1 Time Value of Money

1.1 Future Value

The future value of \(x\) after \(n\) periods of growth at (annual) interest rate \(a\) compounded \(m\) times per year is

\[x(1 + r)^n\]

where \(r = a/m\) is the per-period interest rate.

The effective annual interest rate is

\[i = (1 + a/m)^m - 1.\]

The future value of \(x\) after \(t\) years of growth at annual growth rate \(d\) is

\[x(1 + d)^t.\]

1.2 Present Value

In the following, \(r\) is the per-period discount rate, \(d\) is the annual discount rate, and there are \(m\) periods per year.

The present value of \(y\) to be received \(n\) periods later is

\[y(1 + r)^{-n} = \frac{y}{(1 + r)^n}.\]

The present value of \(y\) to be received \(t\) years later is

\[y(1 + d)^{-t} = \frac{y}{(1 + d)^t}.\]

The relationship between \(r\) and \(d\) is

\[d = (1 + r)^m - 1 \quad \text{and} \quad r = (1 + d)^{1/m} - 1.\]
1.3 Present Value: Perpetuities and Annuities

When the discount rate is r per period, an annuity making n payments of C, each one period apart, starting in one period:

$$ \frac{C}{r}(1 - (1 + r)^{-n}). $$

Present value of a perpetuity of C per period, starting in one period:

$$ \frac{C}{r}. $$

2 Bonds

A coupon payment of a bond with face value F, coupon rate c and m coupon payments per year is

$$ \frac{Fc}{m}. $$

If the yield (quoted annually) is y for a bond making m coupon payments per year, the corresponding per-period discount rate is (because of the yield quotation convention)

$$ r = \frac{y}{m}. $$

The price of a bond with face value F, coupon rate c, m coupon payments per year, next coupon payment in 1 period, n coupon payments remaining, and yield y is

$$ F(1 + r)^{-n} + \frac{Fc}{y(1 - (1 + r)^{-n})}. $$

3 Inflation

When p is a nominal cost that grows at rate h per year, the nominal cost after t years is

$$ p(1 + h)^t. $$

When i is an inflation rate and p is a nominal cost occurring at time u, the real cost as measured in time s dollars is

$$ p(1 + i)^{s-u}. $$

The real cost, as measured in base-b dollars, of an actual cost A at time t, is

$$ R = A(1 + f)^{b-t}, $$

where f is the annual rate of inflation. If the actual cost of something at time t is A_t, and its actual cost changes at an annual rate g, then its actual cost at time u is

$$ A_u = A_t(1 + g)^{u-t}. $$

The relationship between the inflation rate f, the actual discount rate d_A, and the real discount rate d_R is

$$ (1 + f)(1 + d_R) = 1 + d_A. $$