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Abstract

It has been empirically observed that buy and sell orders in many financial markets tend to cluster in
time. We develop a formal model to account for such a clustering effect. We consider an exponential
decay Hawkes model, and a more generalized linear model, assessing the goodness of fit and parameter
estimation efficiency of each. Our results indicate that ourgeneralized linear Hawkes model is better
suited to modeling high-frequency financial time-series, in which data is abundant, and fast parameter
estimation is desired. We also use our model in simple trading strategy, which gives promising results.
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Chapter 1: Hawkes Process: Background

Information

1.1 Introduction

Empirically, it has been observed that in many financial markets trading activity tends to cluster in time.
This is also true when considering “signed” trading activity, i.e. buy andsell orders. Liquidity providers
(“market makers”) in the foreign exchange market are well aware of this clustering, and anecdotal evi-
dence suggests that they pay close attention to the pattern of arrivals of buy and sell orders when setting
prices.

Such clustering can be modeled with a multivariate point process [1]. Methods of data analysis for point
processes have received much attention [2], [3]. In this work, we focus on a model in which order arrivals
are governed by a special class of point process, the Hawkes process [4]. We first consider the case where
the buy orders and the sell orders are independent of each other, i.e. there is only a self-exciting effect
among orders of the same type. A suitable model for this setting is a univariate Hawkes process. We
then consider the cross-exciting effect among orders of different types and the corresponding bi-variate
Hawkes process model.

The propagator function is introduced in the Hawkes model to characterize the effectof past order ar-
rivals on the future arrival intensities. Exponential functions of a sum of exponential functions are well
accepted forms of propagator functions. The advantage of the exponential specification is that when
fitting a Hawkes model to empirical market data, the likelihood function can be computed inO(N)
steps, whereas for more general propagator functions,O(N2) steps will be required. However, the model
fitting procedure is still computationally intensive and there is no single global optimum due to its non-
convexity, even with the exponential functions. In view of this, we introduce a generalized Hawkes
process so the model fitting can be formulated as a convex optimization problem, to which many effi-
cient optimization algorithms can be applied.

The Wharton Research Data Services (WRDS) provides access to the NYSE TAQ database where the
size and frequency of orders can be extracted. We fit various Hawkes models to these market data and
verify the model fitness through statistical measures such as theQQ-plot. The fitted models are then used
in the next section when designing new trading strategies.
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1.2 Exponential Hawkes: Continuous Time

An I−variate Hawkes process focuses on arrival intensities for the counting processesN(i)
t , 1≤ i ≤ I.

Arrival intensitiesλ (i)
t conditioned on a filtrationFt is defined by

λ (i)
t

∣

∣

∣
Ft = lim

δ t→0

1
δ t

E

{

N(i)
t+δ t −N(i)

t

∣

∣

∣
Ft

}

.

In the case of purely self-exciting processes, the intensity is a functional of past arrivals. For a linear
self-exciting process, we have

λ (i)
t = µ(i) +

I

∑
j=1

∫

u<t
hi j(t −u)dN( j)

u .

Hereµ(i) can be understood as the base intensity of arrivals of typei, i.e. the intensity if there have been
no past arrivals of any type, andhi j the propagator of an arrival of typej onto the intensity of arrivals of
typei in the future. We first consider parameterized forms forh. In particular we consider the case where
h is a sum of exponentials:

hi j(s) =
K

∑
k=1

αi jke−βi jks,

so that

λ (i)
t = µ(i) +

K

∑
k=1

I

∑
j=1

∫

u<t
αi jke−βi jk(t−u)dN( j)

u .

This specification is labeled aHawkes-E(K) process in [5]. In this work we consider both univariate
Hawkes process(I = 1), which models the case where orders are of the same type, and the bivariate
Hawkes process(I = 2), which models the cross-exciting effects among buy and sellorders. For sim-
plicity we assume there is only exponential component in thepropagator functionh, i.e. K = 1. Therefore
the univariate case has the form

λt = µ +

∫

u<t
αe−β (t−u)dNu

and the bivariate case has the form

λ (1)
t = µ(1) +

∫

u<t
α11e−β11(t−u)dN(1)

u +
∫

u<t
α12e−β12(t−u)dN(2)

u ,

λ (2)
t = µ(2) +

∫

u<t
α21e−β21(t−u)dN(1)

u +

∫

u<t
α22e−β22(t−u)dN(2)

u .

1.3 Exponential Hawkes: Discrete Time

The classical continuous model implicitly assumes that theprobability that more than one event occurs at
exactly the same time approaches 0. In the market data we obtained from TAQ data base, this is usually
not the case. Since trade data are recorded with time increment of 1 second, we do observe many trades
occur at the same time although in reality they may not. Furthermore, even if our data did have a much
higher time resolution, due to market microstructure artifacts, it is debatable whether it would be useful
to model excitation effects on scales much lower than a second. In view of this, we introduce a Hawkes
process model using discrete time.
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We denote byλ (i) the conditional expected intensity and byN(i) the number of trades during theith
time step. Note that in the continuous modelNt is the counting process up to timet, so we have the
approximation

N(i) = Ni −Ni−1.

Note that the continuous process uses subscripts for time indices while the discrete process puts time
indices into parenthesis. They are not to be confused. In thebivariate Hawkes model, we use the super-
script (·)(i) to distinguish between the buy and sell processes for continuous time. In discrete time we

will use the subscript(·)i for the same purpose. Namely, the notationλ (i)
t changes toλi(t) and similarly

N(i)
t changes toNi(t). With these notations we have for the univariate model

λ (t) = µ +∑
i<t

αe−β (t−i)N(i), (1.1)

and for the bivariate model

λ1(t) = µ1 +∑
i<t

α11e−β11(t−i)N1(i)+∑
i<t

α12e−β12(t−i)N2(i), (1.2)

λ2(t) = µ2 +∑
i<t

α21e−β21(t−i)N1(i)+∑
i<t

α22e−β22(t−i)N2(i). (1.3)

The time steps aret = 1,2, · · · ,T andN(t) has a Poisson distribution with parameterλ (t).

1.4 Model Fitting: Exponential Hawkes

For the univariate case, the log likelihood function of a discrete Hawkes Process is shown to be [6]

L = −

∫ T

0
λtdt +

∫ T

0
log(λt)dNt (1.4)

≈ −

T

∑
i=1

λ (i)+
T

∑
i=1

N(i) log(λ (i)) (1.5)

whereλ (i) is given by (1.1). When we fit such a model to market data we actually solve the following
optimization problem

max L (1.6)

subject to µ > 0, α > 0 (1.7)

β > α (1.8)

whereL is given by (1.5), the constraint (1.7) is for positivity andthe constraint (1.8) is for stability.

For the bivariate case we also observe that

L ≈

T

∑
i=1

{

N1(i) log(λ1(i))+N2(i) log(λ2(i))−λ1(i)−λ2(i)
}

. (1.9)

The corresponding optimization problem has the following form

max L (1.10)

subject to µi > 0, αi j > 0 (1.11)

βii > αii (1.12)

det(I2−Ψ) > 0 (1.13)
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whereI2 is the 2×2 identity matrix,Ψ = (ψi j) = (αi j/βi j), L is given by (1.9), the constraint (1.11) is
for positivity and the constraints (1.12) and (1.13) are forstability.

1.5 Generalized Hawkes Model

Consider the optimization problem (1.6). This is a simple model with just three variablesµ, α andβ . Yet
the objective function is non-concave in the variables, so solutions are only local maxima and there is no
guarantee of global optimality. The model also does not scale complexity of the optimization algorithm
grows rapidly with the size of the problem. Furthermore, theoptimization problem (1.10) generally
involves 10 variables, so it suffers from the same problems to an even higher degree.

The assumption we have made so far is an exponential decay function. Instead we can consider a time-
limited, piecewise linear form ofhi j(t). If the duration of each constant piece(δ t) is less than the time
resolution of the data, no information is lost. Moreover, exponentials are themselves “time-limited”,
since they die off after 20-30 seconds. Along these lines we develop a generalized Hawkes model where
the predicted intensities can be written as

λi(t) = µi +
t−1

∑
k=t−n

wi1(t − k)N1(kδ t)+
t−1

∑
k=t−n

wi2(t − k)N2(kδ t), (1.14)

wherehi j(t) consists ofn pieces with thet-th having valuewi j(t).

The fitting problem can now be cast as a convex optimization program

maximize L
subject to µi ≥ ε, wi j � 0

zii = 1−1T wii, zi j = 1T wi j

zii ≥ ε,
z2
12

z11
≤ z22

z12 = z21+ s, s ≥ 0

where the log likelihood function is in the form of (1.9) withλi(t) now replaced by (1.14). The various
constraints correspond to positivity and stationarity. The piecewise linear form ofhi j(t) results in many
more variables,wi j(t), with a typical size of 200. Still it can now be readily solvedas a convex opti-
mization problem using a primal-dual interior point solverfor instance. The algorithm runs much, much
faster and it comes with a global optimality certificate.

It can be shown that this model corresponds to a linear Poisson regression with parameter constraints
where the features (Ni(t)) are past data. Naturally, we can consider using a richer setof (possibly non-
linear) features that incorporates other potentially useful information such as such as price, volume,
market index and option data. Since we have very large amounts of high-frequency data, it would be
possible to avoid the overfitting that would normally accompany the introduction of more parameters.
That’s why the ability of our model to handle diverse sourcesof information is a major advantage it has
over the Exponential Hawkes Model.
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Chapter 2: Application of Hawkes Models

We develop a model for trade arrival times, fit empirical datato the model by calculating parameters, and
test how well the data fits the model. We give preliminary results on a very simple trading strategy which
shows promising results.

2.1 Trade Data Collection and Processing

We gathered data on several stocks including YHOO, SNDK, VPHM, XOM, MSFT and TIE from NYSE
TAQ database. Our stocks were chosen to span the spectrum of capitalization and volatility. Since the
time resolution of the TAQ data is 1 second, we aggregated allour transaction information in one-second
intervals by calculating the overall number of buy and sell trades in the interval. In order to classify
trades into buy and sell, we employed the Lee-Ready tick test[7]: we compared the price of the trade
to the price of the trade 5 ticks ago and classified into buy or sell if the trade price was higher or lower,
respectively. In case of a tie, we compared to the next most recent trade (e.g. 4 ticks ago). It would be
important to explore other methods of trade classification,including using bid/ask information from the
NYSE TAQ database. While recent studies [8] indicate that the tick test performs well for some tasks,
it would still be worthwhile to experiment with other classification methods, since our model is very
dependent on the qualities of the assigned trade direction.

2.2 Model Fitting

After extracting data from TAQ database and separating trades into buy and sell orders, in Figure 2.1 and
2.2 we plot the most recently frequencies of buy or sell trades conditioned on buy or sell trades, respec-
tively. We easily observe a large self-exciting effect and asmall cross-exciting effect, which motivate the
use of Hawkes processes to model order arrivals.

Next, we implemented parameter estimation for a bivariate Hawkes process considering both the self-
exciting and the cross-exciting effect. We first consideredthe univariate Hawkes model using exponen-
tial decays. The prediction of future intensity involves a weighted-sum of past trades. We significantly
accelerated the MATLAB code for model parameter estimationby replacing an iteration loop with a con-
volution operation. For training data of size up to 20,000 the parameter optimization can be completed
in about 35 seconds, which opens the possibility of real-time online parameter update. The bivariate
Hawkes process with exponential is given in (1.2) and (1.3).When predictingλ1(t), N1(t) is the self-
exciting process andN2(t) is the cross-exciting process. A set of typical parameter values is obtained by
optimizing over the trading data of MSFT on January 03, 2007.

µ1 = 0.8769 α11 = 0.1689 β11 = 0.2470 α12 = 0.5542 β12 = 10.7996.
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Figure 2.1: Conditional arrival intensities following buyorders, SanDisk (SNDK) 01/02/07
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Figure 2.2: Conditional arrival intensities following sellorders, SanDisk (SNDK) 01/02/07
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The large exponentβ12 implies the marginal effect from cross-exciting process asobserved in [1]. The
relative small exponentβ11 suggests the clustering effect of trades - a large trade burst is more likely to be
followed by trades of the same type. Figure 2.3 illustrates idea. Although the intensity prediction hardly
captures the first tic of trade burst, it well predicts the increase of trade intensity that would follow.
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Figure 2.3: Intensity Prediction with exponential Hawkes,MSFT 01/03/2007

We can also work with the generalized Hawkes process model (1.14). Instead of constraining the
weighted sum of past trades to have exponentially decaying weights, we assume the weights are free
variables themselves. It seems that we have dramatically increased the complexity, since we now have
2n parameters instead of just a handful ofα ’s andβ ’s. For example, if we want to consider a history
of K = 50 past arrivals we would have 100 variables. However, as explained before, it is an astonishing
fact that this model is superior to the exponential model in both speed and fidelity. The reason is simple:
convexity smiles only to this one and turns its back to the exponential. Consequently we can get faster
and better results. In Figure 2.4 we plot a sample of the weights estimation from both the exponential
model and the generalized model. The maximum likelihood objective value is observed to be 33% higher
for the generalized model as compared to the exponential model.

Figures 2.1 and 2.2 show that there is a very small cross-exciting effect between buy and sell orders, and
the model fitting picks up this effect. This phenomenon is observed in [1]. Due to the minimal cross-
excitation, we will primarily consider the univariate Hawkes model and fit two processes to buy and sell
orders separately.

Having calculated the parameters of the Hawkes process, we determine how well those parameters reflect
the data through model validation. In Figure 2.5 and 2.6 we show the QQ-plot for both the exponential
and the generalized model. It is seen that the Hawkes processmodels trading data reasonably well. We
know that the Hawkes process becomes a standard Poisson process under the stochastic time change

t →
∫ t

0
λ (s)ds.
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Figure 2.4: YHOO, 07/03/2006

In the discrete case,λ (i)/N(i) is approximately the inter-arrival time of the standard Poisson process,
which has an exponential distribution. The comparison between the empirical cdf of the inter-arrival time
and a standard exponential distribution shows a roughly straight line. This serves as a validation of the
Hawkes process model.

2.3 Trading Strategy and Performance

2.3.1 Setup

Given that we can predict buy and sell intensities, we attempt to create some profitable strategies based
upon the Hawkes process model for arrival times. Specifically, we employ the exponential and general-
ized piecewise linear Hawkes processes. Because of the timeefficiency and increased accuracy of the
generalized process, we use it exclusively unless otherwise stated.

We take our data from the NYSE TAQ Database. Because the data is recorded by second, we discretize
time in seconds, which conveniently allows an application of the generalized piecewise linear Hawkes
process.

In terms of execution, we assume execution at the worst pricerecorded in the five seconds following
the time of a signal; i.e., we buy for the highest price over the next five seconds and sell for the lowest
price over the next five seconds. We do not impose any additional transaction costs nor short selling
constraints.
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Figure 2.5: QQ-plot, exponential Hawkes process, MSFT 01/03/2007
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Figure 2.6: QQ-plot, generalized Hawkes process, YHOO, 07/03/2006
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Due to the efficient maximum likelihood estimation possiblefor the generalized piecewise linear model,
we can re-estimate parameters frequently; for the purposesof this study, however, we estimate them
each day over one day’s data, then apply those parameters in trading the next day. We then use those
parameters to calculate buy and sell intensities at each second over the trading day, using that information
to make trading decisions.

In order to test the model’s usefulness, as opposed to that ofsome complex strategy, we experimented
with a very simple trading strategy. We measure performancein dollars earned per single share traded,
limiting the position size to one share long or short. We buy the stock when the buy intensity to sell
intensity ratio is greater than some fixed constant,ρ, and sell when the sell intensity to buy intensity ratio
is greater thanρ. There is no explicit exit strategy, which means that we can only reverse positions when
receiving the opposite signal. In order to mark to market, weliquidate positions at the end of the day.

We calibratedρ using a small portion of the sample data, raising it so as to eliminate most of the noisy
trade signals, leaving one or two of the highest intensity ratio opportunities.

2.3.2 Results

Applying this strategy to Microsoft (MSFT) stock using boththe exponential and generalized Hawkes
processes, we obtain the following results, on average per trade:
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Figure 2.7: Performance for MSFT, 01/03/07-01/11/07

Note how while the generalized process has a similar exponential decay of past trades’ effects, it puts
much greater weight on those trades in the last second interval as observed in Figure 2.4. Consequently,
in times of high activity of one type of trade, that intensityis calculated much higher by the piecewise
linear model, resulting in the need for a higher intensity ratio ρ in order to eliminate noise trades. We
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then apply the strategy to Titanium Metals Corp. (TIE), achieving exciting results as shown in Figure
2.8. Withρ = 30, the average profit per trade is $.087 over 86 trades (43 roundturns).
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Figure 2.8: Performance for TIE, 09/01/06-01/11/07

Here are the results for some other stocks showing the average profit per share per day over varying
lengths of time:

stock average profit/stock/day number of tradesρ period
YHOO $.00565 586 17 07/03/06−01/31/07
SNDK $.00755 36 15 08/01/06−12/29/06
VPHM $.01322 14 15 03/08/06−03/24/06
XOM $.08152 24 7.5 01/03/07−01/11/07

Note that Exxon Mobile (XOM) requires a lower threshold ratio, likely resulting from its high daily
volume; indeed, settingρ up to even 10 will eliminate all potential trade signals.

2.3.3 Further Improvements

It is possible that this strategy could be improved numerousways. We could buy in certain quantities
dependent on the intensity ratio and, therefore, its predictive accuracy for the current trend.

Since the current strategy can only reverse positions, it often closes positions when the market has already
turned around, which most certainly reduces profits. We mustdevelop an explicit exit strategy depending
on intensity, price, time, etc., in order to maximize profitability. Of course, we have the option of placing
this information in the strategy itself or in the calculation of the intensities, through choosing different
features.
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The high intensity ratio should also be relaxed with better exit strategies. The current strategy only
captures a handful of opportunities every day, but these seem to actually predict longer term trends, or
the strategy could not profit. Probably, an intensity ratio above a certain high threshold implies a flurry
of buying or selling that could only occur from some fundamental change in the underlying (e.g., an
earnings report). Thus, the technical indicator could be picking up on investors’ reaction to a fundamental
change. Without an explicit exit strategy, however, the trading simulation simply gives back too much
profit between trades, and the resulting signals seem more like noise when viewed under performance.

Given that this näıve strategy produces consistent profits under conservative fill estimates, the application
of the Hawkes process to model buy and sell orders in trading strategies seems very promising. Since
the strategy has shown profitable results for many differentkinds of stocks, future improvements upon it
should have reasonable scaling capacity among a variety of securities.
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