Formula Sheet

1 Time Value of Money

1.1 Future Value

The future value of x after n periods of growth at (annual) interest rate a compounded m times per year is

$$
x(1+r)^{n}
$$

where $r=a / m$ is the per-period interest rate.
The effective annual interest rate is

$$
i=(1+a / m)^{m}-1 .
$$

The future value of x after t years of growth at annual growth rate d is

$$
x(1+d)^{t} .
$$

1.2 Present Value

In the following, r is the per-period discount rate, d is the annual discount rate, and there are m periods per year.

The present value of y to be received n periods later is

$$
y(1+r)^{-n}=\frac{y}{(1+r)^{n}}
$$

The present value of y to be received t years later is

$$
y(1+d)^{-t}=\frac{y}{(1+d)^{t}} .
$$

The relationship between r and d is

$$
d=(1+r)^{m}-1 \quad \text { and } \quad r=(1+d)^{1 / m}-1
$$

1.3 Present Value: Perpetuities and Annuities

When the discount rate is r per period, an annuity making n payments of C, each one period apart, starting in one period:

$$
\frac{C}{r}\left(1-(1+r)^{-n}\right)
$$

Present value of a perpetuity of C per period, starting in one period:

$$
\frac{C}{r} .
$$

