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Abstract

Let N(ε, δ) be the number of samples needed when solving a stochastic program such that

the objective function evaluated at the sample optimizer is within ε of the true optimum with

probability 1− δ. Previous results are of the form N(ε, δ) = O(ε−2 log δ−1). However, a smooth

objective function is often locally quadratic at an interior optimum. For that case we use results

on the convergence of the sample optimizers, to show that N(ε, δ) = O(ε−1 log δ−1). These

results are both bounds and asymptotics. Hence we show for a common case (smooth objective

functions with an interior optimum), that the number of samples needed is O(ε−1). This suggests

that stochastic optimization is a practical approach for such problems.

1 Introduction

Let F (x, ω) be a function of a decision variable x ∈ K ⊆ Rd and a random variable ω. Consider a

single-stage stochastic program:

min
x∈K⊆Rd

f(x) where f(x) := Eω F (x, ω). (1)

The goal is to choose the action x with the minimum expected cost. Since the expectations in (1)

may be time consuming to compute, this problem is often approached (Shapiro and Nemirovski,
∗AMS 2000 subject classifications 90C15
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2005) by taking n i.i.d. (independently identically distributed) samples ω1, . . . , ωn of the random

variable and solving the associated deterministic sample average problem,

min
x∈K⊆Rd

fn(x;ω1, . . . , ωn) where fn(x;ω1, . . . , ωn) :=
1
n

n∑
i=1

F (x, ωi). (2)

Assume for simplicity that (1) and (2) have unique minimizers (in section 5 we discuss how this

assumption may be lifted). Let x∗ and xn be the minimizers of (1) and (2) respectively, and let

z∗ := f(x∗) be the minimum objective function value. Sometimes x∗ and z∗ are referred to as

the true minimizer and the true minimum of the stochastic program while xn is called the sample

minimizer or sample optimizer.

We would like to find the minimum number of samples such that with high confidence (i.e.,

with probability 1− δ), the minimizer of the sample average problem (2), xn, is a “good solution”

of the original stochastic program (1), one whose expected cost is within ε of the optimum:

N(ε, δ) := min{n : Pr[f(xn)− z∗ ≥ ε] ≤ δ}. (3)

Motivating Example As a preliminary, we explicitly work out the sample complexity of a

stochastic program with a quadratic objective function. This example provides intuition for our

results (in subsequent sections) on the general case, because smooth objective functions are often

locally quadratic at an interior optimum. Also, we will later use the explicit solution to this example

to check the tightness of our general results.

Consider the stochastic program where we minimize the quadratic equation F (x, ω) = x2 −

2xω on the reals, K = R, with an uncertain parameter, ω ∼ N (0, σ2). Since f(x) = x2, the

true minimizer and minimum are x∗ = z∗ = 0, and the sample minimizer is xn = 1
n

∑n
i=1 ωi D=

n−1/2ω. Here D= denotes equality in distribution. Hence the sample minimizer converges like

E |xn − x∗| = O(n−1/2) while (since f is quadratic) the objective function value E f(xn) − z∗ =

E x2
n = σ2n−1 converges at a faster rate. More precisely, Pr[f(xn) − z∗ ≥ ε] = Pr[N (0, 1)2 ≤

nε/σ2] = 2Φ(−
√

nε/σ) where Φ is the cumulative distribution function of a standard normal

random variable. Hence

N(ε, δ) =
⌈

σ2(Φ−1(δ/2))2

ε

⌉
. (4)
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The main driver of the complexity is the ε−1 dependence. The complexity is less sensitive to changes

in δ because 2 log δ−1 ≥ (Φ−1(δ/2))2 and (Φ−1(δ/2))2 ∼ 2 log δ−1 for small δ (see lemma 1). This

inequality gives the bound

N(ε, δ) ≤
⌈

2σ2 log δ−1

ε

⌉
. (5)

Lemma 1. 2 log δ−1 ≥ (Φ−1(δ/2))2 for δ ∈ [0, 1], and in addition, (Φ−1(δ/2))2 ∼ 2 log δ−1 as

δ → 0.

Proof. To prove the inequality we note that
∫∞
t e−s2

ds ≤ e−t2

t+
√

t2+4/π
for t ≥ 0 (Abramowitz and

Stegun, 1972, 7.1.13). Since Φ(−t) = 1 − Φ(t) = 1√
2π

∫∞
t e−s2/2 ds and 1

t+
√

t2+4/π
≤

√
π

2 for

t ≥ 0, it follows that Φ(−t) ≤ (1/2)e−t2/2 for t ≥ 0. Substituting t = −Φ−1(δ/2), we obtain

δ ≤ e−(Φ−1(δ/2))2/2 for δ ∈ [0, 1]. Hence 2 log δ−1 ≥ (Φ−1(δ/2))2 for δ ∈ [0, 1].

To prove the asymptotic claim we note that erf(t) ∼ 1 − 1
t
√

π
e−t2 as t → ∞ (Abramowitz

and Stegun, 1972, 7.1.23). Since Φ(−t) = 1 − 1
2 erf(t/

√
2), it follows that Φ(−t) ∼ 1

2t
√

π
e−t2/2 as

t →∞. Hence −2 log Φ(−t) ∼ t2 as t →∞. Substituting t = −Φ−1(δ/2), we obtain (Φ−1(δ/2))2 ∼

2 log(2/δ) ∼ 2 log δ−1 as δ → 0.

Paper Overview The next section develops general asymptotics of N(ε, δ) for interior minima

along the lines of the above example. These asymptotics are complemented in section 3 with

explicit complexity bounds. Direct attacks on the convergence of f(xn) → z∗ result in bounds

of the form N(ε, δ) = O(ε−2 log δ−1). Though for interior optima, attacks on the convergence of

f ′n give insight about the convergence of the sample minimizer and result in bounds of the form

N(ε, δ) = O(ε−1 log δ−1). Section 4 provides a simple numerical asset allocation example. In

section 5 we summarize our results, mention other cases with complexity bounds improving on

O(ε−2), and suggest how to generalize our results. Proofs of the two main complexity bounds in

section 3 are in the appendix.

2 Asymptotics

In this paper ′ denotes the derivative with respect to x, ∂i denotes the ith partial derivative with

respect to x, and ‖·‖ denotes the vector or matrix 2-norm.

3



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Beginning with Aitchison and Silvey (1958) and Huber (1967), statisticians have studied the

asymptotics of optimizers in the context of maximum likelihood estimators. This work was later

generalized to stochastic optimization problems with inequality constraints (Dupačová and Wets,

1988; Shapiro, 1989). (Further generalizations are in King and Rockafellar (1993) and Shapiro

(1993).) These results show that
√

n(xn − x∗) converges in distribution to some random variable

X, if certain regularity conditions are satisfied (see theorem 3.3 in Shapiro (1989) for a description

of X). In particular, X is normally distributed for interior minima:

√
n(xn − x∗) ⇒ N (0,Σ) where Σ := [f ′′(x∗)]−1[Var F ′(x∗, ω)][f ′′(x∗)]−1. (6)

Hence at an interior optimum, we exploit the locally quadratic convergence of f(xn) → z∗ as

xn → x∗,

f(xn)− z∗ =
1
2

∥∥∥[f ′′(x∗)]1/2(xn − x∗)
∥∥∥2

+ o(‖xn − x∗‖2) (7)

n(f(xn)− z∗) =
1
2

∥∥∥[f ′′(x∗)]1/2√n(xn − x∗)
∥∥∥2

+ o(
∥∥√n(xn − x∗)

∥∥2), (8)

and obtain the convergence in distribution of

n(f(xn)− z∗) ⇒1
2

∥∥∥[f ′′(x∗)]1/2N (0,Σ)
∥∥∥2

=
∥∥N (0, Σ̄)

∥∥2 by (6) (9)

where Σ̄ := (1/2)[f ′′(x∗)]−1/2[Var F ′(x∗, ω)][f ′′(x∗)]−1/2.

Let ε(n; δ) be the δ-probability confidence interval for n samples; that is δ = Pr[f(xn) − z∗ ≥

ε(n; δ)]. Hence ε(n; δ) = Ḡ−1
n (δ)n−1 where Ḡn(r) := Pr[n(f(xn) − z∗) ≥ r] is the distribution

function of n(f(xn) − z∗). Above, we showed that this distribution converges to
∥∥N (0, Σ̄)

∥∥2:

Ḡn → Ḡ pointwise, where Ḡ(r) := Pr
[∥∥N (0, Σ̄)

∥∥2 ≥ r
]
. By the following lemma the inverses

converge too, and thus for every δ,

ε(n; δ) ∼ n−1Ḡ−1(δ) (n →∞). (10)

Lemma 2. If the cumulative distribution functions Gn → G pointwise, then G−1
n → G−1 pointwise.
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Proof. Consider δ ∈ [0, 1] and ε > 0. Let a := min G−1(δ) − ε and b := maxG−1(δ) + ε (the min

and max are needed when G−1(δ) is not a singleton set). Since G(a) < δ < G(b), Gn(a) → G(a),

and Gn(b) → G(b), it follows that there exists n0 such that Gn(a) < δ < Gn(b) for all n ≥ n0.

Hence G−1
n (δ) ⊂ [a, b] for all n ≥ n0, proving our claim.

Flipping (10) around,

N(ε, δ) ∼ ε−1Ḡ−1(δ) (ε → 0). (11)

This holds exactly (not just asymptotically) for the example given in the introduction (thus match-

ing (4)), since in that problem f ′′(x∗) = 2, VarF ′(x∗, ω) = 4σ2, and hence Σ̄ = σ2. Algorithms

such as Genz (2003) can efficiently evaluate Ḡ, allowing us to find Ḡ−1 using a bisection search.

Let λ be the largest eigenvalue of Σ̄. Lemma 4 then provides an asymptotic for Ḡ−1(δ), which

when substituted into (11) gives the simple approximation,

N(ε, δ) ≈
2λ log 1

δ

ε
. (12)

This matches (save for the d·e) the bound for the example given in the introduction, (5), since in

that problem λ = Σ̄ = σ2.

To prove lemma 4, we define H(n; a) := nae−n and use the following result.

Lemma 3. H−1(δ; a) ∼ log δ−1 as δ → 0.

Proof. log 1
H(n;a) = n(1 + o(1)) as n → ∞. Letting n := H−1(δ; a), log δ−1 = H−1(δ; a)(1 + o(1))

as H−1(δ; a) →∞ or equivalently as δ → 0. This proves the claim.

Lemma 4. Ḡ−1(δ) ∼ 2λ log δ−1 as δ → 0.

Proof. Note that λχ2
1 ≤

∥∥N (0, Σ̄)
∥∥2 ≤ λχ2

d. Hence Ḡ(r) = O(1)H(r/(2λ);O(1)) as r →∞. Letting

δ := Ḡ(r), we have r/(2λ) = H−1(O(1)δ;O(1)). Applying lemma 3 then proves the claim.

3 Bounds

In this section we develop bounds on N(ε, δ) from bounds on Pr[f(xn)− z∗ ≥ ε].

5
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Lemma 5. Consider a function gε so that Pr[f(xn)− z∗ ≥ ε] ≤ gε(n). Then N(ε, δ) ≤ g−1
ε (δ) for

any δ in the range of gε.

Proof. Follows immediately from the definition of N(ε, δ) in (3).

We now review O(ε−2) bounds before going on to derive O(ε−1) bounds for interior optima.

In their survey, Shapiro and Nemirovski (2005) consider stochastic programs with an objective

function F (·, ω) which is Lipschitz with modulus L; defined on a feasible set K ⊂ Rd of diameter

D; and of bounded magnitude C0 := supx,ω |F (x, ω)|. They show that

N(ε, δ) ≤ O(1)C2
0

ε2

[
log

1
δ

+ d log
2DL

ε
+ O(1)

]
. (13)

This result is equation 2.22 of their paper where, in the notation of that paper, we assume δ = 0

instead of δ = ε/2 and do not make the substitution C = DL. A similar result may possibly be

obtained from theorem 3.1 of Dai et al. (2000) (after expanding β in ε). We prove a O(ε−2) bound

by putting together pieces from Pflug (1999).

Theorem 6. Suppose F (·, ω) is continuous for every ω, K ⊆ [0, D]d the closure of an open

set, C0 := supx,ω |F (x, ω)|, C1 := E supx ‖F ′(x, ω)‖2, C(·) is a universal function, and C2 :=(
C
(

D
√

dC1
2C0

)
/
√

2d)
)d

. Then for all ε ≥ 0,

Pr[f(xn) ≥ z∗ + ε] ≤ C2H

(
nε2

8C2
0

;
d

2

)
(14)

Then by lemma 5,

N(ε, δ) ≤ 8C2
0H−1(δ/C2; d/2)

ε2
. (15)

Thus by lemma 3, asymptotically,

N(ε, δ) � 8C2
0 log δ−1

ε2
(δ → 0). (16)

Turning now to O(ε−1) bounds, we start by applying Talagrand’s inequality to the convergence

of f ′n to f ′ (instead of fn → f as done in theorem 6). In the proof we again combine various pieces

from Pflug (1999).

6



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Theorem 7. Suppose F ′(·, ω) is continuous for every ω, K ⊆ [0, D]d the closure of an open,

convex set, Ĉ0 := supx,i,ω |∂iF (x, ω)|, Ĉ1 := d2/d E supx ‖F ′′(x, ω)‖2, C(·) is a universal function,

and Ĉ2 :=
(

C

(
D
√

dĈ1

2Ĉ0

)
/
√

2d

)d

. Then for all ∆ ≥ 0,

Pr
[
sup

x

∥∥f ′n(x)− f ′(x)
∥∥ ≥ ∆

]
≤ Ĉ2H

(
n∆2

2dĈ2
0

;
d

2

)
. (17)

We then obtain a uniform bound on the convergence of the sample minimizer xn to x∗ (c.f., (6))

and consequently a bound on N(ε, δ) by assuming global bounds on f . These bounds are analogous

to the assumption, (7), that f is locally quadratic around x∗ made in the previous section for the

asymptotic result.

Corollary 8. Under the assumptions of theorem 7 and assuming f ′(x) · (x − x∗) ≥ 2c ‖x− x∗‖2

for all x,

Pr[‖xn − x∗‖ ≥ ∆] ≤ Ĉ2H

(
2n∆2c2

dĈ2
0

;
d

2

)
. (18)

Further assuming that f(x) ≤ z∗ + c2 ‖x− x∗‖2 for all x,

N(ε, δ) ≤ c2(Ĉ0/c)2dH−1(δ/Ĉ2; d/2)
2ε

∼ c2(Ĉ0/c)2d log δ−1

2ε
(δ → 0). (19)

Proof of corollary 8. From the growth condition, ‖f ′(xn)− f ′n(xn)‖ = ‖f ′(xn)‖ ≥ 2c ‖xn − x∗‖.

Applying theorem 7 gives the first equation. The second equation follows from lemmas 5 and

3.

For the motivating example with ω a random variable taking on the value −1 and +1 with equal

probability, the above bound and the asymptotic (11) have the same asymptotic properties for small

δ. We do not get such a tight complexity bound if we replace the bound f ′(x)·(x−x∗) ≥ 2c ‖x− x∗‖2

with an analogous bound on f :

Corollary 9. Under the assumptions of theorem 7 and assuming f(x) ≥ z∗ + c ‖x− x∗‖2 for all

x,

Pr[‖xn − x∗‖ ≥ ∆] ≤ Ĉ2H

(
n∆2c2

2dĈ2
0

;
d

2

)
. (20)
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Further assuming that f(x) ≤ z∗ + c2 ‖x− x∗‖2 for all x,

N(ε, δ) ≤ 2c2(Ĉ0/c)2dH−1(δ/Ĉ2; d/2)
ε

∼ 2c2(Ĉ0/c)2d log δ−1

ε
(δ → 0). (21)

Proof. Using the growth condition we show that

c ‖xn − x∗‖2 ≤ f(xn)− f(x∗) = (f(xn)− fn(xn))− (f(x∗)− fn(xn))

≤ (f(xn)− fn(xn))− (f(x∗)− fn(x∗)). (22)

By the mean-value theorem and the convexity of K, there exists x ∈ K so that ‖f ′(x)− f ′n(x)‖ ≥

c ‖xn − x∗‖. (Pflug (1999) states a similar inequality on page 22.) Thus,

Pr [‖xn − x∗‖ ≥ ∆] ≤ Pr
[
sup

x

∥∥f ′n(x)− f ′(x)
∥∥ ≥ ∆c

]
, (23)

which together with (17) proves the first equation. Again the second equation follows from lemmas 5

and 3.

The d dependence of these bounds, (19) and (21), is not likely to be necessary since it does not

appear in the asymptotic result, (11).

4 Asset Allocation Example

Consider an asset allocation problem where one decides to invest one dollar (or one million dollars)

among d + 1 assets having returns ω ∈ Rd+1 in order to maximize expected utility after one year.

Letting x̃ ∈ Rd+1 be the allocation and U(·) the utility function, we have the following problem

max
x̃

E U(x̃>ω)

s.t. x̃>1 = 1.

(24)

Let 1 be a vector of ones, x := x̃1:d be the allocation among the first d assets, ω1:d be the returns

of the first d assets, and ωd+1 be the return of the last asset. Hence x̃ = (x, 1 − x>1) and

ω = (ω1:d, ωd+1). Since our results are for unconstrained minimization problems, we rewrite (24)

8
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as

min
x

−E U(x>ω1:d + (1− x>1)ωd+1). (25)

We choose a quadratic utility function U(y) := −y2+2yy0 valid for y ≤ y0, so that the stochastic

program, (24), will have an analytic solution. Our numerical calculations set y0 = 2 and use four

assets, d = 3: long-term Treasury bonds, long-term corporate bonds, large stocks, and small stocks.

Their annual returns, ω, are modeled by a log-normal distribution parameterized using the mean,

standard deviation, and correlation of the annual, total, real returns from 1926–2000 (Ibbotson,

2001, Tables 6-5 and 6-7):

E ω = 1 +



5.7

6.0

13.0

17.3


· 10−2, σω =



9.4

8.7

20.2

33.4


· 10−2, ρω =



1.00 0.95 0.24 0.04

0.95 1.00 0.30 0.12

0.24 0.30 1.00 0.79

0.04 0.12 0.79 1.00


. (26)

Figure 1 compares the actual convergence of the 90% percentile (i.e., δ = 0.1) with the asymptotic

result (11), and the O(ε−2) bound from the previous section (specifically its small-δ asymptotic,

(16)). The small-δ approximation (12) of the asymptotic result is not shown because it is visually

indistinguishable from the asymptotic result, (11), (2λ log δ−1 ≈ 3.6 and Ḡ−1(δ) ≈ 3.8). Since the

complexity bounds from the previous section require a bounded set of allocations and returns, they

are calculated for a variant of the problem. In this variant we assume that K is a small neighborhood

of x∗ and that the distribution of returns is truncated to [0.5, 1.8]4 (this includes 95% of the original

probability mass). Larger sets of feasible allocations, K, and larger supports for the distribution of

returns will lead to higher complexity bounds. The O(ε−1) complexity bounds from the previous

section, (19) and (21), are not shown because they would be off the scale, c2(Ĉ0/c)2 log δ−1 ≈ 108.

The figure shows that the asymptotic result is quite accurate even for a small number of samples.

On the other hand, the bounds from the previous section are not of much practical use, despite

their theoretical importance.

9
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10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

n

ε so that Pr[f(x
n
)−z*≥ ε]=0.1

Figure 1: This figure shows the 90% percentile of f(xn) − z∗ from the asset allocation example:
with 90% probability, f(xn) − z∗ is below the indicated value. The dots show the actual results
calculated via simulation, the solid line shows the asymptotic result, (11), and the dashed line
shows the small-δ asymptotic of the O(ε−2) complexity bound, (16).

5 Conclusion

This paper defines a complexity measure N(ε, δ) for the sample size needed to adequately approxi-

mate a stochastic program with its sample average problem. It then gives an asymptotic result on

N(ε, δ), (11), (and a handy approximation, (12)) and proves several complexity bounds (and their

small-δ asymptotics), (15), (16), (19), and (21). These results (except for (15) and (16)) are the

first we know of using only O(ε−1) samples of the random variable. Since (11) is an asymptotic

result, the exponent cannot be improved. These results achieve O(ε−1) complexity by assuming

that the objective function, f , is in some sense quadratic (either globally or locally at x∗ depending

on the type of result) and then study the convergence of xn → x∗. These results improve upon the

O(ε−2) bounds obtained using direct approaches in the literature and this paper, (15).
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Our results are more general than they may first seem. Even if F is nonsmooth, it is still quite

likely that f is smooth. For example, if F (x, ω) = |x− ω| and ω ∼ U[−1, 1], then f is quadratic

around x∗ and our asymptotic result from section 2 implies O(ε−1) sample complexity. Other

stochastic programs with better than O(ε−2) complexity include those with discrete distributions

(Shapiro and Homem-de-Mello, 2000) and those where the set of possible sample minimizers, {xn :

n, ω1, . . . , ωn}, is finite. In both cases one can argue that N(ε, δ) = O(log δ−1) and does not depend

on ε. When the set of possible sample minimizers, X := {xn : n, ω1, . . . , ωn}, is finite, there is no

ε dependence when ε is small, only the question of whether xn = x∗. In this case, we merely need

to compare f(x) for all x ∈ X, and thus, N only has a δ dependence: N(ε, δ) = O(log δ−1). Thus

there are many classes of stochastic programs with sample complexity better than O(ε−2). Our

future work will study further types of stochastic programs.

A number of our assumptions are technical in nature and are probably not necessary for our

results. For example, our assumption that the minimizers of (1) and (2) are unique may not be

necessary. In addition, the restriction on K in theorems 6 and 7 (that K is the closure of an open,

convex set) can probably be weakened to allow for the case where K is a subset of a manifold (e.g.,

arising from some equality constraints); then d would be the dimension of the manifold.

The assumptions that F , F ′, and K are bounded are more deeply embedded in our bounds and

may be necessary for the results. Nevertheless, it is of great practical interest to determine what

results hold without these assumptions. (To apply our complexity bounds to the asset allocation

example we had to bound the possible allocations and returns, which we did not need to for our

asymptotic result.) In addition, our O(ε−1) bounds ((19) and (21)) would be more useful if they

more closely matched the asymptotic result.

The apparently large number of samples needed to achieve accurate results is a primary reason

for the infrequent use of stochastic optimization. In this paper we showed that for a common

case (smooth objective functions with an interior optimum), that the number of samples needed is

O(ε−1). This suggests that stochastic optimization is a practical approach for such problems.

Appendix: Proofs of Theorems 6 and 7

Define the set of functions F := {F (x, ·) : x ∈ K} and Fi := {∂iF (x, ·) : x ∈ K} for i = 1, . . . , d.
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Definition 10 (Definition 3 of Pflug (1999)). A set T ⊂ Rd is said to be of covering type

(ν, V ) if
⌊(

V +o(1)
ε

)ν⌋
balls of diameter of ε suffice to cover T as ε → 0.

By stacking the cubes inscribed in balls of diameter ε, we show that [0, D]d is of covering type

(d, D
√

d). So, if K ⊆ [0, D]d, then it also is of covering type (d, D
√

d).

Definition 11 (Definition 5 of Pflug (1999)). A family G of random variables is said to

be of covering type (ν, V ) if as ε → 0,
⌊(

V +o(1)
ε

)ν⌋
pairs of random variables (Xi, Xi) with

E(Xi − Xi)2 ≤ ε2 suffice to cover G: so that for any X ∈ G, there exists a pair i such that

Xi ≤ X ≤ Xi a.s.

Here are lemma 10 (taking β = 1) and part (i) of lemma 11 from Pflug (1999) (where in the

latter, we replace a Lipschitz condition by a stronger differentiability condition).

Lemma 12. If K is of covering type (ν, V ), then F is of covering type (ν, V C) if for all balls B

in Rd, diam{F (x, ·) : x ∈ B} ≤ Cdiam(B).

Lemma 13. For all balls B in Rd, diam{F (x, ·) : x ∈ B} ≤ diam(B)
√

E supx ‖F ′(x, ω)‖2.

The following corollary follows from these lemmas.

Corollary 14. Let C1 := E supx ‖F ′(x, ω)‖2 and Ĉ1 := d2/d E supx ‖F ′′(x, ω)‖2. If K ⊆ [0, D]d,

then F is of covering type (d, D
√

dC1) and ∪iFi is of type (d, D

√
dĈ1).

Proof. Since K of covering type (d, D
√

d), the covering type of F follows directly from applying the

above two lemmas. Applying them to the partial derivatives, we find for i = 1, . . . , d that Fi is of

covering type (d,D
√

dC1i) where C1i := E supx ‖(∂iF (x, ω))′‖2. Since ‖(∂iF (x, ω))′‖ ≤ ‖F ′′(x, ω)‖

for all x and ω, it follows that C1i ≤ d−2/dĈ1. So as ε → 0,

∑
i

⌊(
D
√

dC1i + o(1)
ε

)d
⌋
≤ d


D

√
dd−2/dĈ1 + o(1)

ε

d


≤

d

D

√
dd−2/dĈ1 + o(1)

ε

d
 =


D

√
dĈ1 + o(1)

ε

d
 (27)

random variables suffice to cover ∪iFi. Hence ∪iFi is of covering type (d,D

√
dĈ1).
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The following theorem (a variant of theorem 1.3 of Talagrand (1994)) is at the heart of our

analysis. It is theorem 6 of Pflug (1999) with M
√

n substituted for M . Remark 7 of Pflug (1999)

notes that the theorem holds even though we have a o(1) term in the previous two definitions of

covering type. It is likely that slightly tighter results could be achieved using theorem 3 or 4 of

Massert (2000). In particular he gives a result for vectors.

Theorem 15. Let C(·) be a universal function. If F is of covering type (ν, V ) and |F (x, ω)| ≤ C0

for all x, ω, then for all M ≥ 0,

Pr
[
sup
x∈K

|fn(x)− f(x)| ≥ M

]
≤
(

C(V/2C0)√
2ν

)ν

H

(
nM2

2C2
0

;
ν

2

)
, (28)

if the supremum is measurable.

Lemma 8 of Pflug (1999) gives conditions for the supremum to be measurable:

Lemma 16. The random variable supx∈K |fn(x)− f(x)| is measurable if (i) K is the closure of

K ∩Qd, (ii) F (·, ω) is lower semicontinuous for every ω, and (iii) f(·) is continuous.

The proof of the following lemma follows from the density of the rationals, Q.

Lemma 17. If K is the closure of an open set, then K is the closure of K ∩Qd.

We now prove our main results by combining theorem 15 with the above lemma and corollary 14.

Proof of theorem 6. From corollary 14 it follows that F is of covering type (d,D
√

dC1). When we

now apply theorem 15 the supremum is measurable because condition (i) of lemma 16 holds due

to lemma 17 and conditions (ii) and (iii) hold by the continuity of F (·, ω). Thus for all M ≥ 0,

Pr
[
sup

x
|fn(x)− f(x)| ≥ M

]
≤ C2H

(
nM2

2C2
0

;
d

2

)
. (29)

Substituting M = ε/2,

Pr
[
sup

x
|fn(x)− f(x)| ≥ ε/2

]
≤ C2H

(
nε2

8C2
0

;
d

2

)
. (30)
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Note that,

Pr[|f(xn)− fn(xn)|+ |fn(x∗)− f(x∗)| ≥ ε] ≤ Pr
[
2 sup

x
|fn(x)− f(x)| ≥ ε

]
. (31)

Applying the triangle inequality,

Pr[f(xn)− fn(xn) + fn(x∗)− f(x∗) ≥ ε] ≤ Pr
[
sup

x
|fn(x)− f(x)| ≥ ε/2

]
, (32)

and the fact that fn(x∗) ≥ fn(xn), we obtain

Pr[f(xn)− z∗ ≥ ε] ≤ Pr
[
sup

x
|fn(x)− f(x)| ≥ ε/2

]
. (33)

Substituting the above inequality into (30) proves (14).

Proof of theorem 7. From corollary 14 it follows that ∪iFi is of covering type (d, D

√
dĈ1). We now

apply theorem 15 to ∪iFi. Thus for all M ≥ 0,

Pr

[
sup
x,i

|∂ifn(x)− ∂if(x)| ≥ M

]
≤ Ĉ2H

(
nM2

2Ĉ2
0

;
d

2

)
(34)

when the supremum is measurable. For each i, the random variable supx |∂ifn(x)− ∂if(x)| is

measurable because condition (i) of lemma 16 holds due to lemma 17 and conditions (ii) and (iii)

hold by the continuity of F ′(·, ω). Taking the maximum of these random variables over i = 1, . . . , d

implies that supx,i |∂ifn(x)− ∂if(x)| is also measurable. Having established the measurability of

(34) we apply a norm inequality,

Pr
[
sup

x

∥∥f ′n(x)− f ′(x)
∥∥ ≥ M

√
d

]
≤ Ĉ2H

(
nM2

2Ĉ2
0

;
d

2

)
, (35)

and substitute M = ∆/
√

d,

Pr
[
sup

x

∥∥f ′n(x)− f ′(x)
∥∥ ≥ ∆

]
≤ Ĉ2H

(
n∆2

2dĈ2
0

;
d

2

)
. (36)

14
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