1. (From GRIN-ESW) At the start of 2011, Northwestern University installed a 5 kW solar photovoltaic system on the Ford Design Center. The initial cost of the system was $\$ 30,000$. Each year, the system generates $6,500 \mathrm{kWh}$ of electricity. The price of electricity is $\$ 0.10$ per kWh . The system will last for 30 years.
a) Calculate the net present value of the solar photovoltaic system.

Answer:

$$
\begin{aligned}
& C=6500 \times 0.10=\$ 650 \\
& \begin{aligned}
\text { NPV } & =- \text { installation } \cos t+\frac{C}{r}\left(1-(1+r)^{-n}\right) \\
& =-30000+\frac{650}{0.07}\left(1-(1+0.07)^{-30}\right) \\
& =-\$ 21,934
\end{aligned}
\end{aligned}
$$

b) Now, say the state of Illinois provided a $60 \%$ rebate on the initial cost of the system. Calculate the new present value of the system.
Answer:

$$
\begin{aligned}
\text { NPV } & =-40 \% \times \text { installation } \cos t+\frac{C}{r}\left(1-(1+r)^{-n}\right) \\
& =-12000+\frac{650}{0.07}\left(1-(1+0.07)^{-30}\right) \\
& =-\$ 3,934
\end{aligned}
$$

c) Keep the assumptions from question 2. Now, say a carbon cap and trade law is passed at the beginning of 2013, raising electricity prices. How much must the new price be for the system to be profitable.
Answer:

$$
\begin{aligned}
N P V & =-40 \% \times \text { installation } \cos t+\frac{650}{1+r}+\frac{650}{(1+r)^{2}}+\frac{\frac{p \times 6500}{r}\left(1-(1+r)^{-28}\right)}{(1+r)^{2}} \\
0 & =-12000+\frac{650}{1.07}+\frac{650}{1.07^{2}}+\frac{\frac{p \times 6500}{0.07}\left(1-(1.07)^{-28}\right)}{(1.07)^{2}} \\
p & \approx \$ 0.157
\end{aligned}
$$

2. Newnan et al., Chapter 6 Problem 27 (p. 204). You don't need to use an annual cash-flow analysis if you don't wish to.

Answer:
a) Let $\mathrm{r}=8 \%$

Equivalent uniform annual cost $($ EUAC $)=$
$\$ 6000 \frac{r}{\left(1-(1+r)^{-30}\right)}+\$ 3000$ for labor $+\$ 200$ for material-500 bales $* \$ 2.30 /$ bale $-12 * \$ 200 /$ month for trucker
$=\$ 182.96$
Therefore, it's not economical.
(Note that PV $\left.=-\$ 6000+(-\$ 3000-\$ 200+500 * \$ 2.30+12 * \$ 200) \frac{\left(1-(1+r)^{-30}\right)}{r}=-\$ 2060<\$ 0\right)$
b) The need to recycle materials is an important intangible consideration. While the project does not meet the $8 \%$ interest rate criterion, it would be economically justified at a $4 \%$ interest rate.
3. Newnan et al., Chapter 6 Problem 46 (p. 207).

Answer:
Let $\mathrm{r}=10 \%$
(a) 12-month tire EUAC $=\$ 39.95 \frac{r}{\left(1-(1+r)^{-1}\right)}=\$ 43.95$
(b) 24-month tire EUAC $=\$ 59.95 \frac{r}{\left(1-(1+r)^{-2}\right)}=\$ 34.54$
(c) 36-month tire EUAC $=\$ 69.95 \frac{r}{\left(1-(1+r)^{-3}\right)}=\$ 28.13$
(d) 48-month tire EUAC $=\$ 90 \frac{r}{\left(1-(1+r)^{-4}\right)}=\$ 28.40$

Buy the 36-month tire.
4. Newnan et al., Chapter 9 Problem 66 (p. 316).

Answer:
Let $\mathrm{r}=10 \%$
The annual cost of the untreated part:
$\$ 350 \frac{r}{\left(1-(1+r)^{-6}\right)}=\$ 80.36$
The annual cost of the treated part must be at least this low:
$\$ 80.36=\$ 500 \frac{r}{\left(1-(1+r)^{-n}\right)}$ has the solution $\mathrm{n}=10.2$.
For the treated part to be the preferred alternative, it should last at least 11 years (rounding up).
5. Newnan et al., Chapter 5 Problem 29 (p. 175).

Answer:
We need to find i such that $\$ 12000=\$ 250 \frac{\left(1-(1+i)^{-60}\right)}{i}$.
$\mathrm{i}=0.763 \%$ per month $=9.16 \%$ per year

