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Abstract
While ART has been studied for years, the specific quantitative implementation
details have not. In order for this new scheme of radiation therapy (RT) to reach
its potential, an effective ART treatment planning strategy capable of taking
into account the dose delivery history and the patient’s on-treatment geometric
model must be in place. This paper performs a theoretical study of dynamic
closed-loop control algorithms for ART and compares their utility with data
from phantom and clinical cases. We developed two classes of algorithms:
those Adapting to Changing Geometry and those Adapting to Geometry and
Delivered Dose. The former class takes into account organ deformations
found just before treatment. The latter class optimizes the dose distribution
accumulated over the entire course of treatment by adapting at each fraction,
not only to the information just before treatment about organ deformations
but also to the dose delivery history. We showcase two algorithms in the
class of those Adapting to Geometry and Delivered Dose. A comparison of the
approaches indicates that certain closed-loop ART algorithms may significantly
improve the current practice. We anticipate that improvements in imaging,
dose verification and reporting will further increase the importance of adaptive
algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current IMRT treatment plan optimization and dose delivery are two decoupled steps (AAPM
IMRT Sub-committee 2003, Webb 2001). In each fraction, the patient geometry is hardly the
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same as in the pre-treatment CT simulation. A commonly used method to take the uncertainty
into account is to add a safety margin, whose size is based on population statistics, to the target
and sensitive structures (Balter et al 1995, van Herk 2006). This significantly compromises
the success of radiation therapy.

Recently, cone-beam computed tomography (CBCT) integrated with a medical linear
accelerator has become available and promises to improve the situation. CBCT provides a
valuable 3D (or even possibly 4D) geometric model of the patient in the treatment position
and allows for verification of the delivered dose distribution (Xing et al 2006). This not
only affords an opportunity for on-line correction of patient setup error and inter-fraction
rigid motion (Oldham et al 2005, Pouliot et al 2005), but also allows dose recalculation
and adaptive radiation therapy (ART) (Langen et al 2005, Yang et al 2007), which uses the
volumetric information to adjust the treatment plan each fraction to the updated patient anatomy
and positioning. A significant promise of ART is the optimal compensation of uncertainties
including organ deformation and inter-fraction organ motion as well as dosimetric errors
incurred in previous fractions (Trofimov et al 2005, Wu et al 2006, Mohan et al 2005, de la
Zerda et al 2006, Olivera et al 2006). To realize ART clinically and maximally exploit the
potential of this new form of image guided radiation therapy (IGRT), a robust inverse planning
strategy for ART must be in place.

The purpose of this work is to develop dynamic closed-loop control strategies for ART
inverse planning and to demonstrate their utility with data from phantom and clinical cases.
Closed-loop control algorithms are a general tool for dealing with time-dependent systems
(Widrow and Stearns 1985, Widrow and Walach 1995) and are used to solve a variety of
problems including automobile cruise control, supply chain optimization, computer chip
design and spaceship navigation. The algorithms in all these applications share the same
basic closed-loop control framework of repeated re-evaluation and re-planning. ART is a
natural application for closed-loop control because CBCT provides frequently updated system
information. To meet different clinical requirements, we investigate a few variants of these
algorithms.

The next section starts with a brief review of the foundations of closed-loop control.
Section 2 continues by presenting a formalism for ART planning, the intensity-modulated
radiation therapy (IMRT) approach, and our new ART algorithms. In section 3, we demonstrate
the significance of our new approach with phantom and patient case studies. Section 4 takes
a broader perspective to discuss this work and directions for future research. We conclude in
section 5.

2. Methods and materials

This section starts with an overview of closed-loop control and then later describes various
closed-loop control algorithms for ART before summarizing these algorithms in table 2.

2.1. Foundations of closed-loop control

The use of feedback makes closed-loop control unique (Widrow and Stearns 1985, Widrow
and Walach 1995, Yan et al 1997). In open-loop control, figure 1(a), some input is fed to the
controller which then decides on an action. The controller then performs that action on the
system (the system being the physical or biological system we want to control), effectively
putting the system into a new state (which hopefully is ‘better’ in some sense). We could
simulate an open-loop control context by connecting the output of the algorithm implemented
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Figure 1. (a) Open-loop control (conventional treatment planning), (b) the closed-loop control
framework.

by the controller to a simulation of the system: the input is fed to the algorithm which feeds
an action to the system simulator which outputs the new state of the system.

Conventional inverse planning is a form of open-loop control. The input is a set of
contoured CT images or the geometric model of the patient. The controller is the inverse
planning software, and it outputs a treatment plan (the action). Finally, a simulator of the
system (modeling the execution of the plan) uses the treatment plan and some random factors
to output the resulting system state.

In closed-loop control, the controller is not run just once but repeatedly, each time receiving
the current state of the system as its input (Widrow and Stearns 1985, Widrow and Walach
1995, Yan et al 1997). The term feedback is used because the effect of the current action (the
new state of the system) is used by the controller to plan the next action. Suppose we have
N time periods (treatment fractions), and we let βi be the action in period i (treatment plan
for fraction i) and ψi the resulting system state at the end of period i. Then a closed-loop
controller is a function ξi producing an action for the current period from the state at the end
of the last period βi = ξi(ψi−1).

We propose to plan ART using closed-loop control, figure 1(b), where the controller is the
inverse planning software and the state of the system after fraction i, ψi = (

ψ
geometry
i , ψcumdose

i

)
,

has two parts: the patient’s geometric model derived from contoured CBCT images, ψgeometry
i ,

and the cumulative dose, ψcumdose
i , delivered in fractions 1 through i. (Clearly, ψcumdose

0 = 0.)
Unlike the open-loop control in conventional RT, in ART the controller outputs a plan (the
action) for only the current treatment fraction. Table 1 summarizes the relationship between
control theory and treatment planning.

Closed-loop control algorithms (which we propose for ART) are richer than static open-
loop control algorithms (found for example in conventional RT). A static open-loop controller
determines a treatment plan, (β1, . . . , βN), and therefore the final state of the system ψN is
based only on the initial state of the system ψ0, whereas dynamic closed-loop algorithms
re-evaluate the state each time step and based on that, decide their current action. Because
of that, the treatment plan, (β1, . . . , βN), depends not only on the initial state ψ0, but also on
the progress made during treatment, (ψ0, . . . , ψN−1). Hence closed-loop control algorithms
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Table 1. Relationship between control theory and treatment planning.

Closed-loop control Radiation therapy

Time period (i) Fraction

Input (ψ0) Contoured CT images (ψgeometry
0 )

Action in period i, (βi ) Treatment plan for fraction i

System state after period i, (ψi ) Contoured CBCT images (ψgeometry
i ),

and cumulative delivered dose (ψcumdose
i )

Controller RT inverse planning software
System Patient geometry and treatment delivery
Random factors/noise in period i, (εi ) Setup errors, delivery errors, and organ

deformations in fraction i

are more likely to produce better results than static open-loop control algorithms for time-
dependent systems.

Treatment planning is a critical step to realizing the potential of ART in clinical practice.
Current IMRT inverse planning is designed for a conventional fractionated treatment scheme
(Bortfeld 1999, Webb 2001, Censor 2003, Xing et al 2005, Xiao et al 2000, Yang and
Xing 2004b) and is incapable of planning an adaptive treatment with consideration of the
dose delivery history and updated patient geometry. However, anticipated improvements
in imaging and verifying the dose and anatomy during dose delivery drive the need for
sophisticated algorithms for ART planning. The purpose of this work is to establish a dynamic
control framework for adaptive radiation therapy to explore the subtleties of possible planning
algorithms. This planning framework allows us to individualize radiation therapy for each
patient by taking advantage of newly available volumetric imaging information.

2.2. Formalization of ART plan optimization

Consider plans, (β1, . . . , βN), for N fractions. Suppose at voxel v, the importance factor is
α(v) (Xing et al 1999) and the prescribed dose is Dprescribed(v). We define a dose delivery
function D(·), such that under plan β and delivery error ε the cumulative dose after fraction i
is ψcumdose

i (v) = ψcumdose
i−1 (v) + D

(
v;β, ε, ψ

geometry
i−1

)
at voxel v. Without delivery errors (i.e.,

without any setup errors or deformations of organs), ε = 0. Let B be the set of deliverable
(feasible) plans. Our ultimate goal is then to find the feasible plan (β1, . . . , βN) optimizing

min
β1∈B,...,βN ∈B

∑
v

α(v)
(
Dprescribed(v) − ψcumdose

N (v)
)2

= min
β1∈B,...,βN ∈B

∑
v

α(v)

(
Dprescribed(v) −

N∑
i=1

D
(
v, βi, εi, ψ

geometry
i−1

))2

. (1)

The objective function is the weighted quadratic deviation of the cumulative delivered dose
from the prescribed dose. There is no way to find in advance the optimal solution to this
problem because the actual delivery error in fraction i, εi , is unknown when we must decide on
the plan βi . In general, ART dose optimization is a degenerate problem as there exist numerous
ways to take the delivery history and new patient geometry into consideration. Finding the
optimal adaptation strategy is an important part of ART treatment planning. While the simplest
idea is to optimize

min
β1∈B,...,βN ∈B

∑
v

α(v)

(
Dprescribed(v) −

N∑
i=1

D
(
v, βi, 0, ψ

geometry
0

))2

,
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we suggest in the following sections some more sophisticated approximations to problem (1).
These approaches provide valuable ART alternatives and, as demonstrated later, they often
lead to improved accumulated dose distributions. For comparison purpose, the conventional
planning strategy with population-based margin is also formalized and described.

2.3. Baseline algorithm 1: planning with population-based margins

A common approach adds large margins to structures to compensate for delivery errors and
uses the same plan every fraction, β1 = · · · = βN (i.e., a static plan). These margins lead
to modified dose prescriptions, D̃prescribed(·), and importance factors, α̃(·). This yields the
optimization problem:

β1 = · · · = βN = arg min
β∈B

∑
v

α̃(v)

(
D̃prescribed(v)

N
− D

(
v, β, 0, ψ

geometry
0

))2

.

While this approximation is simple, it exposes much healthy tissue to high dose.

2.4. Baseline algorithm 2: Adapting to Changing Geometry

Assume that a CBCT image is taken prior to every treatment fraction. Based on the current
anatomy information, a new plan for the current fraction is formed. This means that we
consider ψ

geometry
i−1 when determining βi . In particular we choose for fraction i the feasible

plan that minimizes the weighted quadratic deviation from the initial prescribed dose: for all
fractions i,

βi = arg min
β∈B

∑
v

α(v)

(
Dprescribed(v)

N
− D

(
v, β, 0, ψ

geometry
i−1

))2

.

In other words, the algorithm tries to deliver the same daily prescribed dose, Dprescribed/N , in
each fraction.

2.5. Adapting to Geometry and Delivered Dose

We can do better than in section 2.4, by taking into account not only the up-to-date CBCT
imaging information ψ

geometry
i−1 , but also other factors such as the cumulative delivered dose

ψcumdose
i−1 . Here we present two algorithms that take into account both ψ

geometry
i−1 and ψcumdose

i−1
when choosing a feasible plan for fraction i which minimizes the weighted quadratic deviation
from the adaptive dose goal for this fraction. In general this adaptive dose goal may depend on
the dose delivery history, ψcumdose

i−1 , and predictions of future geometry. We assume that there
is a mechanism that can calculate ψcumdose

i−1 . The two algorithms we investigate differ in how
they choose this adaptive dose goal. The first compensates every fraction for delivery errors
in previous fractions, and the second incorporates predictions of the future patient geometry.
(For example, the tumor shrinkage in response to the radiation therapy can be modeled by a
tissue-feature based deformable registration (Chao et al 2007).)

2.5.1. Immediately Correcting Algorithm (ICA). This algorithm, figure 2, takes into account
the dose delivery history as well as the anatomy model derived from daily CBCT images. No
prediction is attempted about the patient model in the subsequent fractions. This algorithm
adjusts the originally prescribed dose to completely compensate voxels which were overdosed
(or underdosed) in previous fractions by decreasing (or increasing) the dose goal at those
voxels. Specifically, it adds in fraction i the accumulated error from the previous fractions,
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Figure 2. Block diagram for ICA.

i−1
N

Dprescribed − ψcumdose
i−1 , to the original daily prescription dose, Dprescribed/N , resulting in an

adaptive dose goal of

D
goal
i = Dprescribed

N
+

(
i − 1

N
Dprescribed − ψcumdose

i−1

)
= i

N
Dprescribed − ψcumdose

i−1 .

In the control theory literature, this is considered a form of proportional control. Note that
the adaptive dose goal can be accurately calculated as long as the previous delivered doses,
ψcumdose

i−1 , are known. While this is currently not the case, the information is becoming
increasingly available. This algorithm chooses the feasible plan βi ∈ B for fraction i that
minimizes the weighted quadratic deviation of the planned dose, D

(·, βi, 0, ψ
geometry
i−1

)
from

the adaptive dose goal, D
goal
i :

βi = arg min
β∈B

∑
v

α(v)
(
D

goal
i (v) − D

(
v, β, 0, ψ

geometry
i−1

))2

= arg min
β∈B

∑
v

α(v)

(
i

N
Dprescribed(v) − ψcumdose

i−1 (v) − D
(
v, β, 0, ψ

geometry
i−1

))2

. (2)

2.5.2. Prudent Correcting Algorithm (PCA). Consider a treatment course of N fractions.
Let i be the current fraction index and d be the number of fractions for which we forecast
the patient’s anatomy and position (e.g., d = 2 means predicting 2 days ahead of the current
fraction). Note that d may be a function of the current fraction i. For instance, taking
d(i) = N − i means that we predict the anatomy and organ locations for the rest of the
treatment course. In reality, we can interrupt a pre-designed re-planning schedule at any
fraction and re-plan the subsequent fractions using a rolling horizon of d fractions: every
time we re-plan we find the optimal plan for fractions i, . . . , i + d (the current fraction and
the subsequent d fractions) and then deliver the first part of the plan (i.e., until we re-plan
again). In the control theory literature this is called finite horizon control. We then update the
system when the next set of information becomes available (possibly before every fraction).
Optimizing only for the current fraction ignores our (albeit imperfect) knowledge of the future
and therefore misses the opportunity to compensate the dose in future fractions. To determine
the plan chosen for fraction i we optimize

min
β ′

1∈B,...,β ′
i+d∈B

∑
v

α(v)

(
i + 1

N
Dprescribed(v) − ψcumdose

i−1 (v)

−
j=i+d∑
i=1

D
(
v, β ′

i , 0, ψ
predicted-geometry
j

))2

(3)
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where ψ
predicted-geometry
i , . . . , ψ

predicted-geometry
i+d are the predicted anatomy locations for fractions

i through i + d. The optimizers of problem (3) are a sequence of plans, βi, . . . βi+d , the first
of which is the plan, βi , that we will implement in fraction i. Clinically, this scheme is useful
when dealing with situations of tumor shrinkage after a re-planning CT/CBCT is done (see
section 4 for more details).

We consider a simple prediction model in which the anatomy remains unchanged for
the next d fractions to illustrate the approach (in practice one may use more sophisticated
prediction models). That is, we assume ψ

predicted-geometry
i = ψ

geometry
i−1 for fractions i through

i + d. For this prediction model, it can be shown that (3) reduces to

βi = arg min
β∈B

∑
v

α(v)

(
i + d

N
D

prescribed
i (v) − ψcumdose

i−1 (v) − (1 + d)D
(
v, β, 0, ψ

geometry
i−1

))2

.

We can also give this model the form of problem (2) by defining

D
goal
i = Dprescribed

N
+

1

d + 1

(
i − d

N
Dprescribed − ψcumdose

i−1

)
. (4)

If d = 0, then this algorithm coincides with the previous ICA algorithm. In equation (4), we see
that this algorithm differs from the ICA algorithm because the correction to the accumulated
error is divided among the subsequent d + 1 fractions of therapy to achieve better uniformity
and robustness of therapy. Alternative schedules for compensating the accumulated error that
accommodate specific clinical considerations should be easily implementable.

2.6. Evaluation and case study

We developed an in-house inverse planning platform to evaluate this closed-loop control
framework and the novel Adapting to Geometry and Delivered Dose algorithms. This platform
implements various RT planning strategies by optimizing fluence maps using the commercial
nonlinear optimization code SNOPT (Gill et al 2005). The platform also evaluates the
effectiveness of these plans by simulating the dose delivery function D(·).

Using this platform we compare the following algorithms: Adapting to Changing
Geometry (our baseline), Immediately Correcting Algorithm (ICA), Prudent Correcting
Algorithm (PCA) and Perfect Foresight. Results of the population-based margins planning
algorithm are not shown since the selection of margin size varies with institution and, in
general, it performs much worse than our baseline. Perfect Foresight is an algorithm that
plans the entire course of treatment using accurate predictions of the future errors and motions
during the course of treatment (see table 2). Note that in the Perfect Foresight algorithm,
the entire treatment course is planned as a whole (i.e., the fractions and their corresponding
anatomies are taken into account all in one optimization problem). In contrast to PCA with
d = N, the Perfect Foresight algorithm ‘knows’ exactly what the anatomy will be in each
fraction. When the prediction model is perfect, then PCA with d = N is the same as the
Perfect Foresight. It is worth stressing the purpose of the Perfect Foresight algorithm: it is
not an algorithm in the usual sense (because we assume that it knows the future) but only
a bound on normal algorithms. It is also worth noting that not even Perfect Foresight can
achieve complete conformity. We include Perfect Foresight in our comparisons to have a
more realistic standard against which to compare our algorithms. Further, as our ability
of predicting the future becomes better, the performance of our algorithms (and most other
reasonable algorithms) should approach that of Perfect Foresight. Thus, even though the
performance of this algorithm may not actually be attainable, it sets a valuable theoretical
upper bound on the performance of any ART planning algorithm. It is critically important for
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Figure 3. Phantom anatomy.

Table 2. Summary of various ART optimization schemes.

Algorithm Objective functions for different schemes of dose optimization

Perfect Foresight min
β1∈B,...,βN ∈B

∑
v α(v)

(
Dprescribed(v) − ∑N

i=1 D
(
v, βi , εi , ψ

geometry
i−1

))2

Minimize the difference between the prescription and the delivered dose
accumulated over all treatment fractions with knowledge of the dose delivery errors εi .

Baseline 1: population- β1 = · · · = βN = arg min
β∈B

∑
v α̃(v)

(
D̃prescribed(v)

N
− D

(
v, β, 0, ψ

geometry
0

))2

based margins Add margins to the prescription and then minimize the difference between
the prescription and the daily planned dose.

Baseline 2: Adapting to βi = arg min
β∈B

∑
v α(v)

(
Dprescribed(v)

N
− D

(
v, β, 0, ψ

geometry
i−1

))2

Changing Geometry Update the patient’s geometric model every fraction using CBCT and plan
a dose for that geometry that minimizes the difference to the daily prescription.

Adapting to Geometry and Delivered Dose

Immediately Correcting βi = arg min
β∈B

∑
v α(v)

(
i
N

Dprescribed(v) − ψcumdose
i−1 (v) − D

(
v, β, 0, ψ

geometry
i−1

))2

Algorithm (ICA) Update the patient’s geometric model every fraction using CBCT and plan
a dose for that geometry that minimizes the difference to the prescribed
dose plus the accumulated error.

Prudent Correcting βi = arg min
β∈B

∑
v α(v)

(
i+d
N

Dprescribed(v) − ψcumdose
i−1 (v) − (1 + d)D

(
v, β, 0, ψ

geometry
i−1

))2

Algorithm (PCA) Update the patient’s geometric model every fraction using CBCT and using
that geometry plan a dose for remaining (d + 1) fractions that minimizes the
difference to the prescribed dose plus the accumulated error.

the algorithmic development of ART planning and provides an important measure helping the
algorithm designer judge the potential for further improvement.

We compared the algorithms on a cubic phantom case and a prostate patient case. Phantom
study is valuable for algorithm development, simply because the results are more intuitively
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Table 3. Cumulative dose delivered to phantom for various algorithms relative to the baseline
algorithm, Adapting to Changing Geometry.

Tumor Sensitive structure Normal tissue

Avg dose Std dev Avg dose Std dev Avg dose Std dev
Algorithm (%) (%) (%) (%) (%) (%)

ICA +9 +48 −48 −12 +18 +47
PCA +8 −13 −18 −9 +7 +14
Perfect Foresight +9 −30 −89 −65 −8 +13

predictable/understandable and the ‘ground truth’ is readily attainable. A number of new
tools/steps are involved in ART planning, such as deformable registration (Court and Dong
2003), CBCT-based dose calculation (Yang et al 2007) and dose optimization, each of them
needs to be evaluated independently before they can be assembled together. Given the
developmental status of these ‘enabling’ tools for ART, it seems logical to illustrate the
methodology using some intuitive examples. The phantom, figure 3, is 20 cm in size and at
its center has a C-shaped target enclosing a round sensitive structure. In the prostate case, the
target volume was the prostate and the sensitive structures involved were rectum, femoral heads
and bladder. In both cases, we asked the algorithms to generate an IMRT plan with 15 fractions
and using five equally spaced beam directions. The tumor, sensitive structures and normal
tissue were assigned importance factors of α = 10, α = 3 and α = 0.7 respectively. The PCA
parameter, d, was always set to the number of fractions left in the treatment, d = N − i. We
simulated setup errors by introducing, independently for every fraction, a random translation
chosen uniformly at random from [−1, 1] cm and a random rotation chosen uniformly at
random from [−2◦, 2◦]. Other types of motion were not simulated in this study as a change in
the motion model does not change the nature of the closed-loop control. Since the intentionally
introduced motion has no systematic component, the prediction model for PCA assumes that
the anatomy remains unchanged for the remainder of the treatment course (as described in
section 2.5.2). In section 3, we compare the results visually in terms of the cumulative DVH and
numerically for each organ in terms of the average dose and standard deviation of the dose.

3. Results

3.1. Phantom study

The results are shown graphically in figure 4 and statistically in table 3. Each row of table 3
compares an algorithm to our baseline, Adapting to Changing Geometry.

Figure 4(a) shows three benefits the Adapting to Geometry and Delivered Dose algorithms
(and of course the Perfect Foresight algorithm) have over baseline 2, Adapting to Changing
Geometry. For the first benefit, note how the 25% contour in our baseline is shifted slightly
down from the sensitive structure. All the other algorithms do not show this shift. This
shift is most likely due to some setup error (that is not corrected for in our baseline).
The second benefit (also seen in the DVHs and table 3) is dose escalation to the tumor
while keeping the sensitive structure close to 25% (unlike the baseline, these algorithms
achieve tumor doses close to 100%). The third benefit is steeper gradients around the tumor
(because dose correcting algorithms will not let errors accumulate).

Aside from these benefits, the dose distributions in figure 4(a) also show how much worse
ICA is than PCA. As discussed above, ICA is able to escalate dose to the tumor while keeping
the dose to the sensitive structure low, but along the way it overdoses normal tissue and
decreases dose uniformity (see table 3). ICA may have fractions with higher doses than PCA
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Figure 4. (a) Cumulative dose delivered to phantom as per cent of prescription. (b) DVHs of
cumulative dose delivered to phantom as per cent of prescription.

since it tries to completely correct for dose delivery errors in the next fraction. We believe this
makes ICA less robust than PCA because when combined with organ deformation or setup
error these higher doses lead to bigger errors. The differing performance of the two Adapting
to Geometry and Delivered Dose algorithms shows that the algorithmic details matter.
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Figure 5. (a) Cumulative dose delivered in prostate study as per cent of prescription. (b) DVHs of
cumulative dose delivered in prostate study as per cent of prescription.

Looking at the DVH in figure 4(b), we see that the Perfect Foresight algorithm achieves
significantly better results than the adaptive algorithms (e.g., PCA). Perfect Foresight is
superior not only in terms of tumor target coverage, but also in the sparing of sensitive
structures. This is explained by the obvious fact that the Perfect Foresight algorithm has the
fundamental advantage of accurately ‘knowing’ the future. The Perfect Foresight algorithm
gives an upper limit on the potential of any closed-loop control algorithm. As treatment
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Table 4. Cumulative dose delivered in a prostate study for various algorithms relative to the
baseline algorithm, Adapting to Changing Geometry.

Tumor Femurs Rectum Normal tissue

Avg dose Std dev Avg dose Std dev Avg dose Std dev Avg dose Std dev
Algorithm (%) (%) (%) (%) (%) (%) (%) (%)

ICA +6 +14 +196 +165 +21 +73 +24 +28
PCA +5 −44 +40 +45 −5 +18 +13 +11
Perfect Foresight +5 −49 −8 +12 −54 −40 −7 +2

imaging, planning and delivery techniques become more sophisticated, the performance of
ART will become closer and closer to the Perfect Foresight algorithm.

3.2. Prostate study

The resulting dose distributions and their DVHs are in figures 5(a) and (b). Each row of
table 4 compares an algorithm to our baseline, Adapting to Changing Geometry.

As in the phantom case, the dose distributions (80% and 95% contour lines of figure 5(a))
show that PCA improves upon the baseline by being able to achieve dose escalation and
increased uniformity to the tumor while keeping the dose to the rectum (the sensitive structure)
low. Interestingly, ICA performs even worse than in the phantom case (it delivers more dose
to the femurs and normal tissue). At the same time, even more than in the phantom case,
the Perfect Foresight DVH shows how much the Adapting to Geometry and Delivered Dose
algorithms can still improve. In particular, the dose could be lower to the femurs and to a
lesser extent to normal tissue and the rectum. We believe that the difference between ICA
and PCA arises from the fact that ICA achieves the adaptive goal by sequentially optimizing
each fraction, whereas the PCA collectively optimizes a number of fractions with the goal
of producing the best possible cumulative dose. ICA may not be optimal in producing
the best possible cumulative dose because, when optimizing the treatment of a fraction, no
knowledge about the subsequent fractions is taken into account. Thus it is not surprising that
the performance of the PCA generally surpasses that of the ICA. Effectively, PCA benefits
from the partial cancellation of random delivery errors caused by fractionation (Bortfeld et al
2002, Chui et al 2003).

4. Discussion

In current clinical practice, patient setup relies primarily on information from simulation
and treatment planning (Balter 2003). During the whole course of treatment, usually the
same treatment plan and setup DRRs (digitally reconstructed radiographs) are employed.
Clinically, effort is focused on reproducing, with the aid of orthogonal planar images, the
patient’s geometry at the simulation stage using translations (and occasionally rotations).
While this approach is justifiable for treatment of certain types of diseases such as brain
tumors, it generally compromises the treatment because inter-fraction variations in volumes
and shapes of the target and sensitive structures are not taken into account. Generally, these
inter-fraction changes are multi-dimensional because organs can move relative to each other,
and in an extreme situation, each voxel within a soft organ can move relative to other voxels
in a complicated manner. Deformable image registration (Court and Dong 2003, Court et al
2005) helps by making these inter-fraction changes visible. But even then, compromised
treatment is inevitable because the few degrees of freedom in patient setup (translation and
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rotation) cannot completely correct for the multi-dimensional changes in the patient geometry:
patient setup cannot simultaneously align all the involved structures.

ART solves the problems described in the previous paragraph by adjusting every fraction,
not only the setup but also the treatment plan. We treat ART as a closed-loop control system
where every fraction we re-optimize the radiation beams based on the latest information (e.g.,
coming from CBCT). The hope is that the many degrees of freedom available in selecting a plan
allow us to compensate for the multi-dimensional changes in the patient geometry. In ART
the plan is updated routinely, and the fraction-to-fraction variations of anatomy/physiology
and dose delivery lead to modifications of the voxel-specific dose prescription.

ART can be implemented at different levels where the beams can be made to
accommodate (i) the new patient setup and the deformed target shape; (ii) positional/
anatomic/physiological changes of all involved organs; or (iii) deformable changes of organs
and accumulated dose delivery errors. In conventional 3D conformal radiation therapy, it is not
uncommon for a physician to modify a beam portal under the guidance of portal films while
the patient is on the treatment coach. In a sense, this is an example of the first kind of ART
listed above. However to adapt well to multi-dimensional organ deformations, the number
of variables in the beam should be large. Thus the modality of choice for the treatments of
type (ii) or (iii) is IMRT or alike. The information available in a particular treatment setup
(e.g., whether information is captured about the delivered dose) restricts the types of ART
possible in that setup. Our results show that correcting for dose delivery errors (i.e., type (iii)
ART) incurred in previous treatment fractions is important. In conventional radiation therapy
(and types (i) and (ii) ART) dose errors accumulate because they lack such a compensating
mechanism. As technology improves, more sophisticated versions of ART with increased
feedback can be implemented and our closed-loop control algorithms gain in relevance.

ART is a new strategy and its implementation entails the development of a number of
‘enabling’ tools, such as deformable image registration, automated contour mapping from
planning CT to the CBCT just before treatment, and effective dose optimization algorithms.
This paper tackles the dose optimization problem in ART by developing suitable dynamic
control algorithms. These algorithms try to rapidly optimize the treatment plan each time a
new set of input data is available. We propose two types of closed-loop control algorithms
(Adapting to Changing Geometry and Adapting to Geometry and Delivered Dose, see table 2
for details) for different clinical applications. Adapting to Changing Geometry is useful when
the accumulated dose is not known accurately. At this point, the deformable registration, which
is essential for the calculation of accumulative dose, is still not robust enough for clinical
use. Adapting to Changing Geometry is particularly helpful in this situation as it affords a
currently implementable technique to cope with the nuisance caused by organ deformation.
The ‘manual’ approach described by Mohan et al (2005) represents a special example of
geometric adaptation. The algorithms Adapting to Geometry and Delivered Dose are designed
to optimize the radiation treatment when both geometric and dosimetric updates are available
from time to time. The two algorithms Adapting to Geometry and Delivered Dose (ICA and
PCA) differ in how they use the update data to direct the treatment. First, ICA is proposed
for the situation where the dose compensation needs to be performed right after each update
of the system parameters. Clinically, ICA may be useful in dealing with unpredictable daily
changes resulting from random and fraction-specific organ deformation such as rectum or
bladder filling. Disease sites that are likely to benefit from the treatment include, but are
not limited to, prostate, rectum and cervical cancers. In PCA, the task of dose compensation
is accomplished by spreading the previous dosimetric errors over a number of subsequent
fractions. For practical or clinical reason, the volumetric images just before treatment may not
be available on a daily basis. In this case, PCA becomes a viable option for certain types of
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diseases since it distributes the task of compensating a dosimetric error among a number of
fractions instead of all-in-one. Indeed, there are clinical situations where the variation of the
anatomy may not be notable from day to day but over a larger time span. Tumor shrinkage and
weight loss in some head and neck cases represents a model example, where the CBCT and
re-planning do not need to be performed on daily basis. Re-planning using PCA would allow
us in this case to maximally benefit from state-of-the-art imaging information. In a way, PCA
is similar to the off-line ‘dumped’ correction scheme proposed by Mackie et al (2003), Keller
et al (2003), in which the correction is done at a certain point(s) of the treatment course and
then applied to several subsequent fractions.

There is a point worth emphasizing here about the PCA algorithm. Even though the
re-evaluation/re-planning are performed for a series of fractions, the specific plan used in
PCA may vary from fraction to fraction as a result of PCA optimization. This may happen
even if the anatomy/geometry does not change throughout the d fractions or the whole course
of the treatment. In general, the deviation from the prescription consists of two factors: (i) the
inherent difference between the prescription and the physically achievable dose distribution and
(ii) the dose delivery error due to changes in the patient’s anatomy and/or actual dose delivery.
Indeed, voxels within a target or a sensitive structure volume are generally not equivalent in
achieving their dosimetric goals in IMRT planning (unless non-attenuating beams are used).
Depending on the patient’s geometry, beam modality and field configuration, some regions
may have a better chance to meet the prescription than others, and vice versa. Thus even
when there is no geometric change at each fraction and the delivery can faithfully reproduce
what is planned without any error, the dose goal will likely need to be modified to compensate
for the inherent difference between the planned and prescribed doses in previous fraction(s).
Dosimetrically, it is advantageous to optimally vary the plan for each fraction to accomplish
the best possible cumulative dose distribution. A virtue of the PCA algorithm is that it is
capable of incorporating our prediction about the patient’s anatomy. A simple prediction
would be that the anatomy does not change in the following d fractions. A more sophisticated
prediction would be, for example, a model predicting the tumor shrinkage for each of the
following fractions (Chao et al 2007). In the special case where there is no geometric change
in the whole course and no delivery error, the difference between ICA and PCA becomes
how to better utilize the following fractional deliveries to make up the inherent dosimetric
difference of previous fractions.

Although showing significant improvement, we note that the algorithms described in
this paper are still far from the maximum theoretical performance limit. We encourage
the development of more sophisticated closed-loop control algorithms that come closer to
this limit. Better predictive schemes for future patient geometry should improve the PCA
algorithm greatly. Our use of a weighted quadratic objective function for plan optimization
(specifically the selection of beamlet weights) is probably suboptimal (Yang and Xing 2004a,
2004b, Wu et al 2002, Thieke et al 2003, Bedford and Webb 2006, Popple et al 2005, Oelfke
and Bortfeld 1999, Choi and Deasy 2002). However, all the algorithms discussed in this
paper would work with other objective functions. One could probably construct an optimal
algorithm using the theory of optimal stochastic control. One hurdle to applying this theory
is the fact that after delivering the treatment plan for some fraction, we must specify the
probability of every possible system state. We are researching these ideas.

Finally, we emphasize that the proposed ART is purely dose based and does not consider
any radiobiological effects. In principle treatment plan optimization should be based on
biological models as they are clinically the most relevant. In practice, however, there is much
controversy to this approach: the dose–response function linking the biological effect to the
radiation dose is not sufficiently understood for various structures. Yang and Xing (2005)
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have recently proposed a general time–dose–fractionation optimization strategy. This idea
combined with our ART framework could potentially handle biologically adaptive radiation
therapy. This is clearly a subject for future research.

5. Conclusion

The level of sophistication of adaptive therapy depends on the technology used to provide
feedback data. In the last decade, the electronic portal imaging device (EPID) and the
standalone CT scanner were the only technologies available for acquiring feedback information
and the focus was on adaptively defining the margin for delineating the planning tumor target
(PTV) (Yan et al 1997). In the era of onboard volumetric imaging, the meaning of ART
is obviously different from previous studies. The feedback from onboard CBCT makes it
possible for the first time to adaptively modify not only the margin but also the spatial dose
distribution to best accommodate the geometric changes of the patient as well as the dosimetric
deviations from the ideal prescription. The technical tools for implementing this new type
of geometry- and dosimetry-based ART are still not available yet, and an effective treatment
planning strategy capable of taking into account the dose delivery history and the patient’s
on-treatment geometric model must be in place in order for this new scheme of ART to reach
its potential. We have formulated ART treatment planning into the framework of closed-
loop control and developed three closed-loop ART algorithms: one Adapting to Changing
Geometry and two Adapting to Geometry and Delivered Dose (ICA and PCA). The new
formalism is useful in answering questions such as ‘how to effectively utilize information
about the current state and past delivery errors?’, ‘can we benefit from including the patient’s
future treatment(s) into today’s adaptation strategy?’, and ‘what is the best achievable scenario
of ART in an ideal situation?’ All three algorithms are capable of incorporating volumetric
imaging information acquired just before treatment and the latter two can also incorporate
information on the accumulated dose. Application of the proposed algorithms to the phantom
and clinical cases indicates that the algorithms utilizing the accumulated dose data (ICA and
PCA) allow an escalation of the dose to the tumor target. For a patient positioning procedure
with random setup errors, we found that the PCA performed best and significantly better
than ICA even though the implemented algorithms differ only slightly. The over-correcting
tendency of the ICA is not a desirable feature and should be avoided in the design of a practical
ART planning algorithm. Generally, the performance of a closed-loop algorithm may depend
on the motion model and other case-related issues. An important point here is that the details
of closed-loop adaptation play a critical role in the success of ART. Clearly, much research
remains to be done in developing more sophisticated closed-loop algorithms and searching for
the best possible ART strategy to maximally utilize the geometric and dosimetric information
that become or will soon become available. Given the complex interaction among errors,
motion and the doses delivered to the patient, a sophisticated disease-site specific adaptation
scheme may be useful.
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