IEMS 326
Homework 1
Please show all work! See the syllabus for homework policies.

1. (A nice inheritance)
a) Suppose $\$ 1$ were invested 100 years ago at 3% interest. Approximately how much would that investment be worth today: $\$ 10, \$ 100, \$ 1000$, or $\$ 10,000$.
b) What if the interest rate were 5% ?
c) What if the interest rate were 4% and it was invested in the year 1812 ?
2. (A lottery prize) Suppose you win the lottery grand prize of $\$ 10$ million. However you do not get this prize money immediately. You have the option of either receiving $\$ 5$ million immediately or the full $\$ 10$ million paid in 20 equal installments, one per year, the first installment being paid immediately. What is the present value of the second option at 3.5% interest? Which option is better?
3. Luenberger, Exercise 2.6. Instead of 12%, assume that the nominal annual interest rate is 6% and compounding is monthly. (Here you do have to worry about compounding. See Luenberger section 2.3.)
4. Newnan et al., Chapter 5 Problem 4 (p. 173).
5. Using the social security spreadsheet:
a) At least how big must the real rate of return be so that the trust fund does not exhaust its assets by 2050 ?
b) What is the effect of a $\pm 10 \%$ change on the average taxable earnings per worker on the 2050 balance of the trust fund?
c) What is the affect of a ± 100 basis point ${ }^{1}$ change on the tax rate?
[^0]
[^0]: ${ }^{1}$ A basis point is $1 / 100^{\text {th }}$ of a percent, or 0.0001 . For example, adding 100 basis points to a tax rate of 12.4% means increasing the disability rate to 13.4%. This terminology helps us to be more precise: if I said, increase the tax rate by 1%, you might wonder whether I meant $12.4 \%+1 \%=13.4 \%$ or $12.4 \% *(1.01) \approx 12.5 \%$.

