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We consider the problem of optimal decision making under uncertainty but assume that the decision
maker’s utility function is not completely known. Instead, we consider all the utilities that meet some

criteria, such as preferring certain lotteries over other lotteries and being risk averse, S-shaped, or prudent.
These criteria extend the ones used in the first- and second-order stochastic dominance framework. We then give
tractable formulations for such decision-making problems. We formulate them as robust utility maximization
problems, as optimization problems with stochastic dominance constraints, and as robust certainty equivalent
maximization problems. We use a portfolio allocation problem to illustrate our results.
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1. Introduction
This paper questions a key and rarely challenged
assumption of decision making under uncertainty:
that decision makers can always, after a tolerable
amount of introspective questioning, clearly identify
the utility function that characterizes their attitude
toward risk. The use of expected utility to character-
ize attitudes toward risk is pervasive. In large part,
this is due to Von Neumann and Morgenstern (1944),
who prove that any set of preferences that a decision
maker may have among risky outcomes can be char-
acterized by an expected utility measure if the pref-
erences respect certain reasonable axioms (i.e., com-
pleteness, transitivity, continuity, and independence).
Specifically, there exists a utility function u2 ✓ ! ✓
so that among two random variables (or lotteries), W
and Y , the decision maker prefers W to Y if and only
if ⇧6u4W 57� ⇧6u4Y 57.
There has been much effort on determining how to

choose a utility function for a decision maker, and this
work plays an integral part in the design of surveys
for assessing tolerance to financial risk (Grable and
Lytton 1999). The method for choosing a utility func-
tion proposed in most textbooks on decision analysis
(see, for instance, Clemen and Reilly 2001) is to make
a set of pairwise comparisons between lotteries (often
using the Becker-DeGroot-Marschak reference lotter-
ies; Becker et al. 1964) in order to identify the value
of the utility function at a discrete set of points. The
utility function is then completed by naïve interpo-
lation. A more sophisticated approach assumes that

the utility function has a parametric structure such
as constant absolute or constant relative risk aver-
sion. For example, if a decision maker can confirm
that he is risk averse and that his preference between
any two lotteries is invariant to the addition of any
constant amount to all outcomes, then that decision
maker has constant absolute risk aversion; thus, his
utility is of the form u4y5 = 1É eÉÉy . Parameters are
then resolved using a small number of pairwise com-
parisons between lotteries.
These approaches have important shortcomings. If

they do not assume a parametric form, then the
large or even continuous space of outcomes may
require a lot of interpolation or asking the decision
maker many questions. Even interpolation may not
be easy, because if the questions to the decision maker
are binary choices between two lotteries, then the
answers will not provide the value of the utility func-
tion at any point; instead, each answer will provide
merely a single linear constraint on the values of the
utility function on the support of these two lotter-
ies. To justify a parametric form for the utility func-
tion, a decision maker must be able to confidently
address a question about an infinite number of lot-
tery comparisons (such as that described above for
utilities with constant absolute risk aversion). A more
fundamental limitation is that all these procedures
conclude by selecting a single “most likely” utility
function given the evidence. In other words, these
procedures entirely disregard other plausible choices
and the inherent ambiguity of those choices. In this
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paper, we will focus on these instances where knowl-
edge can only be gathered using a small number of
simple questions, and meaningful decisions must be
made even though no single utility can be unambigu-
ously identified.
Our approach follows in spirit the line of work in

the artificial intelligence literature on utility elicitation
using optimization for problems that only involve a
finite, although possibly large, set of outcomes. This
line of work emphasizes that utility elicitation and
decision analysis should be combined into a single
process in order to use all the information collected
about the true utility function when making a deci-
sion. In this context, Chajewska et al. (2000) represents
the knowledge of the decision maker’s preferences
using a probability distribution over utility functions
and then judges a decision by its expected utility aver-
aged over the distribution of utilities. To increase their
knowledge of the utility function, they use a value
of information criterion to select the next question to
the decision maker. In contrast to this probabilistic
approach, in Boutilier et al. (2006), the authors con-
struct the set U of all utility functions that do not
contradict the available information. They then iden-
tify the decision that achieves minimum worst-case
regret (i.e., regret experienced a posteriori once the
true utility function is revealed) using a mixed-integer
programming approach and exploiting the assumed
“generalized additive” structure of the true utility.
In comparison, our paper considers uncertain real-
valued outcomes and proposes formulations that are
more natural for decision making and can be reduced
to convex optimization problems.
We motivate our discussion with the following

stochastic program:

max
x2X

⇧6u4h4x1 é557 1

where x is a vector of decision variables, X is a set
of implementable decisions, and h4x1 é5 is a function
mapping the decision x to a random return indexed
by the scenario é; the expectation is over the random
scenarios é. We assume that we have not gathered
enough information to uniquely specify u4 · 5. Thus
we build on the theory developed by Aumann (1962)
of expected utility without the completeness axiom.
This theory suggests that our incomplete preferences
can be characterized by a set of utility functions U
(Dubra et al. 2004). This set describes our incomplete
information about u4 · 5 and is known to contain the
true utility function. Another situation where prefer-
ences are incomplete is when groups make decisions
by consensus: here, U contains the utility functions of
the group members, and two lotteries are incompara-
ble if the group members do not agree on which is
preferred.

The set U suggests that we face a robust optimiza-
tion problem. Our approach will differ, however, from
the typical robust optimization framework, which is
robust to the possible realizations or distributions
of é (see, for example, Ben-Tal and Nemirovski 1998,
Delage and Ye 2010, and references therein). Instead,
we are robust to the possible utilities in U and choose
the worst-case utility function.
When the range of h4x1 é5 is not restricted to a dis-

crete set, the only existing way of dealing with ambi-
guity in the utility function is a stochastic program
with a stochastic dominance constraint (Dentcheva
and Ruszczyński 2003):

max
x2X

⇧6f 4x1 é57

s.t. h4x1 é5⌫Z1

with some objective function f . In these problems
the stochastic dominance constraint, h4x1 é5 ⌫ Z, is
defined as ⇧6u4h4x1 é557 � ⇧6u4Z57 for all utility func-
tions u 2 U. This constraint ensures that the ran-
dom consequences of the chosen action, h4x1 é5, are
preferred to those of a baseline random variable Z
for all utility functions in U. For first-order domi-
nance, U is the set of all increasing functions, and for
second-order dominance, it is the set of all increas-
ing concave functions. The limitations of stochastic
dominance constraints are threefold: first, stochastic
dominance does not provide guidance with respect to
choosing an objective function f ; second, the choice
of a baseline Z is not a trivial one to make; and third,
the set U is very large in the case of first- and second-
order dominance, and thus the stochastic dominance
constraint may be very restrictive.
We briefly describe the four main contributions of

this paper.
1. In a context where preferences information is

incomplete, to the best of our knowledge, we pro-
vide for the first time tractable solution methods that
can account for information that takes the shape of
comparisons between specific lotteries. In particular,
we will show how the worst-case difference between
expected utilities,

inf
u2U

�
⇧6u4h4x1 é557É ⇧6u4Z577

�
1

or even
inf
u2U

⇧6u4h4x1 é5571

can be expressed as the maximum of a linear pro-
gramming problem of reasonable size. This is done
by exploiting the fact that these comparisons can
be represented as linear constraints in the space of
utility functions. The importance of this contribu-
tion comes from the realization that lottery com-
parisons are fundamental building blocks for repre-
senting one’s preferences regarding risk. It can, for
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instance, be observed in many risk tolerance assess-
ment surveys used by financial advisers, as these typ-
ically involve questions such as the following, from
Grable and Lytton (1999, p. 170):

You are on a TV game show and can choose one of the
following. Which would you take?

(a) $1,000 in cash
(b) A 50% chance at winning $5,000
(c) A 25% chance at winning $10,000
(d) A 5% chance at winning $100,000

That we can handle such comparisons in a tractable
way opens the door to a wide range of possibilities,
one of them being the allowance of more flexibility in
describing the set of utilities U involved in a stochas-
tic dominance constraint.1
2. We present for the first time the robust (i.e.,

worst-case) certainty equivalent formulation,

max
x2X

inf
u2U

uÉ14⇧6u4h4x1 é55751

(see §2 for a precise definition of “certainty equiva-
lent”) and show how under mild conditions it can be
reduced to solving a small number of linear programs
of reasonable size. In fact, this performance measure
is a natural one to employ when there is ambigu-
ity about the decision maker’s risk preferences, as
it provides solutions that we know are preferred to
the highest amount of guaranteed return. In partic-
ular, this measure has a meaningful set of units (the
same ones as h4x1 é5), unlike utility measures that can
be scaled arbitrarily. The set of utilities required for
tractability is the same as in first contribution and are
discussed in §3. Note that the concept of optimized
certainty equivalent defined in Ben-Tal and Teboulle
(2007), which falls in the class of convex risk mea-
sures, is a completely different concept; intuitively,
it can be seen as a best-case instead of a worst-case
approach, and it does not involve ambiguity about
the utility function.
3. Given a number of lottery comparisons, we pro-

vide a natural way of detecting when a decision
maker is inconsistent in his stated preferences (i.e.,
makes a set of comparisons that together violate the
axioms of the expected utility framework) by verify-
ing whether or not a certain linear program is fea-
sible. In case of inconsistency, we are able to iden-
tify the “closest” set of feasible preferences (or closest
feasible utility function) and quantify the “degree of
infeasibility.”

1 Note that in this paper, we focus on the definition of stochastic
dominance that involves the comparison of expected utility under
a set of utility functions. We leave the question open as to how
the conclusions that we will draw might be interpreted in terms
of comparing the results of different integration operations on the
cumulative density functions.

4. We measure for the first time the potential value
that is added to the decision as more knowledge of
the decision maker’s preferences is gathered, start-
ing from simple knowledge of risk aversion to exact
knowledge of the utility function that characterizes
his preferences. We do this by evaluating the dif-
ference in the optimal worst-case certainty equiva-
lent with and without the additional information. We
believe similar insights should be obtained in situa-
tions where one is worried about worst-case expected
utility. This idea could potentially be used to help
choose among a set of questions/comparisons or
when deciding whether the necessary effort required
to ask these questions is worth the gain.
In the next section we describe three formulations

(including the stochastic dominance formulation) that
can be used instead of maximizing expected utility
when the decision maker’s utility function is only
known to lie inside a set U. In §3 we describe the sets
of utilities U and how to optimize each formulation
with these sets. We then present numerical examples
involving a portfolio allocation problem in §4. Sec-
tion 5 describes extensions of the framework to allow
the detection and correction of inconsistent behavior
and to account for characteristics of the utility func-
tion that are associated with “almost stochastic dom-
inance.” We conclude in §6.

2. Formulations
Our work examines three formulations for decision
making when one knows the utility function is in
some set U. These formulations involve (1) optimiz-
ing with a stochastic dominance constraint,

max
x2X

f 4x5

s.t. ⇧6u4h4x1 é557� ⇧6u4Z57 8u 2U1
(1)

where Z is some reference random variable; (2) max-
imizing the worst-case utility,

max
x2X

inf
u2U

⇧6u4h4x1 é5573 (2)

and (3) maximizing the worst-case (or robust) cer-
tainty equivalent,

max
x2X

inf
u2U

⇤u6h4x1 é571 (3)

where the certainty equivalent of a lottery (i.e., ran-
dom variable) X given a utility function u is typically
defined as the amount for sure such that one would
be indifferent between it and the lottery; that is,
uÉ14⇧6u4X575. To ensure uniqueness, we slightly mod-
ify this definition to ⇤u6X7 2= sup8s2 u4s5  ⇧6u4X579.
The robust certainty equivalent formulation (3) maxi-
mizes infu2U⇤u6h4x1 é57, the largest amount of money
we know for sure we would be willing to exchange
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for the lottery h4x1 é5. In the context of group decision
making, using the worst-case utility function means
accommodating the group’s least favored member.
Because we do not know the true utility function

in these formulations, any choice from U is as justifi-
able as any other. We use the worst-case utility func-
tion for convenience: that choice turns out to make
these formulations very tractable. In addition to con-
venience, we can also motivate the choice of utility
from U with an analogy to Rawls’ (1971) A Theory
of Justice. Rawls proposes that one imagines deciding
the structure of society behind a “veil of ignorance,”
i.e., without knowing one’s place in society. Although
our decision maker’s choices are less weighty, his
ignorance of their true utility function is somewhat
analogous. Rawls then argues that this leads one to
focus on the least advantaged in society and suggests
a max-min principle for allocating goods. Similarly,
we focus on the least favorable utility function using
max-min formulations.
Because we seek convex formulations, we will

assume that the feasible set X is convex, the objective
function f in (1) is concave, the function h4x1 é5 relat-
ing the action to a random outcome is concave in x,
and the utilities in U are risk averse to ensure that
the objective in (2) is concave in x (the only exception
is when we discuss S-shaped utilities). For computa-
tional tractability we also assume that all the random
variables have finite support. We assume that there
are M scenarios for é, Ï 2= 8é11 0 0 0 1 éM 9 with associ-
ated probabilities pi 2= ⇣ 6é = éi7.
The key to our success is determining tractable rep-

resentations of

ñ4x3U1Z5 2= inf
u2U

�
⇧6u4h4x1 é557É ⇧6u4Z57

�
1 (4)

where we sometimes drop the dependence on U and
Z from our notation. Using ñ4x3U1Z5, we can write
the stochastic dominance formulation (1) as

max
x2X

f 4x5

s.t. ñ4x3U1Z5� 0

and the worst-case utility formulation (2) as

max
x2X

ñ4x3U1051

where we chose Z 2= 0 a.s. Unlike the other formu-
lations, the robust certainty equivalent formulation
is not concave but quasiconcave (see the proof in
Appendix A). Thus we can solve it using a bisection
algorithm.

Remark 1. Although it might be tempting to
straightforwardly adopt the worst-case expected util-
ity formulation (2) when considering ambiguity about

the choice of utility function, one must consider with
care that when maximizing worst-case expected util-
ity, one implicitly compares random variables using
a hidden (and potentially meaningless) set of ordered
lotteries, which tends in particular to favor a risk-
neutral attitude. We refer the reader to Appendix C
for a thorough discussion.

Remark 2. We do not study the worst-case regret
formulation

min
x2X

sup
u2U

max
x02X

�
E6u4h4x01 é557ÉE6u4h4x1 é557

�

proposed in Boutilier et al. (2006), for two reasons.
First, from a decision-theoretic point of view, minimax
regret as a choice function violates the independence
to irrelevant alternatives condition, which is essential
for rationalizing preferences (see Arrow 1959). That
condition states that our preference between decision
x1 and x2 should not be influenced by the set of alter-
natives X . Second, it is likely to be an intractable prob-
lem when U is a general convex set. Intuitively, the
reason is that evaluating the worst-case regret associ-
ated with a fixed x reduces to solving

sup
u2U1x02X

Z
E6u4y5Ñy4h4x

01 é55Éu4y5Ñy4h4x1 é557dy1

where Ñy4 · 5 is the Dirac measure. Unfortunately, the
cross term u4y5Ñy4h4x

01 é55 prevents this from being a
convex optimization problem.

3. Worst-Case Utilities
The following are three common hypotheses about a
decision maker’s utility function.
1. Risk aversion: A decision maker is risk averse if

for any lottery X, he prefers ⇧6X7 for sure over the
lottery X itself. This is characterized by the concavity
of the utility function.
2. S-shape: Prospect theory was proposed by Kah-

neman and Tversky (1979) to bridge the gap between
normative theories of rational behavior and behavior
observed by experimentalists. This theory conjectures
that preferences are affected by four factors. First, out-
comes are evaluated with respect to a reference point.
Second, decision makers are more affected by losses
than by winnings. Third, the perception of winnings
or losses is diminished as they get larger. Finally, the
perception of probabilities is biased (i.e., overweight-
ing smaller probabilities and underweighting larger
ones). These observations suggest that the decision
maker is risk averse with respect to gains and risk
seeking with respect to losses. Specifically, it suggests
an S-shaped utility function that is concave for gains
and convex for losses. As is typically done in the con-
text of a normative study, in what follows, we will
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disregard the possibility of any probability assess-
ment bias and focus on how to account for informa-
tion that indicates that the utility function has this
particular shape.
3 Prudence: In Eeckhoudt and Schlesinger (2006),

prudence captures the fact that a decision maker is
more risk tolerant in situations where he can achieve
higher returns. In particular, given any lottery involv-
ing two outcomes with equal probability of occurring,
a prudent decision maker will prefer adding a zero-
mean risk Z to the outcome with the largest value.2
Prudence is a stronger condition than risk aversion
and, as shown in Appendix E, is characterized by the
existence and convexity of the derivative of the utility
function. It is also commonly referred to as decreasing
absolute risk aversion.
In what follows, we present tractable reformula-

tion for evaluating ñ4·3U5 for three different types of
sets U that are formed from intersections of the fol-
lowing sets of utility functions:

U2 2= 8u2 u is nondecreasing and concave9 1

Us 2= 8u2 u is nondecreasing, convex on 4Éà1071
and concave on 601à59 1

U3 2= 8u2 u0 exists and is convex9 1

Un 2= 8u2 ⇧6u4W057É ⇧6u4Y057= 19 1

Ua 2= 8u2 ⇧6u4Wk57� ⇧6u4Yk57 8k= 11 0 0 0 1K9 0

Here, W01 0 0 0 1WK1Y01 0 0 0 1YK are given random vari-
ables representing lotteries. The set of risk-averse util-
ities is denoted by U2; the set of S-shaped convex–
concave utilities (and the only exception to the
assumption throughout the paper that utilities are
concave) is denoted by Us ; the set of prudent utilities,
those with convex u0, is denoted by U3; and the set
of utilities that prefer lottery Wk to lottery Yk for all k
is denoted by Ua. Since adding a constant to a util-
ity or multiplying it by a positive constant results in
an equivalent utility, it is often necessary to normal-
ize utilities. There are multiple ways of normalizing
utilities. Here, we use Un to specify the scaling, spec-
ifying that the utility difference between W0 and Y0
is 1. For example, assuming that W0 2= 1 and Y0 2= 0
a.s. enforces that u415Éu405= 1.
As the choices of U, we focus on U2 2=Ua \Un \U2,

Us 2=Ua \Un \Us , and U3 2=Ua \Un \U2 \U3. These
choices all incorporate Ua, allowing one to tailor the

2 In the economics literature (see, for instance, Leland 1968), a pru-
dent attitude is said to be defined by the need for larger precaution-
ary savings when facing a riskier situation. Here, we adopt a defi-
nition that does not rely on comparing amounts of money received
now versus later and is therefore closer in spirit to the definition of
risk aversion. Both of these definitions translate as imposing that
u04y5 exists and is convex.

problem to the specific preferences of a particular deci-
sion maker, whether he be entirely risk averse, risk
seeking over losses, or prudent. For example, U2 with
no specific preferences, i.e., K = 0, reduces to the set
defining second-order dominance. We now present
finite dimensional linear programming reformulations
of ñ4x3U1Z5 for these choices of U. Although the
reformulations will be exact for U2 and Us , the refor-
mulations will lead to a conservative approximation
of high precision for U3. In the cases of U2 and U3, the
reformulations can easily be reintegrated in the opti-
mization model for x and give rise to a convex opti-
mization problem of reasonable size.
The notation used in the following results will refer

to S as the joint support of all static random vari-
ables, S 2= supp4Z5[SK

k=04supp4Yk5[ supp4Wk55, and
we will use ȳj to denote the jth smallest entry of S .
For clarity of exposure, scenarios in Ï will always be
indexed by i, outcomes in S by j , and queries by k.
Thus the size of our optimization problems is speci-
fied by the number of queries K, the number of sce-
narios M , and the size of the support N 2= óS ó.
3.1. Incorporating Lottery Comparisons
We first address how to account for the results of
K lottery comparisons for a decision maker known
to be risk averse. Specifically, in this case evaluating
ñ4x3U1Z5 requires characterizing the optimal value
of the infinite dimensional problem

inf
u2U2

�
⇧6u4h4x1 é557É ⇧6u4Z57

�
0

Our main result states that this value can be com-
puted by solving a finite dimensional linear program
of reasonable size as it involves 24N +M5 variables
and MN +K +M + 2N É 1 constraints (not counting
the nonnegativity constraints).

Theorem 1. The optimal value of the linear program

min
Å1Ç1v1w

X

i

pi4vih4x1 éi5+wi5É
X

j

⇣ 6Z= ȳj 7Åj (5a)

s.t. ȳjvi +wi � Åj 8 i 2 811 0 0 0 1M91

j 2 811 0 0 0 1N 91 (5b)
X

j

✓
⇣ 6W0 = ȳj 7Åj É⇣ 6Y0 = ȳj 7Åj

◆
= 11 (5c)

X

j

⇣ 6Wk = ȳj 7Åj �
X

j

⇣ 6Yk = ȳj 7Åj

8k= 11 0 0 0 1K1 (5d)

4Åj+1 ÉÅj5� Çj+14ȳj+1 É ȳj5

8 j 2 811 0 0 0 1N É 191 (5e)

4Åj+1 ÉÅj5 Çj4ȳj+1 É ȳj5

8 j 2 811 0 0 0 1N É 191 (5f)

v� 01 Ç� 01 (5g)

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

32
.2

11
.1

89
.1

40
] o

n 
26

 M
ay

 2
01

5,
 a

t 0
7:

24
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Armbruster and Delage: Decision Making Under Uncertainty with Incomplete Preference Information
116 Management Science 61(1), pp. 111–128, © 2015 INFORMS

equals ñ4x3U25. Furthermore, a worst-case utility function
(i.e., one achieving the infimum in (4)) is

u⇤4y5=

8
>>>><

>>>>:

ÅN y� ȳN 1
Åj+1ÉÅj

ȳj+1É ȳj
y+ ȳj+1ÅjÉ ȳjÅj+1

ȳj+1É ȳj
ȳj y<ȳj+1

8j 28110001NÉ191
Éà y<ȳ10

(6)
This is a piecewise linear function connecting the points
u4ȳj5 = Åj , which equals Éà for y < ȳ1 and ÅN for y �
ȳN and which has supergradient Çj 2 °u4ȳj5. Here, y is a
dummy outcome variable and not related to the 8ȳj9. Note
that according to this utility function, outcomes below ȳ1
are infinitely bad.

We present a detailed proof of this result because
the ideas that are used will be reused in the proofs
of Theorems 2 and 3. Intuitively, (5a) represents the
difference in utilities, (5c) normalizes the utilities, (5e)
and (5f) ensure concavity, and Ç� 0 ensures the utility
is nondecreasing.

Proof. We first partition the set of utility functions
by their values at the points in S , letting U 4Å5 2=
8u2 u4ȳj5= Åj 8 j9. Hence,

ñ4x3U25=min
Å

ñ4x3U 4Å5\U251

U 4Å5\U2 6=ô0

Note that U 4Å5 is either a subset of Ua or is disjoint
from it. The same is true with respect to Un. Since
U2 2=Ua \Un \U2, it then follows that

ñ4x3U25=min
Å

ñ4x3U 4Å5\U251

U 4Å5\U2 6=ô1U 4Å5✓Ua1U 4Å5✓Un0

The constraint U 4Å5 \ U2 6= ô is represented by (5e)
and (5f), and Ç � 0, U 4Å5✓ Ua by (5d), and U 4Å5✓Un

by (5c). Note that ⇧6u4Z57 is a constant,
P

j ⇣ 6Z = ȳj 7Åj ,
for u 2U 4Å5. Thus, evaluating ñ4x3U 4Å5\U25 is equiv-
alent to minimizing ⇧6u4h4x1 é557 over u 2 U 4Å5 \ U2.
Among the nondecreasing concave functions in U 4Å5,
this is minimized by the piecewise linear function u⇤

in (6), which essentially forms a convex hull of the
points 4ȳj1Åj5 with the additional requirement that
the function be nondecreasing. Hence when U 4Å5 \
U2 6=ô, then the function u⇤ in (6) is a worst-case util-
ity function for ñ4x3U 4Å5 \U25 (i.e., achieves the infi-
mum in (4)). Then, ñ4x3U 4Å5 \ U25 = ⇧6u⇤4h4x1 é557ÉP

j ⇣ 6Z= ȳj 7Åj . Since u⇤ is concave and nondecreasing,

u⇤4y5= min
v�01w

vy+w (7a)

s.t. vȳj +w � Åj 8 j 2 811 0 0 0 1N 90 (7b)

Substituting y = h4x1 é5 for every i gives us the objec-
tive (5a) and the constraints (5b) and v� 0. É

Remark 3. An alternative way to ensure concavity
of the utility functions would be to replace constraints
(5e), (5f), and Ç � 0 by Åj+1 = Åj + Çj4ȳj+1 É ȳj5 and
Çj+1  Çj for all j 2 811 0 0 0 1N É 19, where we con-
sider ÇN = 0. We used the form that is presented,
as it relates more naturally to the definition of a
concave function u4ȳj+15  u4ȳj5 + Ôu4ȳj5

T 4ȳj+1 É ȳj5,
where Ôu4y5 refers to a supergradient of u4y5. This
form could therefore easily be generalized to the con-
text of multiattribute utility functions, which we leave
as a future direction of research to explore.

This formulation allows us to efficiently solve prob-
lems (1), (2), and (3). To solve (1) and (3), we look
at the dual of problem (5). This allows us to write
ñ4x3U25� 0 using the dual variables å 2✓N⇥M , ç0 2✓,
ç 2 ✓K , ã415 2 ✓NÉ1, and ã425 2 ✓NÉ1 as well as the fol-
lowing constraints:

ç0 � 01 (8a)
X

i

åi1 j É 4⇣4W0 = ȳj5É⇣4Y0 = ȳj55ç0

ÉX

k

4⇣4Wk = ȳj5É⇣4Yk = ȳj55çk + 4ã
415
j Éã

415
jÉ15

É4ã
425
j Éã

425
jÉ15= ⇣4Z= ȳj5 8 j1 (8b)

ã
425
j 4ȳj+1 É ȳj5Éã

415
jÉ14ȳj É ȳjÉ15 0 8 j1 (8c)

X

j

ȳjåi1 j  pih4x1 éi5 8 i1 (8d)

X

j

åi1 j = pi 8 i1 (8e)

å� 01 ç � 01 ã415 � 01 ã425 � 01 (8f)

where we consider ã
415
0 = ã

425
0 = 0. All constraints are

linear in the decision variables except for (8d), which
is a convex constraint in x if h4·1 é5 is concave. For
the stochastic dominance constrained problem (1), we
simply add these constraints and variables to the
problem; for the robust certainty equivalent prob-
lem (3), we check their feasibility a small number of
times. In the case of the robust utility maximization
problem (2), we let Z = 0, then take the dual formu-
lation, and then combine the two stages of minimiza-
tion to get

max
x2X

inf
u2U

⇧6u4h4x1 é557= max
x2X

å1ç01ç1ã
4151ã425

ç0

s.t. (8b)–(8f)0

3.2. Incorporating S-Shape Information
We assume that y = 0 is the reference point (i.e., inflec-
tion point) for the S-shaped utility function. For sim-
plicity, we will include 0 in S and define the sets J+ =
8j2 ȳj � 09 and JÉ = 8j2 ȳj  09. The following theorem
is similar to Theorem 1. Since the proof is also similar,
we defer it to the Appendix B.
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Theorem 2. The optimal value of the linear program

min
Å1Ç1v1w1s

X

i

pi
�
18h4x1éi5<09si+18h4x1éi5�09

·4vih4x1éi5+wi5
�ÉX

j

⇣ 6Z= ȳj 7Åj (9a)

s.t. ȳjvi+wi�Åj 8 i28110001M91j 2J+1 (9b)

si�Çj4h4x1éi5É ȳj5+Åj

8 i28110001M91j 2JÉ1 (9c)
X

j

⇣ 6W0= ȳj 7ÅjÉ
X

j

⇣ 6Y0= ȳj 7Åj =11 (9d)

X

j

⇣ 6Wk= ȳj 7Åj �
X

j

⇣ 6Yk= ȳj 7Åj

8k=110001K1 (9e)

Åj+1ÉÅj �Çj+14ȳj+1É ȳj5 8 j 2J+\8N 91 (9f)

Åj+1ÉÅj Çj4ȳj+1É ȳj5 8 j 2J+\8N 91 (9g)

ÅjÉÅjÉ1Çj4ȳjÉ ȳjÉ15 8 j 2JÉ1 (9h)

ÅjÉÅjÉ1�ÇjÉ14ȳjÉ ȳjÉ15 8 j 2JÉ1 (9i)

v�01 Ç�01 (9j)

equals ñ4x3Us5. Furthermore, a worst-case utility function
(i.e., one achieving the infimum in (4)) is

u⇤4y5=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ÅN y � ȳN 1
Åj+1 ÉÅj

ȳj+1 É ȳj
y+ ȳj+1Åj É ȳjÅj+1

ȳj+1 É ȳj
ȳj  y < ȳj+1

8 j 2 J+1

max
j 028j1j+19

4Çj 04yÉ ȳj 05+Åj 05 ȳj  y < ȳj+1

8 j 2 JÉ1

Ç14yÉ ȳ15+Å1 y < ȳ10
(10)

This is a piecewise linear function connecting the points
u4ȳj5= Åj .

Unfortunately, the general problems (1), (2), and (3)
are probably hard to solve under Us because even
maximizing expected utility with an S-shaped util-
ity function may lead to multiple local maxima. Nev-
ertheless, Theorem 2 allows us to evaluate ñ4x3Us5
(and, potentially, its derivatives using linear program-
ming sensitivity analysis), despite its infinite dimen-
sional nature. This suggests that nonlinear optimiza-
tion methods that accept black-box representations
of the objective function should be applicable. Such
methods rely on an oracle that can evaluate efficiently
the objective function g4x5 for a fixed x. In particular,
considering the robust certainty equivalent formula-
tion presented in problem (3), one could easily con-
sider applying derivative-free optimization methods
(see Conn et al. 2009 for a complete survey) to the
problem maxx2X g4x5, where g4x5 2= infu2U⇤u6h4x1 é57.

Here, g4x5 can be evaluated by applying a bisection
algorithm to find the largest value z such that the
optimal value of the linear program (9) with Z 2= z
almost surely is greater than or equal to 0.

3.3. Incorporating Prudence Information
Our results are weaker for U3. We will assume that
6a1 b7 contains the support of all the random variables
involved in this problem. We then discretize this inter-
val, adding values to S to minimize the largest gap
ȳj+1 É ȳj .

Theorem 3. The optimal value of the linear program

ñ̂4x5 2=
min

Å1Ç1É1v1w

⇢X

i

pi4vih4x1éi5+wi5É
X

j

⇣ 6Z= ȳj 7Åj

�
(11a)

s.t. ȳjvi+wi�Åj

8i28110001M91 j 28110001N 91 (11b)
X

j

⇣ 6W0= ȳj 7ÅjÉ
X

j

⇣ 6Y0= ȳj 7Åj =11 (11c)

X

j

⇣ 6Wk= ȳj 7Åj �
X

j

⇣ 6Yk= ȳj 7Åj

8k=110001K1 (11d)

Åj+1ÉÅj �Çj+14ȳj+1É ȳj5

8j 28110001NÉ191 (11e)

Åj+1ÉÅj Çj4ȳj+1É ȳj5

8j 2811210001NÉ191 (11f)

Çj+1ÉÇj Éj+14ȳj+1É ȳj5

8j 28110001NÉ191 (11g)

Çj+1ÉÇj �Éj4ȳj+1É ȳj5

8j 28110001NÉ191 (11h)

Ç�01√01v�01 (11i)

is a lower bound for ñ4x3U35. Furthermore, an approx-
imate worst-case utility function is the piecewise linear
function

û⇤4y5=

8
>>>>>>><

>>>>>>>:

ÅN y� ȳN 1

Åj+1ÉÅj

ȳj+1É ȳj
y+ ȳj+1ÅjÉ ȳjÅj+1

ȳj+1É ȳj
ȳj y<ȳj+1

8 j 28110001NÉ191

Éà y<ȳ10
(12)

The proof can be found in the Appendix D.
As the discretization becomes finer, we expect that
the approximate value ñ̂4x5 and approximate worst-
case utility function û⇤4 · 5 converge, respectively, to
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ñ4x3U35 and its worst-case utility function. Note that
replacing ñ4x5 with its lower bound ñ̂4x5 in any of the
three formulations (1), (2), or (3) will always return
a solution that is conservative in the sense that it is
ensured to be feasible and to achieve at least the level
of performance dictated by the approximate optimal
value.

Remark 4. This theorem can be used to solve
problems with third-order stochastic dominance con-
straints because third-order dominance of h4x1 é5
over Z is equivalent to ñ4x3U35 � 0 with K = 0.
The existing approach for such problems uses the
fact that ñ4x3U35 � 0 is equivalent to ⇧6max401y É
h4x1 é5527  ⇧6max401y É Z527 for all y 2 ✓ (Ogryczak
and Ruszczyński 2001). Verifying this inequality at
a discrete set of points is a tractable approximation.
However, Theorem 3 leads to an approximation that
has certain advantages: (1) it only imposes linear con-
straints instead of quadratic ones, (2) it provides a
conservative (i.e., inner instead of an outer) approx-
imation for the set of feasible x ensuring that domi-
nance holds for all feasible points in the approxima-
tion, and (3) it allows us to account for additional
information about the utility function.

4. Numerical Study
In this section, we use a portfolio optimization prob-
lem to illustrate the gains that can be achieved by
adopting formulations that account for the preference
information that is available. In this portfolio opti-
mization problem, we assume that there are n assets,
and we let xi be the proportion of the total budget
allocated to asset i. Since we do not consider short
positions, the feasible set for the vector of alloca-
tions x is the convex set X 2= 8x 2✓n2 x� 01 x · 1= 19.
Let éi be the random weekly return of asset i. Then we
let the random outcome h4x1 é5 2= x · é be the return
of the portfolio.
We consider two formulations. First, we consider a

formulation that attempts to maximize the certainty
equivalent of the constructed portfolio:

max
x2X

⇤ū4x · é51 (13)

where ū is the utility function that would capture
exactly the complete preference of our decision maker,
the investor. When preference information is incom-
plete, i.e., only K pairwise comparisons have been
made by the decision maker, the utility function is
only known to lie in a set of type U2. Hence, one can
either use this information to estimate the true utility
function by some function û and solve problem (13)
with û instead of ū or solve the robust certainty equiv-
alent formulation (3) with h4x1 é5 = x · é. The latter
will effectively return a portfolio that is preferred to
the bank account with the largest fixed interest rate.

Alternatively, our second formulation attempts to
maximize expected return of the portfolio under
the constraint that this portfolio is preferred by the
investor to the return of a given benchmark portfo-
lio Z. Specifically, we are interested in solving

max
x2X

⇧6x · é7 (14a)

s.t. ⇧6ū4x · é57� ⇧6ū4Z570 (14b)

This time, in the case of incomplete preference infor-
mation, although one could replace ū by some esti-
mated û, we will follow the spirit of stochastic dom-
inance, as presented in Dentcheva and Ruszczyński
(2006), which suggests replacing constraint (14b) with

⇧6u4x · é57� ⇧6u4Z57 8u 2U2 0

Note that this approach disregards all the preference
information except for the fact that the investor is risk
averse. By allowing one to replace U2 by U2 in prob-
lem (14), our approach corrects for this weakness.
After presenting the data used to parameterize

these problems, in what follows we present empirical
results that demonstrate how, in a context with incom-
plete preference information, decisions can improve
(1) by using a worst-case analysis that accounts
appropriately for this information instead of simply
using an estimate û or being overly conservative
through replacing U2 with U2, and (2) by gathering
preference information that is pertinent with respect
to the nature of the decision that needs to be made.
Indeed, as we ask more questions, and K increases,
we expect the set of potential utilities U2 to shrink
as our knowledge becomes better, and our portfolio
performance should improve.

4.1. Data
We gathered the weekly returns of the companies in
the S&P 500 index from March 30, 1993 to July 6,
2011. We focused on the 351 companies that were
continuously part of the index during this period.
Although not including companies that were removed
from the index creates some survivorship bias, our
results should remainmeaningful because the absolute
returns are not our focus. For each run, we randomly
chose 10 companies from the pool of 351 to be our
n= 10 assets. We consideredM = 50 equally likely sce-
narios for the weekly asset returns, which we choose
by randomly selecting a contiguous 50-week period
of historical returns for the selected companies from
the data. For the stochastic dominance formulation, the
distribution of the benchmark return Z is given by the
weekly return of the S&P 500 index during the same
period.
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4.2. Effectiveness of Robust Approach
Our first numerical study attempts to determine
whether there is something to gain by accounting
explicitly for available preference information in our
portfolio optimization model instead of assuming
more naïvely that the utility function takes on one of
the popular shapes. In our simulation, the decision
maker is risk averse and agrees with the axioms of
expected utility, yet he is unaware which utility func-
tion captures his risk attitude. Information about this
attitude can be obtained through comparison of ran-
domly generated pairs of lotteries (using the “random
utility split method” described in §4.3.1) and thus
can be represented by U2.3 Although he is unaware
of this, the simulated decision maker, when mak-
ing a comparison, acts according to the utility func-
tion ū4y5=É20Ei420/y5+y exp420/y5, where Ei stands
for the exponential integral Ei4y5 2=É R à

Éx
exp4Ét5/t dt.

Our experiments consist of comparing four utility
function selection strategies with respect to their aver-
age performance at maximizing the portfolio’s cer-
tainty equivalent over a random sets of 10 compa-
nies and 50 scenarios, which are drawn as described
in §4.1.

Remark 5. The function ū4y5 = É20Ei420/y5 + y ·
exp420/y5 was chosen because it has the property that
Éu004y5y2/u04y5 = 20. Hence, if the decision maker is
only asked to compare lotteries that involve weekly
returns close to 0%, then one might conclude that
the absolute risk aversion of this decision maker is
constant (i.e., his utility function takes the exponen-
tial form) when in fact his absolute risk aversion is
decreasing and scales proportionally to 1/x2.

4.2.1. Utility Function Selection Strategies. We
consider four different approaches to dealing with
incomplete preference information that takes the form
of a set of pairwise comparisons under the risk aver-
sion hypothesis, i.e., U2.
1. Exponential fit: This approach simply suggests

approximating u4 · 5 with û4 · 5 obtained by fitting an
exponential utility function of the form uc4y5 = 41É
exp4Écy55 to the available information. For imple-
mentation details, we refer the reader to Appendix 6.
It is interesting to note that, when a decision maker
has constant absolute risk aversion, it is sufficient to
identify the certainty equivalent of a single lottery to
learn exactly the values that c should take. Unfortu-
nately, here, the decision maker has decreasing risk
aversion; hence, as U2 ! 8ū4 · 59, the best-fitted func-
tion will become unable to fit ū4 · 5 exactly.

3 To implement, in each simulation, we used as reference lotteries
for W0 and Y0 the minimum and maximum return that could be
achieved according to the 50 selected scenarios.

2. Piecewise linear fit: This approach simply suggests
approximating u4 · 5 with û4 · 5 obtained by fitting a
piecewise linear concave utility function of the form
uÅ1Ç4y5 = mini4Åiy + Çi5 to the available information
about the true utility function. Our implementation
follows similar lines as used for the exponential util-
ity function with the single exception that we enforce
that uÅ1Ç be in U2. The best-fitted piecewise linear
utility function does have a more complex represen-
tation: for instance, in our implementation, the num-
ber of linear pieces was comparable to the size óSó.
For implementation details, we refer the reader to
Appendix G.
3. Worst-case utility function: This approach sug-

gests decisions that achieve the best worst-case per-
formance over the set of potential risk-averse utility
functions. See §3.1 for implementation details.
4. Worst-case prudent utility function: This approach

suggests decisions that achieve the best worst-case
performance over the set of potential prudent utility
functions. We used a discretization of 250 points to
approximate the true problem as described in §3.3.
In addition, the true utility function approach plays

the role of a reference for the best performance that
can be achieved in each decision context. This is done
by assuming that the decision maker actually knows
that his preference can be represented by the form
u4y5=É20Ei420/y5+ y exp420/y5. Although we argue
that this situation is unlikely to occur in practice, we
hope to verify that the approaches based on a piece-
wise linear fit or the worst-case utility functions are
consistent in the sense that the decisions they sug-
gest will actually converge, as more information is
obtained about the decision maker’s preferences, to
the decisions that should be taken if the true utility
function was known.

Remark 6. We performed a short experiment to
verify that the approximation method based on dis-
cretization was accurate enough when 250 points are
used. To do so, we fixed the number of lottery com-
parison to 40 and evaluated the effect of using a
more refined discretization grid on the value of the
approximated optimal worst-case certainty equiva-
lent on 6,000 random problem instances. We observed
in these experiments that when it was possible to
improve the performance by more than 0.2 percentage
points through a 1,000-point discretization this was
nearly always already achieved using a discretization
of 250 points. Figure 1 presents statistics of this con-
vergence to the value achieved with a discretization
of 1,000 points.

4.2.2. Results. Table 1 presents a comparison
of the first percentiles and averages of certainty
equivalents achieved in 10,000 experiments when
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Figure 1 Statistics of Convergence of the Approximate Optimal
Worst-Case Certainty Equivalent When Prudence Is
Accounted for Using a Discretization Grid of Growing Size
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Notes. The average, 10th, and 90th centiles of the performance relative to

the performance achieved with a grid of 1,000 points are presented for a set

of 6,000 experiments. p.p., percentage points.

maximizing the certainty equivalent under incom-
plete preference information using the four utility
function selection strategies that described above.
Note that the certainty equivalents, whose statistics
are reported in this table, were evaluated using the
true utility function. Because our simulations did not
include a risk-free option, optimal portfolios had neg-
ative certainty equivalents on occasion in contexts
where the 50 scenarios were taken from a period
with a declining economy. An approximate method
might also suggest a portfolio with negative certainty
equivalent if the utility function that is used to mea-
sure performance actually overestimates its certainty
equivalent.
First, we can confirm that the piecewise linear and

worst-case utility function approaches suggest deci-
sions whose respective performance converges, in
terms of first percentile and average value, to the per-
formance achieved knowing the true utility function;
this is because they always employ utility functions

Table 1 Comparison of the 99% Confidence Intervals of the First Percentile and Average of Certainty Equivalents Achieved in 10,000 Experiments by
Maximizing the Certainty Equivalent Under Incomplete Preference Information Using Four Utility Function Selection Strategies

Certainty equivalent (in %)

5 queries 20 queries 80 queries

Approach 1st %ile Average 1st %ile Average 1st %ile Average

Exponential fit É308± 103 É0005± 0003 É600± 106 É0012± 0005 É601± 206 É0013± 0006
Piecewise linear fit É800± 100 É0060± 0004 É308± 004 É0011± 0002 É300± 003 0005± 0002
Worst-case utility function É206± 002 É0014± 0001 É206± 002 É0008± 0001 É203± 002 0006± 0001
Worst-case prudent utility function É206± 002 É0013± 0001 É206± 002 É0005± 0001 É202± 002 0008± 0001
True utility function É200± 002 0012± 0001 É200± 002 0012± 0001 É200± 002 0012± 0001

Notes. An experiment consists of randomly sampling a set of 10 companies as candidates for investment; a set of 50 return scenarios; and a set of 5, 20, or

80 answered queries. Also, %ile stands for percentile.

that are members of U2 and because U2 ! 8ū9. It is
also as expected that making the false assumption that
absolute risk aversion is constant, i.e., using an expo-
nential utility function, can potentially lead to a sig-
nificant loss in performance, especially when a large
quantity of information about the decision maker’s
risk attitude has been gathered. Indeed, the results
indicate that in these experiments, after 80 queries
were performed, the method that used the best-fitted
exponential utility function proposed portfolios that
on average were equivalent to a negative guaranteed
return, whereas other methods were able to suggest
portfolios that on average were equivalent to a 0.06%
guaranteed weekly return on investment (i.e., 3.1%
annually) in terms of the decision maker’s prefer-
ences. Finally, we can confirm that choosing a port-
folio based on the worst-case utility function is sta-
tistically more robust, in terms of average and first
percentile of the performance, when little preference
information is available. It is also clear from Table 1
that accounting for information about prudence can
increase the worst-case certainty equivalent by an
average of 0.02 percentage points.
We wish to provide slightly more intuition about

how the uncertainty about the utility function is
reduced as more questions are answered and how the
respective approaches succeed at fitting the unknown
utility function. For this purpose, Figure 2 presents
a set of illustrations that describe the shape of the
uncertainty region together with the fitted functions
as more information was obtained in one of the
above experiments. In the five-questions scenario, it
is clear that there is too little information to make a
good choice of utility function—hence the need for a
method that accounts for this ambiguity. In the 20-
questions scenario, all three methods seem to pro-
vide a good estimate of the utility function. Note
that although in this scenario the exponential func-
tion seems to fit the function best, we notice at a
finer resolution (in the plot for 80 questions) that it
will never exactly replicate the true attitude toward
risk. It is harder to distinguish in these illustrations
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Figure 2 Evolution of the Bounding Envelope of Utility Functions in U2 and of the Utility Functions Used by the Different Approaches as Observed in
One Experiment for a Growing Number of Answered Questions
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Notes. The ground truth function refers to ū4y 5. The worst-case utility function is obtained by solving the robust certainty equivalent optimization problem.

Note also that for the 80-questions scenario, magnified versions of the curves are provided to highlight the irreducible fitting error of the exponential utility.

Finally, p.p. stands for percentage points.

between the quality of the fitted piecewise linear util-
ity function and the worst-case utility. Note, however,
that although neither of them will ever be an exact fit
(given that we can see parts of the dotted line), with
the worst-case analysis approach, we can be reassured
by the fact that the “misadjusted” utility function that
is used is guaranteed to provide a conservative esti-
mate of the certainty equivalent.

4.3. Effectiveness of Elicitation Strategies
The following results shed some light on how deci-
sions might be improved by gaining more information
about the preferences of the decision maker. In partic-
ular, we compare how performance is improved as we
increase the number of questions the decision maker is
asked using the four different elicitation strategies pre-
sented in §4.3.1. For simplicity, in our simulation, the
decision maker’s true utility function over the weekly
return now has a constant absolute risk aversion level

of 10: ū4y5 2= 1 É eÉ10y . Note that although the deci-
sion maker is unaware that his preferences can be rep-
resented by this function, we assume that he never
contradicts the conclusions suggested by such a util-
ity function when comparing lotteries. Our experi-
ments consist of evaluating, as the number of queries
is increased, the average performance achieved by
the robust approach over random sets of 10 compa-
nies and 50 scenarios, which are drawn as described
in §4.1.

4.3.1. Elicitation Strategies. We elicit information
about the investors’ preferences by asking them to
choose between the preferred two random outcomes.
For simplicity, we only consider questions that com-
pare a certain outcome to a risky gamble with two
outcomes (a.k.a. the Becker-DeGroot-Marschak refer-
ence lottery; Becker et al. 1964). In other words, each
query can be described by four values r1  r2  r3 and
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a probability p. These four values specify the question,
“Do you prefer a certain return of r2 or a lottery where
the return will be r3 with probability p and r1 with
probability 1É p?” If we normalize the utilities such
that u4r15= 0 and u4r35= 1, then this query will iden-
tify whether u4r25> p or not. We now describe three
different schemes for sequentially choosing questions
to ask the investor.
1. Random utility split: This scheme lets r1 and r3 be

the worst and best possible returns, respectively, and
chooses r2 uniformly from 6r11 r37. The scheme then
seeks to reduce by half the interval I 2= 8u4r252 u 2U29
of potential utility values at r2. Thus we choose p so
that pu4r35+ 41É p5u4r15 is the midpoint of I .
2. Random relative utility split: This scheme differs

from the previous by choosing r1 and r3 uniformly at
random from the range of potential returns and then
setting r2 2= 4r1 + r35/2. Like the previous scheme, we
seek to reduce by half the interval I 2= 8u4r252 u 2U29,
and thus, we choose p so that pu4r35+ 41É p5u4r15 is
the midpoint of I .
3. Objective-driven relative utility split: Unlike the

previous schemes, this scheme takes the optimization
objective into account and seeks to improve the opti-
mal objective value as much as possible regardless of
the answer (i.e., positive or negative) to the query. To
do so, it generates 10 queries using the random rel-
ative utility split scheme and for each calculates the
smaller of the optimal objective value that would be
reached either with a positive answer or a negative
answer. It then selects among the 10 queries the query
that will give the greatest improvement in the opti-
mal objective value in the most pessimistic scenario
with respect to whether the answer will be positive
or negative. Mathematically speaking, in the case of
the robust certainty equivalent model, this elicitation
scheme will suggest the i⇤th query in the list accord-
ing to

i⇤= argmax
i2811210001109

min
Å28É1119

max
x2X

min
u28u2UóÅ4⇧6u4Wi57É⇧6u4Yi575�09

⇤u4x ·é51

where Å 2 8É1119 captures the fact that the answer we
might get from the investor might be that ⇧6u4Wi57�
⇧6u4Yi57 or that ⇧6u4Wi57 ⇧6u4Yi57.

4.3.2. Results. Whereas Figure 3 relates to the
stochastic dominance formulation, Figure 4 relates to
the robust certainty equivalent formulation. Panel (a)
in Figures 3 and 4 shows how our objective value
improves as we gain more knowledge about the
investor’s preferences. Panel (b) in Figures 3 and 4
focuses on the convergence of the optimal allocation.
For both formulations, we observe that the total

gain between no knowledge of preferences except risk
aversion and full knowledge is worth, on average,
0.4 percentage points of weekly return. We can also

Figure 3 Effect of Increasing Numbers of Questions in a Stochastic
Domination Formulation
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see that the improvement in performance is quick for
the initial 10–20 queries. In fact, for the robust cer-
tainty equivalent formulation, four questions chosen
with the objective-driven questioning scheme increase
the average certainty equivalent of the weekly return
by 0.2 percentage points. After these first queries,
the gains from additional information decrease. This
seems to indicate that there is considerable value
in using all the preference information that is avail-
able, even if minimal, thus encouraging the use of
our stochastic dominance formulation instead of the
one presented in Dentcheva and Ruszczyński (2006),
which here would achieve the performance associated
to zero queries.
Finally, for both formulations, it is quite notice-

able that the choice of questions to ask the decision
maker also has an important impact on performance:
the improvement is faster for the more sophisticated
objective-driven elicitation scheme than for the sim-
pler schemes. We believe this should justify further
research on what constitutes an optimal learning
strategy in this context.
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Figure 4 Effect of Increasing Numbers of Questions in a Robust
Certainty Equivalent Formulation
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5. Extensions
In this section we discuss two extensions of the frame-
work. In the first subsection we consider the case
where the decision maker’s preferences among the
surveyed lotteries (i.e., that he prefers Wk to Yk for all
k= 11 0 0 0 1K) is inconsistent with respect to the axioms
of the expected utility framework. Our proposed solu-
tion will either correct for the inconsistency by find-
ing a consistent utility function that is closest to being
able to justify the stated preferences or correct for the
inconsistencies by permitting a bounded perturbation
of the comparisons. The second subsection extends the
framework to account for the notion of almost stochas-
tic dominance. We have identified three different fla-
vors of this concept and propose methods of integrat-
ing each of them. In both subsections, we argue that
many of these extensions lead to only minor modifica-
tions of our framework with little loss in tractability.
5.1. Accounting for Elicitation Errors
There are many reasons why comparisons that are
made by a decision maker might be inconsistent with

the theory of expected utility theory. This could be
because the decision maker’s actual preferences do
not satisfy the axioms of expected utility (such as
in Allais or Ellsberg paradoxes). Alternatively, many
recent studies have identified cognitive biases that can
lead a decision maker to misperceive either the size
of a probability or the gravity of an outcome Tver-
sky and Kahneman (1974). In particular, the work
of Kahneman and Tversky has led to an entirely new
field studying behavioral decision making (see Kah-
neman and Tversky 1979). In view of these important
issues concerning the hypotheses made by expected
utility theory and of the possibility of inaccurate com-
parisons, our proposed approach is prescriptive in
nature. Specifically, our main objective is to help deci-
sion makers that believe in the axioms of expected
utility theory to identify which decision most truth-
fully reflects their attitude toward risk. Similar to
what is done in Bertsimas and O’Hair (2013), when
there is a set of preferences that does not satisfy one
of the axioms, we believe the framework should iden-
tify and work with utility functions that are closest to
being able to explain the incoherent preferences. Prac-
tically speaking, this means that inconsistencies can
be treated as small “measurement” errors that need
to be corrected for to identify how the decision maker
truly wishes to act although he might be unable to
express it. Note that one might want to report to the
decision maker the amount of correction that needs
to be applied to have coherent preferences in order to
give a signal regarding whether the expected utility
framework is well suited to describe his preferences.
Technically speaking, in this framework a set of

comparisons (i.e., that Wk is preferred to Yk for all k=
11 0 0 0 1K) can be identified as inconsistent when lin-
ear programs (5), (9), or (11), depending on assump-
tions made about the prudent or S-shaped attitude,
are diagnosed as infeasible. When inconsistencies are
detected or assumed (indeed, “to err is human”), we
suggest accounting for “error” margins in the for-
mulations. Below we describe three different types
of errors that can easily be accounted for. Note that
although we focus on the formulation presented in
§3.1, similar conclusions can be drawn for the formu-
lations of §§3.2 and 3.3.
1. If we wish to consider that noise is corrupting

the expected utility evaluation at the moment when
a comparison is made, then we can easily replace the
condition ⇧6u4Wk57� ⇧6u4Yk57 with

⇧6u4Yk57É ⇧6u4Wk57 Ék1 (15)

where Ék � 0 is some positive error term (or margin)
for the kth comparison. This would lead to a minor
change in constraint (5d). The smallest total

P
k Ék

needed for the feasibility of problem (5) to hold can
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then be considered a measure of the size of incon-
sistency. This quantity, together with the description
of the closest consistent comparisons, can easily be
obtained by solving linear program (5) after replacing
constraint (5d) with (15) and replacing the objective of
(5) with

P
k Ék. Alternatively, one could assume a bud-

get ‚ for the total amount of inconsistency,
P

k Ék  ‚ ,
and propose a solution that maximizes worst-case cer-
tainty equivalent in this context. This can easily be
done by replacing constraint (5d) in problem (15) and
adding Ék � 018k and

X

k

Ék  ‚

before applying duality when formulating the equiv-
alent augmented linear constraints for ñ4x3U1Z5� 0.
2. A second option assumes that the error is in

the perception of the outcome values: that random
variable W is perceived as W + Ñ. If Ñmin  Ñ  Ñmax

a.s., then we could replace the condition ⇧6u4Wk57 �
⇧6u4Yk57 with ⇧6u4Wk + Ñmax57 � ⇧6u4Yk + Ñmin57. In
our formulations we would then need to replace the
parameters Wk with Wk + Ñmax and Yk by Yk + Ñmin,
which retains the linear structure of the problem.
3. In the spirit of Bertsimas and O’Hair (2013), we

could require that 1É Ö of the K lottery comparisons
hold: that the decision maker is mistaken about at
most ÖK of his lottery comparisons. In that case we
would introduce binary variables Ñi into (5), which
would be 1 if the decision maker is mistaken about
lottery i, and add the constraint

PK
i=1 Ñi  KÖ. We

would then replace the condition ⇧6u4Wk57� ⇧6u4Yk57
with the two constraints ÑiM+⇧6u4Wk57� ⇧6u4Yk57 and
41 É Ñi5M + ⇧6u4Yk57 � ⇧6u4Wk57, where M is a large
constant (“big M”). Since this turns the calculation of
ñ4x5 (5) into a mixed-integer linear program, solving
the master problem becomes harder but potentially
solvable using cutting-plane methods.

5.2. Almost Stochastic Dominance
The idea of reducing the severity of stochastic dom-
inance constraints by assuming additional structure
is not a recent one. Since the introduction of the
notion of stochastic dominance, there have been a few
attempts at reducing the severity of the constraint.
Of course, the earliest appearance would be the idea
that a higher-order stochastic dominance constraint is
less restrictive. This translates as imposing the con-
cavity/convexity of a higher-order derivative of the
utility function. Three other instances are presented
below. The first two are close in spirit to our frame-
work, as they make assumptions about the utility
function—that is, properties that the first and sec-
ond derivative must satisfy. Unlike our framework,
however, it is unclear how one might validate with
the decision maker such hypotheses about deriva-
tives and how one might perform optimization in the
resulting space. The third instance is more similar in

flavor to the methods that are proposed in §5.1, as it
suggests inflating the set of feasible random variables
by adding random variable that are “close enough”
to a nondominated one.4 Although this approach
appears more tractable, nothing is known as to what
type of preference axioms would suggest using this
approach. For all three instances, we propose ways
of extending our results to implement the proposed
relaxation.
5.2.1. Meyer’s Relaxation. Meyer (1977) appears

to be the first mention of the idea of relaxing the
stochastic dominance constraint by imposing struc-
tural properties on the utility functions in U that go
beyond the sign of derivatives. Specifically, Meyer
suggests imposing bounds on the Arrow–Pratt mea-
sure of absolute risk aversion:

UM4r11 r25 2= 8u2 r14x5Éu004x5/u04x5 r24x590

He explains how to identify for a specific pair 4X1Z5
the worst-case utility function using dynamic pro-
gramming. It is unclear, however, how one would go
about optimizing when the stochastic dominance con-
straint involves this utility set. The following corollary
sheds some light on the question.

Corollary 1. The optimal value of the linear pro-
gram (11) with the additional constraints

r14ȳj5Çj ÉÉj 8 j 2 811 0 0 0 1N 91

r24ȳj5Çj �ÉÉj 8 j 2 811 0 0 0 1N 91

is a lower bound for ñ4x3U3 \UM5.

Indeed, when we account for prudence, our approx-
imate linear program optimizes Çj and Éj variables
that play the respective role of first and second deriva-
tives of the utility function; thus it is possible to fur-
ther impose that the Arrow–Pratt measure fall in the
appropriate range at the ȳj locations. This gives rise,
through duality theory, to conservative approxima-
tions for the robust certainty equivalent problem and
the stochastic dominance problem that account for
information about absolute risk aversion. Once again,
as the interval of realizations is further discretized, it
is expected that the approximation will converge to
the true optimal value.
5.2.2. Leshno and Levy’s Relaxation. To reduce

the severity of stochastic dominance constraints,
Leshno and Levy (2002) suggest intersecting the util-
ity sets associated with first- or second-order stochas-
tic dominance constraint either with

ULL1 4ò5=
8u 2 inf

y’
u’4y’5 u’4y5 inf

y’
u’4y’541/òÉ 158y 2<9

4 Note that this is different to what is done in §5.1 because we
suggest enlarging the set of utility functions (as opposed to the set
of feasible random variables).
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or with

ULL2 4ò5=
8u 2 inf

y’
u’’4y’5u’’4y5 inf

y’
u’’4y’541/òÉ158y2<9

for some 0< ò< 005. They motivate the use of these
utility sets, arguing that most decision makers have
“bounded” risk aversion. In a more recent paper,
Lizyayev and Ruszczyński (2012) argue that optimiz-
ing with this form of relaxed dominance is actually
intractable. We disagree in part with this statement
as both ULL14ò5 and ULL24ò5 represent convex sets of
utility functions. In particular, it is possible to impose
both types of structural information in our frame-
work. For instance, ñ4x3U2 \ULL14ò55 can be shown
to be equivalent to the optimal value of linear pro-
gram (5) after simply adding the constraint

Ç1  ÇN 41/òÉ 150

Similarly, ñ4x3U3\ULL24ò55 can be bounded below by
the optimal value of the linear program (11) in which
we add

É1 � ÉN 41/òÉ 150

The question of how to formulate a linear program
that might evaluate ñ4x3U2\ULL24ò55 efficiently is left
open.

5.2.3. Lizyayev and Ruszczyński’s Relaxation.
Following up on the work of Leshno and Levy (2002),
Lizyayev and Ruszczyński (2012) propose a version
of ò-almost stochastic dominance that is believed to
be more tractable. They propose identifying X as ò-
almost stochastically dominating Z if there exists a
nonnegative random variable Y with ⇧6Y 7  ò such
that X+Y stochastically dominates Z. This is a relax-
ation of stochastic dominance that can easily be inte-
grated to our framework. This is done by considering
that the stochastic program with stochastic domi-
nance constant

max
x2X

⇧6f 4x1 é57

s.t. ⇧6u4h4x1 é557� ⇧6u4Z57 8u 2U

is replaced with

max
x2X1y2Ï!✓+

⇧6f 4x1 é57 (16a)

s.t. ⇧6u4h4x1 é5+ y4é557� ⇧6u4Z57 8u 2U1 (16b)

⇧6y4é57 ò1 (16c)

where y2 Ï!✓+ is a random variable over which we
have complete control. When é has a finite number of
scenarios, all the results of this paper can be extended

to this version of ò-almost stochastic dominance by
considering that ñ4x1U5 is actually

ñ46x1 y71U5 2= inf
u2U

�
⇧6u4g46x1 y71 é557É ⇧6u4Z57

�
1

with g46x1 y71 é5 2= h4x1 é5 + y4é5 being a concave
function of the concatenated vector of the decision
variables 6x1 y7. In particular, the ò-almost stochastic
dominance version of Theorem 1 would have Equa-
tion (5a) replaced with

min
Å1Ç1v1w

⇢X

i

pi4vi4h4x1 éi5+ yi5+wi5É
X

j

⇣ 6Z= ȳj 7Åj

�
1

where y 2 ✓M
+ with each yi capturing the decision

for y4éi5. Consequently, the almost stochastic dom-
inance constraint (16b) can be replaced by the set
of constraints (8) with a simple modification to con-
straint (8d) so that it takes the form

X

j

ȳjåi1 j  pih4x1 éi5+ piyi 8 i1

with the å, ç, ã415, and ã425 variables added as extra
decision variables to the problem.

6. Conclusion
In this paper we presented tractable approaches to
dealing with incomplete information about the util-
ity function. We looked at three different formula-
tions of our aims and three different types of utility
function sets. Particularly useful is how our formu-
lations can incorporate information such as that the
decision maker would always choose lottery A over
lottery B. Particularly novel are the models involving
S-shaped utilities and prudent utilities. There is little
work on optimizing with such utilities despite them
being common in behavioral economics and finance.
Also quite innovative is the robust certainty equiva-
lent formulation. This formulation appears to be use-
ful in situations where one currently would use a
stochastic dominance constraint. Not only does the
robust certainty equivalent formulation have a natu-
ral interpretation, but unlike the formulation with a
stochastic dominance constraint, there is no need to
define a separate objective as well. We have presented
an exact tractable reformulation for risk-averse util-
ity functions and a tractable conservative approxima-
tion for prudent functions, which in practice should
be arbitrarily precise. The only exception is for S-
shaped utility functions, which are already hard to
optimize when the function is known. We finally
believe that our proposed framework leaves space for
further study of many interesting questions regard-
ing (1) how to obtain accurate information about risk
preference from the decision maker (or correct for
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errors appropriately), (2) how to choose the questions
that will most efficiently guide the optimization to a
good decision, and (3) what other characteristics of
reasonable preference systems can be accounted for in
a tractable way using this framework.

Acknowledgments
The authors are thankful to the referees for their con-
structive criticism. E. Delange gratefully acknowledges the
support of the Canadian Natural Sciences and Engineering
Research Council [Grant 386416-2010].

Appendix A. Quasiconcavity of the Objective
in Problem (3)

For any fixed u, the certainty equivalent ⇤u6h4x1 é57 is
quasiconcave in x because ⇤u6h4x1 é57 � t is equivalent
to ⇧6u4h4x1 é557 � u4t5 and the left-hand side is concave
in x. Thus, the pointwise infimum infu2U ⇤u6h4x1 é57 is qua-
siconcave in x with infu2U ⇤u6h4x1 é57 � t equivalent to
ñ4x3U1 t5� 0. Hence the optimum of (3) is greater than t if
and only if the constraint ñ4·3U1 t5� 0 has a feasible solu-
tion x 2X . Thus if we can bound the optimum to an interval
6t01 t17, then we can use the bisection algorithm on t to solve
the problem to precision Ö by solving O4log41/Ö55 feasibility
problems of the type ñ4·3U1 t5 � 0. In fact, any bound on
h4x1 é5 gives a bound on the optimum: if t0  h4x1 é5 t1 for
all é and all x 2X , then the optimum is in 6t01 t17.

Appendix B. Proof of Theorem 2
The proof is similar to that of Theorem 1, and we start by
defining

U 4Å1Ç5 2= 8u2 u4ȳj5= Åj1Çj 2 u04ȳj58 j90

Then by a similar argument,

ñ4x3Us5=min
Å

ñ4x3U 4Å1Ç5\Us5

U 4Å1Ç5\Us 6=ô1 U 4Å1Ç5✓Ua1

U 4Å1Ç5✓Un0

The constraint U 4Å1Ç5 \Us 6= ô is represented by (9f)–(9i)
and Ç� 0, U 4Å1Ç5✓Un by (9d), and U 4Å1Ç5✓Un by (9e).

Again, since ⇧6u4Z57 is a constant for u 2 U 4Å1Ç5,
evaluating ñ4x3U 4Å1Ç5 \ Us5 is equivalent to minimizing
⇧6u4h4x1 é557 over u 2 U 4Å1Ç5 \ Us . Among the S-shaped
functions in U 4Å1Ç5, this is minimized by the piecewise
linear function u⇤ in (10). The reason u⇤ is minimal is for
the concave portion is the same as in the proof of Theo-
rem 1. For the convex portion, u⇤ is minimal because the
lines 84y1 s52 s = Çj4y É ȳj5 + Åj9 with j 2 JÉ are support-
ing hyperplanes for the convex portion of any function in
U 4Å1Ç5. Thus, when U 4Å1Ç5\Us 6=ô,

ñ4x3U 4Å1Ç5\Us5 = ⇧6u⇤4h4x1 é5518h4x1 é5< 097

+ ⇧6u⇤4h4x1 é5518h4x1 é5� 097

ÉX

j

⇣ 6Z= ȳj 7Åj 0

Since u⇤ is concave for y � 0, the formulation (7) can be
used for that part. When y < 0, u⇤ is convex, and thus,

u⇤4y5=min
s

s

s.t. s � Çj4h4x1 éi5É ȳj5+Åj 8 j 2 JÉ0

Putting these pieces together gives us the objective (9a) and
the constraints (9b), v� 0, and (9c). É

Appendix C. Worst-Case Expected Utility
Formulation Biased Toward Risk Neutrality
When using the worst-case expected utility approach, if there
is a large enough amount of ambiguity in the risk attitude to
implement, a risk-neutral attitude is used to select the deci-
sion. Take, for instance, the case of U2, where no informa-
tion is known about the risk attitude (i.e., K = 0 so that no
lotteries have been compared). If the normalization scheme
is such that u4a5 = 0 and u4b5 = 1, then one can show that
the linear utility u⇤4y5 = 4y É a5/4b É a5 is a worst-case util-
ity for evaluating any lottery Z supported on the interval
6a1 b7. When comparing the application of the robust cer-
tainty equivalent formulation (3) to this context, one can
easily demonstrate that the infimum is achieved as Ö goes
to 0 in uÖ

Z4y5 = min413 41 É Ö54y É a5/4infé Z4é5 É a55 such
that limÖ&0⇤uÖZ

4Z5 = infé Z4é5 under this alternative formu-
lation, thus implementing extreme risk aversion. Based on
this example, one might argue that the use of “worst-case
expected utility” might be misleading because it actually
does not return cautious decisions in situations where it
could.

In fact, when maximizing the worst-case expected utility,
one should be aware of the following connection with the
robust certainty equivalent formulation. It is actually the
case that both methods are special cases of an approach that
seeks the optimal solution to

maximizex2X sup8v 2V 2 ⇧6u4Zv57 ⇧6u4h4x1 é557 8u 2U9 1

where 8Zv9v2V , for some V ✓ ✓, is an indexed set of lot-
teries parameterized by v such that v0 > v implies that
Zv0 �Zv. In other words, this more general formulation sug-
gests selecting the decision for which the random variable
h4x1 é5 is known to be preferred to the most attractive lot-
tery in 8Zv9v2V . When Zv is simply the certain amount v,
this reduces to maximizing the robust certainty equivalent
formulation. Perhaps less trivial is the fact that when U
is normalized so that all utility functions return u4a5 =
0 and u4b5 = 1, then choosing 8Zv9v2V to be the lotteries
that return b with probability v and return a with prob-
ability 1 É v makes this general approach reduce to the
worst-case expected utility formulation. More formally, we
have that

sup8v2 601172 ⇧6u4Zv57⇧6u4h4x1é5578u2U9

=sup8v2 601172 vu4b5+41Év5u4a5⇧6u4h4x1é5578u2U9

=sup8v2 601172 v⇧6u4h4x1é5578u2U9

= inf
u2U

⇧6u4h4x1é5570

It is because of this somewhat arbitrary choice of the set
8Zv9v2V , which is implicitly used by the worst-case expected
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utility formulation to map and compare h4x1 é5, that one
ends up obtaining decisions that are biased in a potentially
unappealing way.

Appendix D. Proof of Theorem 3
As in the proof of Theorem 1, we define U 4Å5 2= 8u2 u4ȳj5=
Åj 8 j9. Then by an argument similar to one used in the
proof of Theorem 1,

ñ4x3U35=min
Å

ñ4x3U 4Å5\U2 \U35

U 4Å5\U2 \U3 6=ô1U 4Å5✓Ua1U 4Å5✓Un0

The constraint U 4Å5✓Un is represented by (11c) and U 4Å5✓
Un by (11d). Since we only seek a lower bound, we can
represent U 4Å5\U2 \U3 6=ô by the constraints (11e)–(11h),
Ç� 0, and É  0.

Again, since ⇧6u4Z57 is a constant for u 2 U 4Å5, eval-
uating ñ4x3U 4Å5 \ U2 \ U35 is equivalent to minimizing
⇧6u4h4x1 é557 over u 2U 4Å5\U2 \U3. Among the utilities in
U 4Å5\U2 (thus giving a lower bound), this is minimized by
the function û⇤ in (12), as in the proof of Theorem 1. Thus,
we seek to minimize ⇧6û⇤4h4x1 é557ÉP

j ⇣ 6Z= ȳj 7Åj . Since û⇤

is concave, we use the formulation (7), which then gives us
the objective (11a) and the constraints (11b) and v� 0. É

Appendix E. Prudence Implies the Existence and
Convexity of u04 · 5
Based on the definition of prudence as put forth by Eeck-
houdt and Schlesinger (2006), we can conclude that for a
prudent decision maker,

w � v ) E6u4w+Z57Éu4w5� E6u4v+Z57Éu4v51

for any pair 4v1w5 2✓2 and for any random variable Z with
zero mean. Here, we will first demonstrate that if a decision
maker is prudent, then the derivative of u4 · 5 must exist on
its domain. We follow with a proof that u04 · 5 is convex.

Proposition 1. If a decision maker is prudent and risk
averse, then the utility function that captures his attitude with
respect to risk must be differentiable everywhere in the interior of
its domain.

It is a well-known fact that risk aversion implies that the
utility function is monotonic and concave. It must therefore
be differentiable almost everywhere and semidifferentiable
everywhere. Let us assume that at w0 in the interior of the
domain, the utility function is not differentiable. Since it is
semidifferentiable at w0, we must have that

lim
ò&0

u4w0 + ò5Éu4w05

ò
= u0

+4w05

exists and is strictly smaller than

lim
ò&0

u4w05Éu4w0 É ò5

ò
= u0

É4w05

by concavity. Furthermore, since the utility function is dif-
ferentiable almost everywhere, there must also exist a value
v0 < w0 where the utility function is differentiable. Hence
we have that if Zò is a random variable that puts half of the
weight on ò and half on Éò, then

lim
ò&0

41/ò54E6u4v0 +Zò57Éu4v055

= lim
ò&0

41/ò54005u4v0 É ò5+ 005u4v0 + ò5Éu4v055= 00

Yet, since v0 w0, by the prudence hypothesis we must also
have that for any ò> 0,

E6u4v0 +Zò57Éu4v05 E6u4w0 +Zò57Éu4w050

By dividing both sides of the inequality by ò and taking the
limit as ò goes to zero, we get

lim
ò&0

41/ò54E6u4v0 +Zò57Éu4v055

 lim
ò&0

41/ò54E6u4w0 +Zò57Éu4w055

= lim
ò&0

41/ò54005u4w0 + ò5+ 005u4w0 É ò5Éu4w055

= 005u0
+4w05É 005u0

É4w05

< 0 0

This establishes that the expression limò&041/ò54E6u4v0+Zò57
Éu4v055 is both strictly smaller than zero and equal to zero,
which is a contradiction. É

Note that this proof excludes the boundaries of the
domain. We are left with proving that the first derivative of
the utility function is convex.

Let w be any value in the interior of the domain of u4 · 5,
let ò> 0, and let Z be any zero-mean random variable sup-
ported on two points in the domain of u4 · 5. We have from
Eeckhoudt and Schlesinger (2006) their definition of pru-
dence that

E6u4w+ ò+Z57Éu4w+ ò5� E6u4w+Z57Éu4w5

and therefore that

41/ò54E6u4w+ò+Z57Éu4w+ò55� 41/ò54E6u4w+Z57Éu4w550

Taking the limit of the difference between the left and right
sides, we get

lim
ò&0

41/ò54E6u4w+ò+Z57ÉE6u4w+Z57Éu4w+ò5+u4w55� 0

so that
E6u04w+Z57Éu04w5� 00

The last inequality can be shown to be equivalent to the
definition of convexity. É

Appendix F. Fitting an Exponential Utility
Function to U2

To fit a utility function, common practice typically suggests
fixing the utility value at two reference points u4ȳ05= 0 and
u4w05= 1 and using queries to locate the relative utility val-
ues achieved at a set of returns uj ⇡ u4ȳj5 8 j = 1121 0 0 0 1 J .
The “best-fitted” function is then the one that maximizes
the following mean square error problem:

min
a1b1c

JX

j=1
4a41É exp4Écȳj55+ bÉuj5

2

s.t. a41É exp4Écȳ055= 0 and a41É exp4Écw055= 11

a� 01 c � 00

Although nonconvex, this problem is typically considered
computationally feasible since it reduces to a search over
the single parameter c. We adapt this procedure to the

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[1

32
.2

11
.1

89
.1

40
] o

n 
26

 M
ay

 2
01

5,
 a

t 0
7:

24
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Armbruster and Delage: Decision Making Under Uncertainty with Incomplete Preference Information
128 Management Science 61(1), pp. 111–128, © 2015 INFORMS

context where the preference information takes the shape
of U2. Specifically, without loss of generality, we first let
Y0 and W0 be certain lotteries and fixed ⇧6u4Y057 = 0 and
⇧6u4W057= 1. Next, for a set of 8ȳj9

J
j=1, we can use the infor-

mation in U2 to evaluate a range of possible utility values
at each ȳj . We let uj take on the midvalue of this interval,
uj 2= 4minu2U2 u4ȳj5+maxu2U2 u4ȳj55/2, hence capturing the
fact that we wish the exponential utility function pass as
close as possible to the center of the intervals in which we
know the function should pass. We solve the same mean
square error problem to select our best-fitted exponential
utility function û4y5. Note that this approach reduces to
the method described above when U2 = 8u4 · 5óu4ȳj5 = uj9.
For computational reasons, our implementation used the
set 8ȳj9

J
j=0 2=

SK
k=04supp4Yk5 [ supp4Wk55, which uniformly

spanned the range of possible returns.

Appendix G. Fitting a Piecewise Linear
Utility Function to U2

To fit a piecewise linear utility function, we follow a simi-
lar procedure as for fitting an exponential function. Namely,
for a set of 8ȳj9

J
j=1 that includes ȳ0 and w0, after consid-

ering that u4ȳ05 = 0 and u4w05 = 1, we can use the infor-
mation in U2 to evaluate a range of possible utility values
at each ȳj . We let uj take on the midvalue of this interval,
uj 2= 4minu2U2 u4ȳj5+maxu2U2 u4ȳj55/2, hence capturing the
fact that we wish the utility function pass as close as pos-
sible to the center of the intervals in which we know the
function should pass. Based on the discretization 8ȳj9

J
j=1, we

parameterize the piecewise linear function using the value
and supergradient at each point in the set. We are left with
solving the following optimization problem:

min
Å1Ç

JX

j=1
4Åj Éuj5

2

s.t. Åj+1 ÉÅj � Çj+14ȳj+1 É ȳj5 8 j1
Åj+1 ÉÅj  Çj4ȳj+1 É ȳj5 8 j1
Åj ÉÅjÉ1  Çj4ȳj É ȳjÉ15 8 j1
Åj ÉÅjÉ1 � ÇjÉ14ȳj É ȳjÉ15 8 j1
Åj4ȳ05

= 01 Åj4w05
= 11 Ç� 01

where j4ȳ05 and j4w05 are the respective indexes of the ȳ0 and
w0 terms in the set 8ȳj9

J
j=0. Again, for computational reasons,

our implementation used the set 8ȳj9
J
j=0 2=

SK
k=04supp4Yk5 [

supp4Wk55, which uniformly spanned the range of possible
returns.
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