Solutions to Midterm 2 Study Questions

\#1) FALSE. If the project has a borrowing cash flow structure (positive cash flows followed by negative cash flows), IRR>d implies negative NPV. For example, assume $\mathrm{d}=10 \%$ and the project has $\$ 100$ cash inflow now and $\$ 120$ cash outflow next year. IRR=20\% $>10 \%=d$ but NPV(at $10 \%)=$ $\$ 100-\$ 120 x(1.1)^{\wedge}\{-1\}=-9.1<0$.
\#2)
discount
rate 5\%
year cashflow discounted

0	-25000	-25000
1	-600	-571.43
2	-600	-544.22
3	-1100	-950.22
4	-1100	-904.97
5	11700	9167.26

PV $\quad-18803.58$
\#8) Adjust for inflation by using the factor (1.03)^2. You will need $\$ 21,218$ in two years. Now apply the present value factor, which has to take account of the fact that 4% is an annual rate (interest rates are always quoted annually) compounded quarterly. The quarterly interest rate is $4 \% / 4=1 \%$. The present value factor is $(1.01)^{\wedge}(-8)=0.923483$. Multiplying this by $\$ 21,218$ produces the answer, \$19,594.47.
\#9) Here are some elements:
9.00\% mortgage rate
0.8% monthly

30 years
\$3,000 max monthly payment
\$372,846 max principal
$\$ 17,000$ can put down

5\% \% down
\$340,000 max house price
which is the answer - the down payment is the limiting factor

6-31

Provide Autos

$P=\$ 18,000, F=\$ 7,000, A=\$ 600 / \mathrm{yr}+0.12 / \mathrm{mile}, n=4$ years
Pay Salesmen
$0.30 x$ where $x=$ miles driven
$0.30 x=(\$ 18,000-\$ 7,000)(A / P, 10 \%, 4)+\$ 7,000(0.10)+\$ 600+\$ 0.12 x$
$0.18 x=(\$ 11,000)(0.3155)+\$ 700+\$ 600$
$=\$ 4,770$
Miles Driven $(x)=\$ 4,770 / 0.18=\$ 26,500$

6-32

$$
\begin{aligned}
& \text { EUAC Comparison } \\
& \text { Gravity Plan } \\
& \text { Initial Investment: }=\$ 2.8 \text { million }(\mathrm{A} / \mathrm{P}, 10 \%, 40) \\
& \quad=\$ 2.8 \text { million }(0.1023)=\$ 286,400 \\
& \begin{aligned}
\text { Annual Operation and maintenance }=\$ 10,000 \\
\text { Annual Cost }=\$ 296,400
\end{aligned} \\
& \begin{aligned}
& \text { Pumping Plan } \\
& \text { Initial Investment: }=\$ 1.4 \text { million }(\mathrm{A} / \mathrm{P}, 10 \%, 20) \\
&=\$ 1.4 \text { million }(0.1023)=\$ 143,200
\end{aligned}
\end{aligned}
$$

Additional investment in $10^{\text {th }}$ year:
= \$200,000 (P/F, 10\%, 10) (A/P, 10\%, 40)
$=\$ 200,000(0.3855)(0.1023)=\$ 7,890$
Annual Operation and maintenance $=\$ 25,000$
Power Cost: $=\$ 50,000$ for 40 years $=\$ 50,000$
Additional Power Cost in last 30 years:
$=\$ 50,000(F / A, 10 \%, 30)(A / F, 10 \%, 40)$
$=\$ 50,000(164.494)(0.00226)=\$ 18,590$
Annual Cost $=\$ 244,680$
Select the Pumping Plan.

Homework Solutions for Engineering Economic Analysis, $10^{\text {th }}$ Edition
 Newnan, Lavelle, Eschenbach

6-41

$E U A C_{\text {gas }}=(P-S)(A / P, \%, n)+S L+$ Annual Costs

$$
\begin{aligned}
& =(\mathrm{P}-\mathrm{S})(\mathrm{A} / \mathrm{P}, \mathrm{~F} \%, \mathrm{n})+\mathrm{SL}+\text { Annual Costs } \\
& =(\$ 2,400-\$ 300)(\mathrm{A} / \mathrm{P}, 10 \%, 5)+\$ 300(0.10)+\$ 1,200+\$ 300 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =(\$ 2,400-\$ 300)+\$ 30+\$ 1,500 \\
& =\$ 2,100(0.2638)
\end{aligned}
$$

$$
=\$ 2,084
$$

EUAC $_{\text {electr }}=(\$ 6,000-\$ 600)($ A/P, $10 \%, 10)+\$ 600(0.10)+\$ 750+\$ 50$
$=\$ 5,400(0.1627)+\$ 60+\$ 800$
$=\$ 1,739$
Select the electric motor.

6-42

Annual Cost of Diesel Fuel $=[\$ 50,000 \mathrm{~km} /(35 \mathrm{~km} /$ liter $)] \times \$ 0.48 / \mathrm{liter}=\$ 685.71$ Annual Cost of Gasoline $=[\$ 50,000 \mathrm{~km} /(28 \mathrm{~km} / \mathrm{liter})] \times \$ 0.51 / 1$ liter $=\$ 910.71$
$E U A C_{\text {diesel }}=(\$ 13,000-\$ 2,000)(A / P, 6 \%, 4)+\$ 2,000(0.06)+\$ 685.71$ fuel + $\$ 300$ repairs $+\$ 500$ insurance

$$
\begin{aligned}
& \$ 300 \text { repairs + \$00 } \\
= & \$ 11,000(0.2886)+\$ 120+\$ 1,485.71
\end{aligned}
$$

$$
\begin{aligned}
& =\$ 4,780.31 \\
& =
\end{aligned}
$$

EUAC $_{\text {gasoline }}=(\$ 12,000-\$ 3,000)(\mathrm{A} / \mathrm{P}, 6 \%, 3)+\$ 3,000(0.06)+\$ 910.71$ fuel +
$\$ 200$ repairs $+\$ 500$ insurance

$$
=\$ 5,157.61
$$

The diesel taxi is more economical.

6-43

Machine A
EUAB - EUAC $=-$ First Cost (A/P, 12\%, 7)

- Maintenance \& Operating Costs + Annual Benefit + Salvage Value (A/F, 12\%, 7)
$=-\$ 15,000(0.2191)-\$ 1,600+\$ 8,000+\$ 3,000(0.0991)$
$=\$ 3,411$
Machine B
EUAB - EUAC $=-$ First Cost (A/P, 12\%, 10) Benefit + Salvage Value (A/F, 12\%, 10)
- Maintenance \& Operating Costs + Annual Benefit $\$ 6000(0.0570)$
$=-\$ 25,000(0.1770)-\$ 400+\$ 13,000+\$ 6,000(0.0570)$
$=\$ 8,517$
Choose Machine B to maximize (EUAB - EUAC).

14-16
Compute an equivalent i :

$$
\begin{aligned}
\mathrm{i}_{\text {equivalent }} & =\mathrm{i}^{\prime}+f+\left(i^{\prime}\right)(f) \\
& =0.05+0.06+(0.05)(0.06) \\
& =0.113 \\
& =11.3 \%
\end{aligned}
$$

Compute the PW of Benefits of the annuity:
PW of Benefits $=\$ 2,500$ (P/A, 11.3\%, 10)

$$
\begin{aligned}
& =\$ 2,500\left[\left((1.113)^{10}-1\right) /\left(0.113(1.113)^{10}\right)\right] \\
& =\$ 14,540
\end{aligned}
$$

Since the cost is $\$ 15,000$, the benefits are less than the cost computed at a 5% real rate of return. Thus the actual real rate of return is less than 5% and the annuity should not be purchased.

14-17

$$
\begin{aligned}
& 1=0.20(1.06)^{n} \\
& \log (1 / 0.20)=n \log (1.06) \\
& n=\underline{27.62 \text { years }}
\end{aligned}
$$

14-18

$$
\begin{aligned}
& \text { Use } \$ 97,000(1+1 \%)^{n}, \text { where } \mathrm{f} \%=7 \% \text { and } \mathrm{n}=15 \\
& \$ 97,000(1+0.07)^{15}=\$ 97,000(\mathrm{~F} / \mathrm{P}, 7 \%, 15) \\
& \\
& =\$ \$ 7,000(2.759) \\
& \\
& =\$ 268,000
\end{aligned}
$$

If there is 7% inflation per year, a $\$ 97,000$ house today is equivalent to $\$ 268,00015$ years hence. But will one have "profited" from the inflation?

Whether one will profit from owning the house depends somewhat on an examination of the alternate use of the money. Only the differences between alternatives are relevant. If the alterate is a 5% savings account, neglecting income taxes, the profit from owning the house, rather than the savings account, would be: $\$ 268,000-\$ 97,000(F / P, 5 \%, 15)=\$ 66,300$.

On the other hand, compared to an alternative investment at 7%, the profit is $\$ 0$. And if the alternative investment is at 9% there is a loss. If "profit" means an enrichment, or being better off, then multiplying the price of everything does no enrich one in real terms.

14-28
(a) $\mathrm{F}=\$ 2,500(1.10)^{50}=\$ 293,477$ in $\mathrm{A} \$$ today
(b) $\mathrm{R} \$$ today in (-50) purchasing power $=\$ 293,477(P / F, 4 \%, 50)$

14-29
(a) $\mathrm{PW}=\$ 2,000\left(\mathrm{P} / \mathrm{A}, \mathrm{i}_{\mathrm{c}}, 8\right)$
$P W=\$ 2,000$ (P/A $, 8.15 \%, 9)=\$ 11,428$
(b) $\mathrm{PW}=\$ 2,000(\mathrm{P} / \mathrm{A}, 3 \%, 8)=\$ 14,040$

14-30

Find PW of each plan over the next 5 -year period.
$i_{r}=\left(i_{c}-f\right) /(1+f)=(0.08-0.06) / 1.06=1.19 \%$
$\begin{aligned} & \\ & P W(A)=\$ 50,000(P / A, 11.5 \%, 5)=\$ 236,359 \\ &=\$ 108,115\end{aligned}$
$\begin{aligned} \mathrm{PW}(\mathrm{B})=\$ 45,000(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ 2,500(\mathrm{P} / \mathrm{G}, 8 \%, 5) & =\$ 198,115 \\ & =\$ 229,612\end{aligned}$
$\mathrm{PW}(\mathrm{C})=\$ 65,000(\mathrm{P} / \mathrm{A}, 1.19,5)(\mathrm{P} / \mathrm{F}, 6 \%, 5) \quad=\$ 229,612$
Here we choose Company A's salary to maximize PW.

