
Who Do You Know?
A Simulation Study of Infectious Disease Control Through Contact Tracing

Benjamin Armbruster and Margaret L. Brandeau
Department of Management Science and Engineering

Stanford University
Stanford, California 94305-4026, USA

armbruster@stanford.edu, brandeau@stanford.edu

Keywords: contact tracing, infectious disease, network,
cost-effectiveness

Abstract
Contact tracing (also known as partner notification) is a pri-
mary means of controlling infectious diseases such as tuber-
culosis (TB), human immunodeficiency virus (HIV), and sex-
ually transmitted diseases (STDs). The effectiveness of con-
tact tracing depends on a number of factors including the con-
tact tracing policy used, the social mixing network, and char-
acteristics of the disease (e.g., the transmission mechanism,
variability in infectiousness over time and across individu-
als, and the rate at which symptoms develop). We develop a
simulation model for contact tracing and use it to explore the
effectiveness of different contact tracing policies in a bud-
get constrained setting. We evaluate several alternative con-
tact tracing policies. We then introduce a cost-effectiveness
framework and show how it can be used to determine the op-
timal level of investment in contact tracing. We first assume
that the only incremental disease control is contact tracing.
We then extend the analysis to consider the optimal alloca-
tion of a budget between contact tracing and screening for
exogenous infections.

INTRODUCTION
Contact tracing (also known as partner notification) is a

primary means of disease control for infectious diseases with
low prevalence. In the US, contact tracing is required for
TB [CDC 2000], recommended for HIV [CDC 2002], and
not uncommon for other STDs [Cowan et al. 1996; Clarke
1998]. Contact tracing has also been used (and modeled) for
SARS [Lipsitch et al. 2003], foot-and-mouth-disease [Kiss
et al. 2005], smallpox [Porco et al. 2004; Kretzschmar et al.
2004], and avian influenza [Wu et al. 2006].

Hyman et al. [2003] and Armbruster and Brandeau [2006]
studied contact tracing using differential equation models
that assume homogeneous mixing of the population. Kret-
zschmar [2000] reviewed STD models on networks. Müller
et al. [2000] introduced one of the first models of contact trac-
ing on a network and analyzed a stochastic branching process
that approximates it. Subsequent work [Huerta and Tsimring

2002; Eames and Keeling 2003; Kiss et al. 2005] analyzed
similar models using both stochastic simulations and moment
closures (also called mean-field approximations) which lead
to ordinary differential equations. Most of these papers study
the effectiveness of contact tracing but do not consider the
costs. Armbruster and Brandeau [2006] and Wu et al. [2006]
incorporated costs in their analyses, but considered contact
tracing as an all-or-nothing decision, with a fixed level of in-
tensity.

Empirical studies of the cost effectiveness of contact trac-
ing programs have been carried out for diseases such as TB
[Dasgupta et al. 2000; Macintyre et al. 2000], HIV [Vargh-
ese et al. 1999; Cohen et al. 2004], chlamydia [Howell et al.
1997], syphilis [Oxman and Doyle 1996], and gonorrhea
[Welte et al. 2000]. These studies all evaluate a single fixed
level of contact tracing.

In this paper, we develop and apply a simulation model to
explore the cost effectiveness of different levels of contact
tracing. Using such results, along with a cost-effectiveness
threshold, we can determine the optimal level of contact trac-
ing. The following section describes our simulation model for
contact tracing on a network. We use the simulation model
to compare the effectiveness of several different contact trac-
ing policies. We then simulate the most effective policy us-
ing different budgets to determine how much should be spent
on contact tracing, assuming that the only incremental dis-
ease control is contact tracing. We then extend the analysis to
consider the optimal allocation of a budget between contact
tracing and screening for exogenous cases of infection. We
conclude with discussion of results and directions for future
research.

SIMULATION MODEL
We consider a population ofn individuals. We model in-

dividuals as nodes on an undirected graph where an edge be-
tween nodesi and j indicates thati and j can infect each other
(we say they arecontactsof each other).

We assume an SIRS epidemic model with exponential
waiting times: susceptible individuals become infectious, be-
come removed when they are treated, and finally become sus-
ceptible after treatment. Figure 1 illustrates the state transi-



tions. We assume that the rate of infection (transition from
S→ I ) of nodei is proportional todi , the number of infected
neighbors of nodei: specifically, the transition rate isdi/t1,
wheret1 is a time constant. This stochastic process on a net-
work is called acontact process.

To model contact tracing, Eames and Keeling [2003] and
Kiss et al. [2005] extend the contact process so that infected
nodes are found and cured at a rate proportional to the number
of index case neighbors a node has (in our model, this would
be individuals in statesR), analogous to the infection process.
This model of contact tracing does not allow us to compare
different contact tracing policies or budgets. Thus, we use a
discrete-event simulation.

When an infected individual seeks treatment for symptoms
of the disease (and thus becomes known to the public health
system), he or she becomes anindex case. This corresponds
to a transition fromI →R. We assume that this transition hap-
pens at rate 1/t2 wheret2 is a time constant. When a new in-
dex case occurs, we apply our contact tracing policy to decide
(based on only the graph structure and the removed nodes)
which nodes to trace. Nodes selected for tracing transition to
stateST or stateIT , depending on whether the individual is
susceptible or infected, respectively. Tracing requires a fixed
amount of time,t4 for stateST andt5 for stateIT .

After tracing is completed, a node in stateST returns to
stateSwhile a node in stateIT transitions to stateR and be-
comes a new index case. We assume a budgetB for contact
tracing, expressed in terms of the maximum allowable con-
tact tracing rate: at any point in time, at mostB individuals in
total can be in statesST or IT .

Individuals can also become infected from exogenous
sources. This could be through international travel or by
healthy people leaving the system and being replaced by in-
fected immigrants. We assume that the rate at which exoge-
nous infection occurs is given by a constant,η. In our simu-
lation, the sojourn time in each state was exponentially dis-
tributed for all states except for statesST andIT , where the
sojourn time was a constant.

We used random small-world graphs for our simulation. To
generate these graphs we started with a cyclic regular graph
of n nodes with degree 4 where nodei connects to nodesi±
1,±2 (mod n). For every other pair of nodes(i, j) we created
a link independently with probability 1/n. Figure 2 shows a
small example of such a network with its nodes in various
states.

In subsequent sections we will frequently make statements
about the steady-state prevalence of the disease under certain
conditions. To measure the steady state we performed hun-
dreds of runs (ranging from 400 to 1600 for different analy-
ses). For each run, we generated a random small-world graph
and infected a single random node. Then we simulated the
network for five years, taking the daily average prevalence

Figure 1. Possible states of an individual and the transition
times between them. The dashed arrows mark the instanta-
neous transitionsS→ ST and I → IT that occur when we
decide to trace this individual.
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Figure 2. A small-world graph with nodes in various states.

(per capita frequency of statesI and IT ) starting with day
181 (hoping that the system is in steady state at that time).
We averaged over all the runs and set our error bars to the
95% confidence intervals.

Table 1 shows the values of all parameters we used in our
simulations.

Table 1. Simulation parameters
n 500 individuals
t1 90 days
t2 30 days
t3 90 days

t4, t5 5 days
η 1/9000 new cases/day/person



WHO TO TRACE?
In contact tracing, every index case is asked to name his

or her contacts (graph neighbors who may be infected). Then
public health officials seek out these contacts (as time and
resources permit) to test whether they are infected and treat
them if so. Who to trace is an important tactical decision since
the contact tracing budget limits the number of individuals
who can be traced at any point in time.

In our simulation we keep a prioritized list of contacts who
have not yet been traced (nodes in stateSor I that are neigh-
bors of removed nodes). Every time a new index case is iden-
tified, we update this list and decide on additional nodes to
trace. We letk be the number of contacts we would like to
trace each time a new index case arrives. Since the list is pri-
oritized, we trace thek nodes of highest priority, provided we
have not exhausted the budget.

In our simulation, contact tracing policies are parameter-
ized byk, the ranking scheme, and the budget. In this section
we focus on the first two parameters while the next section
focuses on the budget. Fixingk = 5 andB = 8, we compared
the steady-state disease prevalence achieved with no contact
tracing and with contact tracing under three different ranking
schemes.

The first policy, Random, is a random ordering. The second
and third policies assign each contact a score intended to re-
flect the likelihood that the contact is infected (the higher the
score, the more likely that a contact is infected) and then rank
the contacts from highest to lowest score (using a random or-
dering for ties). In the Most Named policy, a contact’s score
is the number of index cases who name that person. The List
Length policy is motivated by an assumption that each index
case only has one infected neighbor. Thus, if an index case
hasm contacts, it contributes 1/m to the score of each of its
contacts.

Figure 3 shows that the performance of the three ranking
schemes is very similar, with the Most Named policy per-
forming best and the Random policy worst. Simulating un-
der different scenarios with different parameters, the Most
Named policy always performed slightly better than the List
Length policy, which performed slightly better than the Ran-
dom policy. The remainder of the paper uses the Most Named
policy to prioritize contacts.

Figure 4 examines the effect of varyingk, the number of
contacts we trace each time a new index case arrives (assum-
ing we still have resources). Ifk is too large, all of our re-
sources may be utilized when the next index case arrives. If
k is too small, our resources are not fully utilized. Figure 4
shows (for a budget of 8) that the steady-state prevalence de-
creases as we increasek to 5 and then becomes insensitive to
further increases ink. In the remainder of this paper we set
k = 5.
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Figure 3. Steady-state prevalence with no contact tracing
and contact tracing using policies Random, Most Named, and
List Length. The simulations assumedk = 5, B = 8.
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Figure 4. Steady-state prevalence as a function ofk, the
number of contacts we trace each time a new index case
arrives. The simulations used the Most Named policy with
B = 8.

HOW MANY TO TRACE?
Choosing the budget for contact tracing is an important

strategic decision. Funds not spent to trace a particular dis-
ease could be used for tracing other diseases, for other disease
control efforts, or even for other public health efforts. Thus,
we would like to determine the most “cost effective” level of
investment in contact tracing for a particular disease.

Cost-effectiveness analysis is a tool that can help policy
makers allocate money across different interventions for the
same or different diseases. Suppose we havem different pro-
grams, and allocatingbi to programi produces a benefit of
fi(bi). The cost effectiveness of programi (at budget level



bi) is the incremental cost divided by the incremental benefit
1/ f ′i (bi) of increasing its budget abovebi . Preferred programs
are those with a small cost-effectiveness ratio (that is, a small
cost per benefit achieved). We want to select investments so
as to maximize the total benefit subject to a budget ofB:

max
(bi)

f1(b1)+ · · ·+ fm(bm)

s.t. b1 + · · ·+bm≤ B.
(1)

Assuming that the functionsfi are concave, this is equivalent
to minimizing the cost effectiveness of the least cost effective
programs:

α = min
(bi)

max
i

1/ f ′i (bi)

s.t. b1 + · · ·+bm≤ B.
(2)

The way to allocate the budget is to choose a cost-
effectiveness thresholdα for all the programs and then in-
crease it until the money is spent. The termα is expressed in
units of cost per health outcome achieved (e.g., cost per life
year gained or cost per infection averted).

We will suppose in our analyses below that a value for the
cost-effectiveness thresholdα is known. This value could be
determined from analysis similar to that suggested from the
above optimization problem, or could be determined as an im-
plicit value given by accepted public health/medical practice
[Owens 1998].

In our model, the cost is equivalent to the budget,B, and
thus is the maximum number of nodes we can trace (i.e., have
in statesST andIT ) at any time. The benefit or effectiveness
is the decrease in disease prevalence achieved by contact trac-
ing. Figure 5 shows the steady-state disease prevalence as we
vary the budget. The convexity of the curve shows that the
cost effectiveness of contact tracing decreases with its budget
(i.e., it has diminishing returns to scale): for each incremental
increase in the budget, the corresponding reduction in steady-
state prevalence diminishes. This makes intuitive sense be-
cause as the budget increases and prevalence decreases, we
trace more contacts, fewer of whom will be infected. Thus,
the probability that the contacts we trace are infected de-
creases as the budget increases.

Such a figure can help us decide how large a budget we
should allocate to contact tracing and what level of disease
prevalence we will tolerate. Suppose that it costs $6,000 per
year for each additional node we can trace at a time (i.e., for
each increase inB), and suppose that our cost-effectiveness
thresholdα is $10,000 per infected person per year. (This is
equivalent to a threshold of $50,000 per quality adjusted life
year, QALY, with the assumption that the quality of life with
the disease is 0.8 on a scale of 0 to 1 where 0 is death and 1
is a healthy life.)
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Figure 5. Steady-state prevalence under various budgets.

Figure 6 is a transformation of figure 5 with the yearly bud-
get expressed in dollars and the prevalence expressed as av-
erage number of infected persons in the population (in a pop-
ulation ofn = 500). The optimal budget is given by the point
on the curve where the tangent line has a slope of−1/α. In
this picture, the optimal budget is about $36,000 per year (or
the ability to trace 6 people at a time) with about 8.5 people
infected in steady state (a prevalence of 1.7% in a population
of n = 500). At this point, the incremental cost per reduction
in prevalence equals the maximum level we will tolerate,α.
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Figure 6. The number of infected persons per year in steady
state under various budgets. At the optimal budget (the dotted
line tangent to) this curve has a slope of−1/α. Hereα =
$10,000/infected person/year.



EXOGENOUS INFECTION
Thus far, the only form of disease control we have con-

sidered is contact tracing. Disease prevalence can also be de-
creased by screening for cases of exogenous infection (e.g.,
among immigrants, visitors from other countries, and travel-
ers returning from vacation). Exogenous infection can be a
major source of new infection for many diseases: for exam-
ple, many TB index cases in the US are individuals who have
brought the infection from another country. In the US and
Canada, long term immigrants are screened for active TB and
HIV as part of the visa process [U.S. Citizenship and Immi-
gration Services 2006; Citizenship and Immigration Canada
2002].

In this section, we address the problem of allocating a com-
bined budgetBtotal = B+λ among contact tracing and screen-
ing for exogenous infection and the problem of determining
the optimal size of the combined budgetBtotal. HereB is the
budget allocated to contact tracing (as in the previous sec-
tion) andλ is the budget allocated to screening. Without any
screening, 0.056 exogenous infections occur in our popula-
tion each day (calculated as 500/9000). We assume that with
each budget unit we can screen 25 people per year, of whom
6% are infected on average; thus, the rate of exogenous infec-
tion as a function ofλ is η = 1

n(5/90−0.06λ25/356).
The framework from equation (2) does not help us allocate

our budget because the benefits of contact tracing and screen-
ing are larger than the sum of the benefits of doing them sep-
arately: the cost-effectiveness of contact tracing varies with
the amount of screening performed and vice versa. We in-
stead use simulation to determine the optimal mix: we simu-
late different budget allocations to determine the effectiveness
of each combination.

Figure 7 shows the steady-state prevalence achieved as we
vary λ/Btotal for different total budgetsBtotal. (In previous
sections we setλ = 0.) We see from this figure that allocating
a small fraction of the total budget to screening is optimal for
smaller total budgets (no screening,λ = 0, is optimal up until
Btotal = 5), and for larger total budgets it is optimal to allocate
a larger fraction to screening.

With this information about how to optimally split any
given budget among contact tracing and screening, we can re-
visit the decision of how large to make the combined budget
Btotal. Figure 8 shows the steady-state prevalence as a func-
tion of the total budget (where the total budget is optimally al-
located between screening and tracing). It clearly shows how
for budgetsBtotal > 6, using an optimal mix of screening and
contact tracing achieves lower disease prevalence than does
contact tracing alone.

The way to use this information is still the same: given
a cost-effectiveness thresholdα we choose the point on the
optimal-mix curve whose tangent has slope−1/α. If we
again chooseα = $10,000/infected person/year then there
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Figure 7. Steady-state prevalence as a function of the frac-
tion, λ/Btotal, spent on screening for exogenous infection and
the total budget,Btotal = B+λ.
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Figure 8. Steady-state prevalence achieved as a function of
the combined budgetBtotal for screening and contact tracing.
The solid line allocates the budget optimally while the dotted
line is from figure 5 where we used no screening (λ = 0).

will be will be little change compared to figure 6. In figure 6
the optimal budget was 6, a value for which there is little
screening in the optimal mix and the two curves in figure 8
are very close for a total budget of 6.

DISCUSSION
Our simulations show how a very simple policy for ranking

contacts can improve significantly upon random selection of
contacts. Our simulation results suggest that contact tracing
is likely to have diminishing returns to scale: incremental in-
creases in the budget for contact tracing yield diminishing de-
creases in the disease prevalence. Use of a cost-effectiveness



framework allows one to determine the appropriate level of
investment in contact tracing. We show how such an invest-
ment decision is best made simultaneously with that for other
interventions for the same disease (such as screening).

Our results are based on a limited set of simulations. Fur-
ther simulations could explore the robustness of our findings
under different conditions (e.g., for different networks, dis-
ease parameters, etc.).

Our simulations are based on a fairly stylized model of
contact tracing and disease transmission and progression. For
example, our current model stylizes the screening of infec-
tions from exogenous sources. A more realistic model could
break out the various sources of exogenous infection (e.g.,
holiday travelers, visitors from certain countries, legal immi-
grants, and illegal immigrants) and the opportunities to screen
them (e.g., when they request a visa or at clinics in immigrant
neighborhoods). Our model of contact tracing also does not
include the genotype information available to investigators
which allows them to distinguish between new and contin-
uing outbreaks. In practice, when a new outbreak of a disease
is detected, the intensity of contact tracing is often increased
until a significant level of epidemic control has been achieved.
A natural extension of our work is to consider the case of dy-
namically changing levels of contact tracing.

Another useful avenue for further research would be to tai-
lor the analysis to specific diseases of interest. A tailored
model could be used to determine the appropriate level of
contact tracing for a specific disease in a specific region.

For TB, the disease model should include latent and active
infection stages, with disease progression times set appropri-
ately. Further, the contact network needs to allow contacts
of greater and lesser strength (e.g., family members versus
coworkers in a well-ventilated office). In our simulation, a
contact’s priority is an indicator of the likelihood that this
contact is infected. To better model TB contact tracing, it
would be useful to distinguish individuals by their potential
danger of acquiring infection, as is done in practice. For ex-
ample, TB contact tracing in the US gives priority to contacts
who are children or who have AIDS.

To more accurately model STDs and HIV, the disease
model should distinguish between males and females and
should include the asymptomatic and symptomatic disease
stages. In addition, use of a dynamic contact network would
reflect the pair formation and dissolution that occurs in so-
cial networks of such diseases (see, for example, Kretzschmar
[2000]).

Contact tracing can be an effective means of disease con-
trol, but it is only useful up to a point because incremental in-
creases in the level of contact tracing yield diminishing bene-
fits. Simulation can be used to estimate the benefits of contact
tracing as a function of its intensity. Then, cost-effectiveness
analysis can be used to determine the optimal level of invest-

ment in contact tracing and the optimal level of investment in
contact tracing and screening. Such analysis can help public
health departments allocate funds for disease control.
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