Formula Sheet

1 Time Value of Money

1.1 Future Value
The future value of x after n periods of growth at (annual) interest rate a compounded m times per year is

$$x(1 + r)^n$$

where $r = a/m$ is the per-period interest rate.

The effective annual interest rate is

$$i = (1 + a/m)^m - 1.$$

The future value of x after t years of growth at annual growth rate d is

$$x(1 + d)^t.$$

1.2 Present Value
In the following, r is the per-period discount rate, d is the annual discount rate, and there are m periods per year.

The present value of y to be received n periods later is

$$y(1 + r)^{-n} = \frac{y}{(1 + r)^n}.$$

The present value of y to be received t years later is

$$y(1 + d)^{-t} = \frac{y}{(1 + d)^t}.$$

The relationship between r and d is

$$d = (1 + r)^m - 1 \quad \text{and} \quad r = (1 + d)^{1/m} - 1.$$

1.3 Present Value: Perpetuities and Annuities
When the discount rate is r per period, an annuity making n payments of C, each one period apart, starting in one period:

$$\frac{C}{r}(1 - (1 + r)^{-n}).$$

Present value of a perpetuity of C per period, starting in one period:

$$\frac{C}{r}.$$
2 Bonds

A coupon payment of a bond with face value \(F \), coupon rate \(c \) and \(m \) coupon payments per year is

\[
Fc/m.
\]

If the yield (quoted annually) is \(y \) for a bond making \(m \) coupon payments per year, the corresponding per-period discount rate is (because of the yield quotation convention)

\[
r = y/m.
\]

The price of a bond with face value \(F \), coupon rate \(c \), \(m \) coupon payments per year, next coupon payment in 1 period, \(n \) coupon payments remaining, and yield \(y \) is

\[
F(1 + r)^{-n} + \frac{Fc}{y}(1 - (1 + r)^{-n}).
\]

3 Inflation

The real cost, as measured in base-\(b \) dollars, of an actual cost \(A \) at time \(t \), is

\[
R = A(1 + f)^{(b-t)},
\]

where \(f \) is the annual rate of inflation.

If the actual cost of something at time \(t \) is \(A_t \), and its actual cost changes at an annual rate \(g \), then its actual cost at time \(u \) is

\[
A_u = A_t(1 + g)^{(u-t)}.
\]

The relationship between the inflation rate \(f \), the actual discount rate \(d_A \), and the real discount rate \(d_R \) is

\[
(1 + f)(1 + d_R) = (1 + d_A).
\]