Formula Sheet

1 Time Value of Money

1.1 Future Value

The future value of x after n periods of growth at (annual) interest rate a compounded m times per year is

$$
x(1+r)^{n}
$$

where $r=a / m$ is the per-period interest rate.
The effective annual interest rate is

$$
i=(1+a / m)^{m}-1 .
$$

The future value of x after t years of growth at annual growth rate d is

$$
x(1+d)^{t} .
$$

1.2 Present Value

In the following, r is the per-period discount rate, d is the annual discount rate, and there are m periods per year.

The present value of y to be received n periods later is

$$
y(1+r)^{-n}=\frac{y}{(1+r)^{n}}
$$

The present value of y to be received t years later is

$$
y(1+d)^{-t}=\frac{y}{(1+d)^{t}} .
$$

The relationship between r and d is

$$
d=(1+r)^{m}-1 \quad \text { and } \quad r=(1+d)^{1 / m}-1
$$

1.3 Present Value: Perpetuities and Annuities

When the discount rate is r per period, the present value P of an annuity making n payments of C, each one period apart, starting in one period:

$$
P=\frac{C}{r}\left(1-(1+r)^{-n}\right), \quad C=\frac{P r}{1-(1+r)^{-n}}
$$

Present value of a perpetuity of C per period, starting in one period:

$$
\frac{C}{r} .
$$

2 Inflation

When p is a nominal cost that grows at rate h per year, the nominal cost after t years is

$$
p(1+h)^{t} .
$$

When i is an inflation rate and p is a nominal cost occurring at time u, the real cost as measured in time s dollars is

$$
p(1+i)^{s-u} .
$$

The real cost, as measured in base- b dollars, of an actual cost A at time t, is

$$
R=A(1+f)^{b-t}
$$

where f is the annual rate of inflation. If the actual cost of something at time t is A_{t}, and its actual cost changes at an annual rate g, then its actual cost at time u is

$$
A_{u}=A_{t}(1+g)^{u-t}
$$

The relationship between the inflation rate f, the actual discount rate d_{A}, and the real discount rate d_{R} is

$$
(1+f)\left(1+d_{R}\right)=1+d_{A} .
$$

3 Probability

If A and B are two evens, then Bayes' rule is

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \text { and } B]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

Let X be a random variable. If there are n total scenarios with probabilities p_{1}, \ldots, p_{n}, and X_{i} is the value of X in scenario i, then the mean of X is

$$
\mathrm{E}[X]=\sum_{i=1}^{n} p_{i} X_{i}
$$

Regardless of how many scenarios there are, the variance

$$
\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

and the standard deviation $\sigma[X]=\sqrt{\operatorname{Var}[X]}$.
Let Y be another random variable. The covariance between X and Y is

$$
\operatorname{Cov}[X, Y]=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]
$$

and the correlation between X and Y is

$$
\rho(X, Y)=\frac{\operatorname{Cov}[X, Y]}{\sigma[X] \sigma[Y]} .
$$

A linear combination of X and Y, where v and w are constants, has mean and variance
$\mathrm{E}[v X+w Y]=v \mathrm{E}[X]+w \mathrm{E}[Y] \quad$ and $\quad \operatorname{Var}[v X+w Y]=v^{2} \operatorname{Var}[X]+2 v w \operatorname{Cov}[X, Y]+w^{2} \operatorname{Var}[Y]$.
If w_{1}, \ldots, w_{m} are constants and X_{1}, \ldots, X_{m} are random variables, then the linear combination $\sum_{j=1}^{m} w_{j} X_{j}$ has mean and variance
$\mathrm{E}\left[\sum_{j=1}^{m} w_{j} X_{j}\right]=\sum_{j=1}^{m} w_{j} \mathrm{E}\left[X_{j}\right] \quad$ and $\quad \operatorname{Var}\left[\sum_{j=1}^{m} w_{j} X_{j}\right]=\sum_{j=1}^{m} w_{j}^{2} \operatorname{Var}\left[X_{j}\right]+2 \sum_{j=1}^{m} \sum_{k<j} \operatorname{Cov}\left[X_{j}, X_{k}\right]$.

4 Bonds

A coupon payment of a bond with face value F, coupon rate c and m coupon payments per year is

$$
F c / m
$$

If the yield (quoted annually) is y for a bond making m coupon payments per year, the corresponding per-period discount rate is (because of the yield quotation convention)

$$
r=y / m
$$

The price of a bond with face value F, coupon rate c, m coupon payments per year, next coupon payment in 1 period, n coupon payments remaining, and yield y is

$$
F(1+r)^{-n}+\frac{F(c / m)}{r}\left(1-(1+r)^{-n}\right)
$$

5 Capital Asset Pricing Model

Let r_{f} be the risk-free rate and R_{M} be the return of the market portfolio. Also let $r_{m}=\mathrm{E}\left[R_{M}\right]$ be the expected return of the market portfolio and $\sigma_{M}=\sigma\left[R_{M}\right]$ be the standard deviation of the market portfolio's return.

The beta of an asset whose return is R equals the covariance of its returns with the market portfolio's return R_{M}, divided by the variance of the market portfolio's return:

$$
\beta=\operatorname{Cov}\left[R_{M}, X\right] / \sigma_{M}^{2}
$$

Capital Asset Pricing Model: the expected return of this asset is

$$
r=r_{f}+\beta\left(r_{m}-r_{f}\right)
$$

This equation is also known as the Security Market Line.
Capital Market Line:

$$
r=r_{f}+\frac{r_{m}-r_{f}}{\sigma_{M}} \sigma
$$

where r is the expected return and σ is the standard deviation of a portfolio that lies on this line.

6 Weighted Average Cost of Capital

A company's (before-tax) WACC is

$$
r_{d} \frac{D}{V}+r_{e} \frac{E}{V}
$$

where

- r_{d} is the required return on debt,
- D is the value of the company's debt,
- r_{e} is the required return on equity,
- E is the company's market capitalization, and
- $V=D+E$ is the company's total market value.

