Hwk 1: Math Review

Solution
Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of numbers and assume that $a_{1}=1$.

1) If $a_{n+1}=1.03 a_{n}$ for all $n \geq 1$, then what is $\sum_{i=1}^{30} a_{i}$?

A: Clearly $a_{n}=1.03^{n-1}$ for $n \geq 2$. Applying the formula for a geometric series,

$$
\begin{equation*}
\sum_{i=1}^{30} a_{i}=\sum_{i=1}^{30} 1.03^{i-1}=\sum_{i=0}^{29} 1.03^{i}=\frac{1-1.03^{30}}{1-1.03}=47.58 \ldots \tag{1}
\end{equation*}
$$

2) If $a_{n+1}=\frac{a_{n}}{1.03}$ for all $n \geq 1$, then what is $\sum_{i=1}^{\infty} a_{i}$?

A: Clearly $a_{n}=(1 / 1.03)^{i-1}$. Applying the formula for an infinite geometric series,

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{i}=\sum_{i=1}^{\infty}(1 / 1.03)^{i-1}=\sum_{i=0}^{\infty}(1 / 1.03)^{i}=\frac{1}{1-\frac{1}{1.03}}=34.33 \ldots \tag{2}
\end{equation*}
$$

3) If $a_{n+1}=1.03 a_{n}-0.05$ for all $n \geq 1$, then what is a_{30} ?

A: If we calculate the first few terms of the sequence, $a_{2}=1.03 a_{1}-0.05, a_{3}=1.03 a_{2}-0.05=$ $1.03^{2} a_{1}-1.03(0.05)-0.05$, etc., then it is not hard to see that

$$
\begin{align*}
& a_{n}=1.03^{n-1} a_{1}-0.05-0.05(1.03)-0.05\left(1.03^{2}\right)-\cdots-0.05\left(1.03^{n-2}\right) \\
&=1.03^{n-1} a_{1}-0.05 \sum_{i=0}^{n-2} 1.03^{i} \tag{3}
\end{align*}
$$

Now applying the rule for a geometric sum,

$$
\begin{equation*}
a_{30}=1.03^{29}-0.05 \sum_{i=0}^{28} 1.03^{i}=1.03^{29}-0.05 \frac{1-1.03^{29}}{1-1.03}=0.10 \ldots \tag{4}
\end{equation*}
$$

