1 Time Value of Money

1.1 Future Value

The future value of \(x \) after \(n \) periods of growth at (annual) interest rate \(a \) compounded \(m \) times per year is

\[
x(1 + r)^n
\]

where \(r = a/m \) is the per-period interest rate.

The effective annual interest rate is

\[
i = (1 + a/m)^m - 1.
\]

The future value of \(x \) after \(t \) years of growth at annual growth rate \(d \) is

\[
x(1 + d)^t.
\]

1.2 Present Value

In the following, \(r \) is the per-period discount rate, \(d \) is the annual discount rate, and there are \(m \) periods per year.

The present value of \(y \) to be received \(n \) periods later is

\[
y(1 + r)^{-n} = \frac{y}{(1 + r)^n}.
\]

The present value of \(y \) to be received \(t \) years later is

\[
y(1 + d)^{-t} = \frac{y}{(1 + d)^t}.
\]

The relationship between \(r \) and \(d \) is

\[
d = (1 + r)^m - 1 \quad \text{and} \quad r = (1 + d)^{1/m} - 1.
\]
1.3 Present Value: Perpetuities and Annuities

When the discount rate is \(r \) per period, an annuity making \(n \) payments of \(C \), each one period apart, starting in one period:

\[
C \frac{1}{r} (1 - (1 + r)^{-n}).
\]

Present value of a perpetuity of \(C \) per period, starting in one period:

\[
\frac{C}{r}.
\]

2 Bonds

A coupon payment of a bond with face value \(F \), coupon rate \(c \) and \(m \) coupon payments per year is

\[
\frac{Fc}{m}.
\]

If the yield (quoted annually) is \(y \) for a bond making \(m \) coupon payments per year, the corresponding per-period discount rate is (because of the yield quotation convention)

\[
r = \frac{y}{m}.
\]

The price of a bond with face value \(F \), coupon rate \(c \), \(m \) coupon payments per year, next coupon payment in 1 period, \(n \) coupon payments remaining, and yield \(y \) is

\[
F(1 + r)^{-n} + \frac{Fc}{y} (1 - (1 + r)^{-n}).
\]

3 Inflation

When \(p \) is a nominal cost that grows at rate \(h \) per year, the nominal cost after \(t \) years is

\[
p(1 + h)^t.
\]

When \(i \) is an inflation rate and \(p \) is a nominal cost occurring at time \(u \), the real cost as measured in time \(s \) dollars is

\[
p(1 + i)^{s-u}.
\]

The real cost, as measured in base-\(b \) dollars, of an actual cost \(A \) at time \(t \), is

\[
R = A(1 + f)^{b-t},
\]

where \(f \) is the annual rate of inflation. If the actual cost of something at time \(t \) is \(A_t \), and its actual cost changes at an annual rate \(g \), then its actual cost at time \(u \) is

\[
A_u = A_t (1 + g)^{u-t}.
\]

The relationship between the inflation rate \(f \), the actual discount rate \(d_A \), and the real discount rate \(d_R \) is

\[
(1 + f)(1 + d_R) = 1 + d_A.
\]