate value theorem, such an angle exists because

g(·) is continuous and g(0) = −g(π).

Theorem 3. For two convex polygons C1 and C2 with m and n sides respectively, we can find a

ham sandwich cut in O(N) time, where N := m + n.

Proof. We first apply lemma 1 to both polygons in O(N) time. Then we merge the two sequences

of angles into a list θ0 := 0 ≤ θ1 ≤ · · · ≤ θN < θN+1 := π. This can be done in O(N) time as the

original sequences are already sorted. Now we calculate g(θi) for i = 0, . . . , N + 1 in O(N) time.

Since g(θ0) and g(θN+1) have opposite signs, we can find in O(N) time i∗ such that 0 is between

g(θi∗) and g(θi∗+1). Let (v1, e11, e21, B1) and (v2, e12, e22, B2) be the parameters given in (1) of

r(θ;C1) and r(θ;C2) respectively, for θ ∈ [θi∗ , θi∗+1]. We now apply lemma 2 to find possible ham

sandwich cuts. Those whose normals have angles in [θi∗ , θi∗+1] are ham sandwich cuts (above, we

have established that at least one exists).

2.1 Proving Lemma 1

Let (c0, . . . , ck−1, ck := c0) be the vertices of C in counter-clockwise order. First, find in O(k) time

a point y on some edge cjcj+1 such that ←→c0y bisects C. Now let i := 1 and l := 0.

4
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1. Let e1i := e1 := cl+1 − cl, e2i := e2 := cj − cj+1, s := sign(e1 × e2), and choose θi such that

θ̂i · (y − cl) = 0 and θ̂i · e1 ≥ 0.

cl

cl+1

cj+1

cj

e1

e2 y

θ̂

2. If s = 0, then

(a) Since the edges clcl+1 and cjcj+1 are parallel, any lines bisecting C and intersecting

both these edges will pass through vi := (cl + y)/2. Hence r = vi · θ̂ for such bisectors,

and (1) holds when we set Bi := 0.

(b) Let y1 := y − e1 and y2 := cl + y − cj+1. The lines ←−−→cl+1y1 and ←−−−→y2cj+1 pass through v

and are potential bisectors of C.

cl
cl+1

cj+1 cj

e1

e2

y
y1

y2

v

3. else,

(a) Define vi := v to be intersection of←−−→clcl+1 and←−−→cjcj+1. Let A be the area of 4clvy. The

line {x : x · θ̂ = r} is a bisector of C intersecting ←−−→clcl+1 and ←−−→cjcj+1 if the area of the

triangle formed by this line and ←−−→clcl+1 and ←−−→cjcj+1 equals A. The line {x : x · θ̂ = r}

intersects ←−−→clcl+1 and ←−−→cjcj+1 at v + t1e1 and v + t2e2 respectively where t1 = r−v·θ̂
e1·θ̂

and

t2 = r−v·θ̂
e2·θ̂

. Since we require that A = 1
2 |t1e1 × t2e2| = 1

2 |e1 × e2| t1t2, it follows that

2A

|e1 × e2|
= t1t2 =

(r − v · θ̂)2

(e1 · θ̂)(e2 · θ̂)
, and hence r = v · θ̂ + Bi

√
(e1 · θ̂)(e2 · θ̂)

where Bi := s
√

2A
|e1×e2| . The sign of Bi follows from simple geometric considerations.
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(b) Let y1 := v + e2sA/((cl+1 − v)× e2) and y2 := v + e1sA/(e1 × (cj+1 − v)). The lines

←−−→cl+1y1 and ←−−−→y2cj+1 are potential bisectors of C because the areas of triangles 4cl+1vy1

and 4y2vcj+1 is A.

v

cj

cl+1cl

cj+1

y

y2

y1

4. If (y1 − cj+1) · e2 ≥ 0, then y′ := y1, l′ := l + 1, and j′ := j. Else, y′ := y2, l′ := j + 1 and

j′ := l.

5. Let i′ := i + 1, and if i′ ≤ k then go back to step 1 using the new i′, l′, j′, and y′.

Since cl is a different vertex every iteration, we will have characterized all the bisectors after

k iterations and arrived at c0 again. Now take the angles mod π (the sign(e1e · θ̂) factor in (1)

compensates for this). Then find the smallest angle, and renumber the angles and constants starting

with it. Finally, we explicitly evaluate angle θ0 = 0 using (1) with (vk, e1k, e2k, Bk). This algorithm

performs k iterations and hence runs in O(k) time.

2.2 Proving lemma 2

Although we can solve the equations for θ∗ (using Newton’s method) we can find the ham sandwich

cuts directly using geometric considerations.

The line through v1 + te11, v1 + t′e21), and p is a ham sandwich cut of C1 and {p} if these three

points are collinear (i.e., (v1 + te11 − p)× (v1 + t′e21 − p) = 0), and cut-off the correct area (i.e.,

tt′ = B2
1). With some algebra we can show that the line

←−−−−−−−→
(v1 + te11)p is a ham sandwich cut of C1

and {p} when t solves the quadratic equation (e11×(v1−p))t2+B2
1(e11×e21)t+B2

1(v1−p)×e21 = 0.

Similarly, the line through v1 + t1e11, v1 + t′1e21, v2 + t2e12, and v2 + t′2e22 is a ham sandwich

cut of C1 and C2 if these points are collinear and cut-off the correct area (i.e., t1t
′
1 = B2

1 and

t2t
′
2 = B2

2). With some algebra we can show that the line ←−→u1u2 is a ham sandwich cut of C1 and

6
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C2 where u1 := v1 + t1e11, u2 := v2 + t2e22, t21 solves the quadratic equation

B2
2(e11 × e12)(e11 × e21)t41

−B2
1((e11 × e21)2 + B2

2((e11 × e12)(e12 × e22) + (e21 × e12)(e11 × e21)))t21

+ B2
2(e21 × e12)(e21 × e22) = 0,

and t2 := t1B2
1(e21×e11)

B2
1(e21×e12)−t1(e11×e12)

.

3 A Convex Polygon and a Set of Points

Now consider the more complicated case of a convex polygon C with m sides and a set of n points

P . Again we define N := m + n. We say that a line ` bisects P if at most |P | /2 points lie in each

of the open half-planes on either side.

So when n is odd, then any line bisecting P will intersect some point in P (because n/2 is not

an integer), and will also bisect P ∪ {x} (the set where we add some point x to P ). Hence we will

assume that the number of points n is odd (as otherwise we may just remove some point of P ).

Hence for any angle θ, there is a unique value r(θ;P ) such that the line {x : x · θ̂ = r(θ;P )} bisects

P .

The set of lines going through some point x := (x1, x2), the Hough transform of x, traces

out a sinusoid in angle-distance (Hough) space: r(θ; {x}) = x · θ̂ := x1 cos θ + x2 sin θ. Let

L(θ; q, P ) be the q-smallest element of {p · θ̂ : p ∈ P}. Due to the continuity of r(·; {x}), it

follows that L(·; q, P ) is continuous and composed of sinusoidal pieces with kinks at some angles in

ΘP := {θ : p1,p2 ∈ P, p1 · θ̂ = p2 · θ̂}.

Line ` is a ham sandwich cut of C and P if it simultaneously bisects both. Finding a ham

sandwich cut means finding an angle θ such that g(θ) = 0 where we define g(θ) := r(θ;C)−r(θ;P ).

By the intermediate value theorem, such an angle exists because g(·) is continuous and g(0) =

−g(π). The following lemma gives a simple (but not particularly fast) way of finding a ham

sandwich cut when we take α = 0, β = π, and q = n+1
2 .

Lemma 4. Consider an interval [α, β] ⊆ [0, π] with L(α; q, P ) − r(α;C) and L(β; q, P ) − r(β;C)

having opposite signs. In O(N3) time, we can find θ∗ ∈ [α, β] such that L(θ∗; q, P ) = r(θ∗;C).

7
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Proof. Our approach is to find a small interval containing θ∗ in which L(·; q, P ) and r(·;C) are

analytic. First we find ΘP in O(n2) time. Then we use lemma 1 to find a set of angles ΘC in O(m)

time. Combining these sets we create Θ := (ΘP ∪ΘC ∪ {α, β}) ∩ [α, β] and sort it in O(N2 log N)

time. Then we perform a binary search in O(N log N) time to find an adjacent pair of angles

θ1, θ2 ∈ Θ such that L(θ1; q, P ) − r(θ1;C) and L(θ2; q, P ) − r(θ2;C) have opposite signs (we can

evaluate L(·; q, P ) in O(n) time using a selection algorithm). Since these angles are adjacent, there

is p ∈ P so that for θ ∈ [θ1, θ2], L(·; q, P ) is a simple sinusoid with L(θ; q, P ) = p · θ̂ and r(θ;C)

has the analytic form given in (1) with parameters (v, e1, e2, B). We now apply lemma 2 to find

possible ham sandwich cuts. Those whose normals have angles in [θ1, θ2] are ham sandwich cuts

(above, we have established that at least one exists).

Our approach to quickly finding a ham sandwich cut is to reduce in O(N) time the problem

to one of O(1) size and then apply the above lemma. Our reduction is similar to that of Lo et al.

(1994) and assumes that the points P are in general position.

Let θ0 := 0 ≤ θ1 ≤ · · · ≤ θm < θm+1 := π be the sequence of angles obtained by applying

lemma 1 to C. We say angles α, β ∈ [0, π], integers i, k, q, and points Q ⊆ P obey the invariant if

1. θi ≤ α ≤ β ≤ θi+k,

2. g(α)g(β) ≤ 0, and

3. r(θ;P ) = L(θ; q, Q) for all θ ∈ [α, β].

The following lemma is analogous to lemma 3.2 of Lo et al. (1994).

Lemma 5. Suppose α, β ∈ [0, π], i, k, q ∈ Z, and Q ⊆ P obey the invariant. Then if |Q|+ k ≥ 17

we can compute in O(|Q| + k) time α′, β′ ∈ [0, π], i′, k′, q′ ∈ Z, and Q′ ⊆ P obeying the invariant

such that |Q′|+ k′ ≤ d0.75(|Q|+ k)e.

Theorem 6. We can find a ham sandwich cut of C and P in O(N) time.

Algorithm First, we apply lemma 1 to C and obtain a sequence of angles θ0 := 0 ≤ θ1 ≤ · · · ≤

θm < θm+1 := π. We initially choose α := 0, β := π, i := 0, k := m + 1, q := n+1
2 , and Q := P .

This satisfies the invariant because g(0) = −g(π).

8
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1. We compute g(α) and g(β). If either equals 0, then we are done.

2. If |Q|+ k < 17, then we finish by applying lemma 4.

3. Otherwise we apply lemma 5 to find new (α, β, i, k, q,Q) and go back to step 1.

Running Time The application of lemma 1 takes O(m) time. For j ≥ 17, it holds that d0.75je ≤

(13/17)j. Hence the jth application of lemma 5 in our algorithm costs (13/17)j−1(m+n+1)O(1),

and the cost of all the applications of the lemma is (m + n + 1)O(1)
∑∞

j=0(13/17)j = O(m + n).

Adding the O(173) cost of lemma 4 we have a total cost of O(N) for our algorithm.

Extension The approach we use to prove theorem 6 extends cleanly to the case of a weighted

set of points where each point pi ∈ P has a positive weight wi, normalized so that
∑n

i=1 wi = 1. In

that case, we say that a line ` bisects P if the points lying strictly on one side of the line have a

total weight of at most 0.5 (and the same being true for the points lying strictly on the other side

of the line). The only change we need to make is to replace q by a threshold weight w and evaluate

L(·;w,Q) in O(|Q|) time using a weighted selection algorithm.

3.1 Proving lemma 5

Suppose that k ≥ |Q|. We aim to halve k. Choose Q′ := Q and q′ := q. We then evaluate

r(θi+dk/2e;C) in O(1) time and r(θi+dk/2e;P ) = L(θi+dk/2e; q, Q) in O(|Q|) time. If g(α)g(θi+dk/2e) ≤

0, then choose α′ := α, β′ := θi+dk/2e, i′ := i, and k′ := dk/2e. Otherwise g(θi+dk/2e)g(β) ≤ 0 and

we choose α′ := θi+dk/2e, β′ := β, i′ := i + dk/2e, and k′ := bk/2c. Note that

k′ +
∣∣Q′∣∣ ≤ dk/2e+ |Q| = dk/2 + 0.25 |Q|+ 0.75 |Q|e ≤ d0.75(k + |Q|)e .

Suppose on the other hand that k < |Q|. By assumption, |Q| ≥ 9. Then we aim to halve the

number of points in Q. Our approach uses the following lemma to choose α′ and β′ closer together;

uses these angles to construct a set M; discards the points not lying in it, Q′ := Q ∩M; shows

that |Q′| ≤ d|Q| /2e; and then picks a q′ such that we continue to satisfy the invariant.

Choosing δ := 1/32 we use lemma 7 to divide the possible angles into 64 intervals. Here we use

the assumption that the points P are in general position. Lemma 3.3 from Lo et al. (1994) gives a

9
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proof of this lemma (after interchanging the terms point and line).

Lemma 7. Consider a fixed constant δ < 1 and a set of points Q ⊆ P with δ
(|Q|

2

)
≥ 1. Then in

O(|Q|) time, we can find angles ϕ0 := 0 ≤ ϕ1 ≤ · · · ≤ ϕb2/δc := π so that for all j, (i) ϕj /∈ ΘP ,

and (ii) |ΘP ∩ [ϕj , ϕj+1]| ≤ δ
(|Q|

2

)
.

We evaluate r(·;C) and L(·; q, Q) at angles {ϕj}∪ {α, β} in O(k) and O(|Q|) time respectively.

We then find adjacent angles α′ and β′ such that g(α′)g(β′) ≤ 0. Choose i′ and k′ such that

θi ≤ θi′ ≤ α′ ≤ β′ ≤ θi′+k′ ≤ θi+k.

Let ε := 1/8. Now define the closed half-planes, J+
α := H(α′, L(α′; q + bε |Q|c , Q)), J−

α :=

H(α′, L(α′; q−dε |Q|e , Q)), J+
β := H(β′, L(β′; q+bε |Q|c , Q)), and J−

β := H(β′, L(β′; q−dε |Q|e , Q)).

Let L+ := J+
α \ J+

β , S+ := J+
β \ J+

α , L− := J−
α \ J−

β , and S− := J−
β \ J−

α . Also define M :=

L+ ∪ (J+
β \ J−

β ) ∪ S− and Q′ := Q ∩M. Hence

∣∣Q′∣∣ ≤ ∣∣Q ∩ L+
∣∣ +

∣∣∣Q ∩ (J+
β \ J−

β )
∣∣∣ +

∣∣Q ∩ S−∣∣ .

α̂′
β̂′

J+
α

J−α

J+
β

J−β

S+

L+
S−

L−

M

a

b

By lemma 7, α′, β′ /∈ ΘP . Hence there is only one point each on the boundary of J+
α , J−

α ,

J+
β , and J−

β . So |Q ∩ J+
α | =

∣∣∣Q ∩ J+
β

∣∣∣ = q + bε |Q|c and |Q ∩ J−
α | =

∣∣∣Q ∩ J−
β

∣∣∣ = q − dε |Q|e. Since

L+ ∪ J+
β = S+ ∪ J+

α , it follows that |Q ∩ L+| = |Q ∩ S+|. Similarly, |Q ∩ L−| = |Q ∩ S−|. Note

that the normal to any line ←−→p1p2 where p1 ∈ L+ and p2 ∈ S+ has an angle in (l′, u′). Hence

by lemma 7, |Q ∩ L+| · |Q ∩ S+| ≤ δ
(|Q|

2

)
< δ |Q|2

2 (as |Q| ≥ 9). As |Q ∩ L+| = |Q ∩ S+|, it

follows that |Q ∩ L+| < |Q|
√

δ/2. Similarly, |Q ∩ S−| < |Q|
√

δ/2. Further, J−
β ⊆ J+

β , and hence∣∣∣Q ∩ (J+
β \ J−

β )
∣∣∣ = bε |Q|c+ dε |Q|e. So

∣∣Q′∣∣ < 2 |Q|
√

δ/2 + bε |Q|c+ dε |Q|e =
|Q|
4

+
⌊
|Q|
8

⌋
+

⌈
|Q|
8

⌉

10
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by our choice of δ and ε. Hence ∣∣Q′∣∣ ≤ d|Q| /2e .

Choose q′ = q −
∣∣∣Q ∩ J−

α ∩ J−
β

∣∣∣.
Now we need to show that it satisfies the invariant, L(θ; q, Q) = L(θ; q′, Q′) for θ ∈ [l′, u′]. The

definition of L states that t = L(θ; q, Q) iff |Ho(t, θ) ∩Q| < q ≤ |H(t, θ) ∩Q|. So we aim to show

that ∣∣Ho(L(θ; q, Q), θ) ∩Q′∣∣ < q′ ≤
∣∣H(L(θ; q, Q), θ) ∩Q′∣∣ .

Note that M = (J+
α ∪ J+

β ) \ (J−
α ∩ J−

β ) where J−
α ∩ J−

β ⊆ J+
α ∪ J+

β . So for any set X,

∣∣X ∩Q′∣∣ = |X ∩Q ∩M| =
∣∣∣X ∩Q ∩ (J+

α ∪ J+
β )

∣∣∣− ∣∣∣X ∩Q ∩ J−
α ∩ J−

β

∣∣∣ .

We will later show that

J−
α ∩ J−

β ⊆ Ho(L(θ; q, Q), θ) ⊆ H(L(θ; q, Q), θ) ⊆ J+
α ∪ J+

β . (2)

Hence ∣∣Ho(L(θ; q, Q), θ) ∩Q′∣∣ = |Ho(L(θ; q, Q), θ) ∩Q| −
∣∣∣J−

α ∩ J−
β ∩Q

∣∣∣ ,

and similarly,

∣∣H(L(θ; q, Q), θ) ∩Q′∣∣ = |H(L(θ; q, Q), θ) ∩Q| −
∣∣∣J−

α ∩ J−
β ∩Q

∣∣∣ ,

proving our claim:

∣∣Ho(L(θ; q, Q), θ) ∩Q′∣∣ < q −
∣∣∣J−

α ∩ J−
β ∩Q

∣∣∣ = q′ ≤
∣∣H(L(θ; q, Q), θ) ∩Q′∣∣ .

Now we prove (2). Because ε =
√

δ/2 it follows that

∣∣(J−
α ∪ S−) ∩Q

∣∣ ≤ ∣∣J−
α ∩Q

∣∣ +
∣∣S− ∩Q

∣∣ < q − dε |Q|e+
√

δ/2 |Q| = q − dε |Q|e+ ε |Q| < q

= q + bε |Q|c −
⌊√

δ/2 |Q|
⌋
≤

∣∣J+
α ∩Q

∣∣− ∣∣L+ ∩Q
∣∣ ≤ ∣∣(J+

α \ L+) ∩Q
∣∣ . (3)
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That is, |(J−
α ∪ S−) ∩Q| < q ≤ |(J+

α \ L+) ∩Q|. Let a be the corner of J−
α ∩ J−

β and b the corner

of J+
α ∩ J+

β . Since H(a · θ̂, θ) ⊆ J−
α ∪ S− and J+

α \ L+ ⊆ H(b · θ̂, θ) it follows that

∣∣∣Q ∩H(a · θ̂, θ)
∣∣∣ < q ≤

∣∣∣H(b · θ̂, θ) ∩Q
∣∣∣ .

Then from the definition of L(θ; q, Q),

∣∣∣Q ∩H(a · θ̂, θ)
∣∣∣ < |H(L(θ; q, Q), θ) ∩Q| and |Ho(L(θ; q, Q), θ) ∩Q| <

∣∣∣H(b · θ̂, θ) ∩Q
∣∣∣ ,

H(a · θ̂, θ) ⊂ H(L(θ; q, Q), θ) and Ho(L(θ; q, Q), θ) ⊂ H(b · θ̂, θ).

Since Ho(s, θ) ⊂ H(s, θ) ⊂ Ho(t, θ) ⊂ H(t, θ) iff s < t, it follows that

H(a · θ̂, θ) ⊂ Ho(L(θ; q, Q), θ) ⊂ H(L(θ; q, Q), θ) ⊆ H(b · θ̂, θ).

Noting that J−
α ∩ J−

β ⊆ H(a · θ̂, θ) and H(b · θ̂, θ) ⊆ J+
α ∪ J+

β then proves (2):

J−
α ∩ J−

β ⊆ Ho(L(θ; q, Q), θ) ⊆ H(L(θ; q, Q), θ) ⊆ J+
α ∪ J+

β .
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I. Stojmenović. Bisections and ham-sandwich cuts of convex polygons and polyhedra. In-

formation Processing Letters, 38:15–21, 1991. URL http://www.site.uottawa.ca/∼ivan/

F17-bisections.PDF.

A. H. Stone and J. W. Tukey. Generalized “sandwich” theorems. Duke Math. J., 9:356–359, 1942.

URL http://www.ams.org/mathscinet-getitem?mr=MR0007036.

Wikipedia. Ham sandwich theorem. 2006. URL http://en.wikipedia.org/w/index.php?title=

Ham sandwich theorem&oldid=78163874.

13

http://www.site.uottawa.ca/~ivan/F17-bisections.PDF
http://www.site.uottawa.ca/~ivan/F17-bisections.PDF
http://www.ams.org/mathscinet-getitem?mr=MR0007036
http://en.wikipedia.org/w/index.php?title=Ham_sandwich_theorem&oldid=78163874
http://en.wikipedia.org/w/index.php?title=Ham_sandwich_theorem&oldid=78163874

	Introduction
	Two Convex Polygons
	Proving Lemma 1
	Proving lemma 2

	A Convex Polygon and a Set of Points
	Proving lemma 5


