Hwk 3 Solutions

1) Suppose you got a job in LA and want to buy a new car. This being LA you narrow your choice to either a Prius (costs $\$ 25 \mathrm{k}$) or a Miata convertible (costs $\$ 20 \mathrm{k}$). The Prius gets roughly 50 mpg (miles per gallon) while the Miata gets 25 . Suppose gas is $\$ 2 /$ gal. and you drive 15,000 miles a year. Use a 5% discount rate compounded monthly.
a) Which is the more economical choice assuming either car lasts 10 years? (We're ignoring salvage value, license fees, and repair costs here.)
A: 15,000 miles $/ \mathrm{yr}=1250 \mathrm{miles} / \mathrm{mo}$. So the Prius uses $1250 / 50=25 \mathrm{gal} . / \mathrm{mo}$. while the Miata uses $50 \mathrm{gal} . / \mathrm{mo}$. Therefore the gas costs are $\$ 50 / \mathrm{mo}$. for the Prius and $\$ 100 / \mathrm{mo}$. for the Miata. The NPV (net present value) of these gas savings is (using Excel) $=P V(5 \% / 12,10 *$ $12, \$ 100-\$ 50) \approx \$ 4,714.07$. Since this is less than the $\$ 5 \mathrm{k}$ additional cost of the Prius, the more economical choice is to buy the Miata.
b) Will you change your decision if the average gas price is $\$ 3 /$ gal?

A: Since the gas price is 50% greater than in part a, the NPV of the gas savings will also be 50% greater or $\$ 7,071.10$. Since this exceeds the $\$ 5 \mathrm{k}$ additional cost of the Prius, you should change your decision and get the Prius instead.
c) At $\$ 2 / \mathrm{gal}$ what is the more economical choice if you decide to sell the car after 5 years for half its original price?
A: The NPV of the gas savings is $=P V(5 \% / 12,5 * 12, \$ 100-\$ 50) \approx \$ 2,649.54$. If you get the Prius you can sell it for $\$ 2500$ more after 5 years (worth $\$ 2500(1+0.05 / 12)^{-60} \approx \$ 1948.01$ today). At $\$ 4597.55$ together, these savings don't exceed the additional $\$ 5 \mathrm{k}$ cost of the Prius. Thus the Miata is the more economical choice.
2) Let Z_{i} be iid standard normal random variables. What is $\operatorname{Pr}\left[\frac{1}{30} \sum_{i=1}^{30} Z_{i}<0.1\right]$?

A: $\operatorname{Pr}\left[\frac{1}{30} \sum_{i=1}^{30} Z_{i}<0.1\right]=\operatorname{Pr}[\mathcal{N}(0,30)<0.1 * 30] \approx 0.71$.
3) Let $X_{i} \sim \operatorname{Bernoulli}(p)$ be correlated random variables such that $\operatorname{corr}\left(X_{i}, X_{j}\right)=q$ for any $i \neq j$. Let $Z=\sum_{i=1}^{1000} X_{i}$.
a) Calculate the mean and standard deviation of Z.

A: $\mathrm{E}[Z]=\sum_{i=1}^{1000} \mathrm{E}\left[X_{i}\right]=1000 p$.
Note that $\operatorname{Var}\left[X_{i}\right]=p(1-p)$. So $\operatorname{Cov}\left(X_{i}, X_{j}\right)=q \sqrt{\operatorname{Var}\left[X_{i}\right] \operatorname{Var}\left[X_{j}\right]}=p(1-p)$ for $i \neq j$. Therefore, $\operatorname{Var}[Z]=\sum_{i=1}^{1000} \sum_{j=1}^{1000} \operatorname{Cov}\left(X_{i}, X_{j}\right)=1000 \operatorname{Var}[\operatorname{Bernoulli}(p)]+\left(1000^{2}-\right.$ $1000) q p(1-p)=1000 p(1-p)(1+999 q)$. So the standard deviation of Z is $\sqrt{1000(1+999 q)} \sqrt{p(1-p)}$.
b) What is the standard deviation of Z if $q=0$? if $q=1$?

A: If $q=0$, then the standard deviation is $\sqrt{1000} \sqrt{p(1-p)}$ and if $q=1$ it is $1000 \sqrt{p(1-p)}$.

