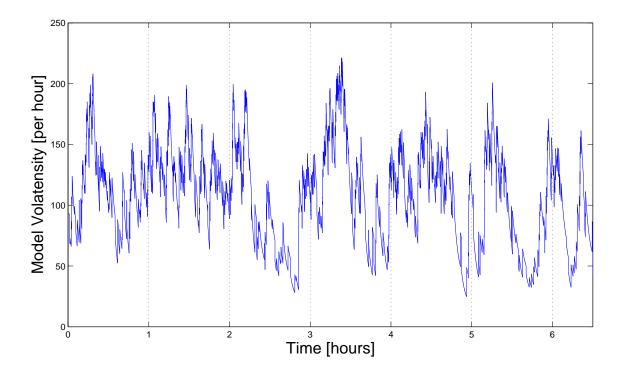
A model for intraday volatility

Yongyang Cai, Baeho Kim, Matthew Leduc, Kamil Szczegot, Yang Yixiao, Manuel Zamfir



Volatility of stock returns

Let y be the return on a stock. Then the instantaneous volatility is

$$\sigma_t^2 = \lim_{\Delta t \to 0} \frac{1}{\Delta t} E\{(y(t + \Delta t) - y(t))^2 | \mathcal{F}_t\}$$

$$= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_0^\infty P\{(y(t + \Delta t) - y(t))^2 \ge \alpha | \mathcal{F}_t\} d\alpha$$

$$\approx \lim_{\Delta t \to 0} \frac{1}{\Delta t} \sum_{k=1}^K P\{|y(t + \Delta t) - y(t)| \ge k\varepsilon | \mathcal{F}_t\} C(k,\varepsilon)$$

$$= \sum_{k=1}^K \lambda_t^{(k\varepsilon)} C(k,\varepsilon)$$

assuming the changes in returns are multiples of some small $\varepsilon > 0$. Here

$$\lambda_t^{(\Delta y)} = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P\{N(t + \Delta t) - N(t) > 0 \mid \mathcal{F}_t\}$$

is the intensity of the counting process N, which counts the number of jumps of y exceeding some fixed threshold Δy .

For convenience we call $\lambda_t^{(\Delta y)}$ the volatensity.

Volatensity is a proxy for volatility

This can be seen, for example, by comparing it with the GARCH(1,1) fitted to the return series¹, which is a very common representation of volatility.



^{1.} This and following based on TAQ data for IBM stock on 1/05/2007

Our model for volatensity

$$\lambda_t = \lambda_{\infty}(N_t) + \underbrace{\int_0^t g(t-s) \, dN_s}_{\text{ACD part}} \underbrace{\int_0^t g(t-s) \, dN_s}_{\text{Hawkes part}}$$

where

$$\lambda_{\infty}(n)^{-1} = C + \sum_{i=1}^{m} \alpha_i \left(T_{n-i} - T_{n-i-1} \right) + \sum_{j=1}^{q} \beta_j \lambda_{\infty}(n-j)^{-1},$$

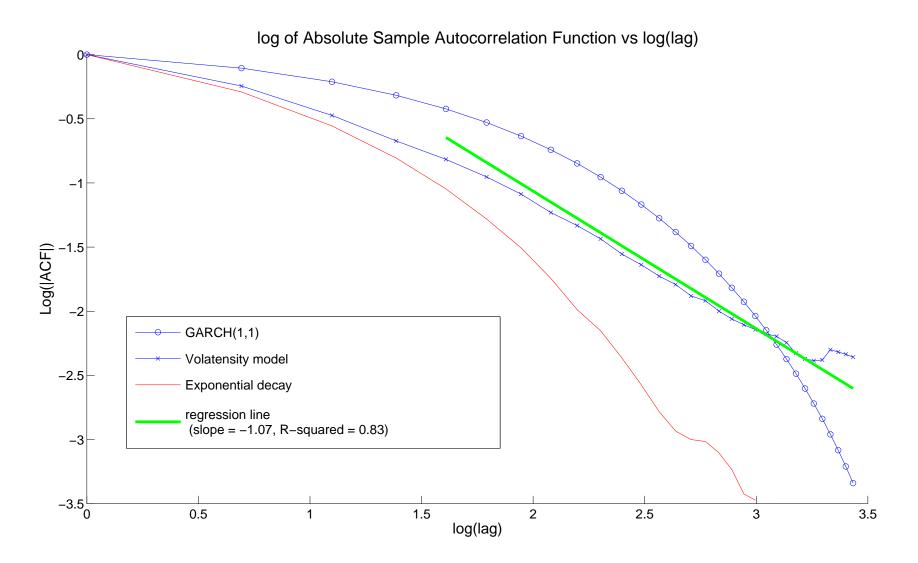
and T_i is the time of the *i*th jump.

We take g to be equal to

$$g_{\text{general}}(x) = \frac{1}{\sum_{l=0}^{L} c_l x^l}$$
 or $g_{\text{special}}(x) = \frac{a}{(b+x)^c}$

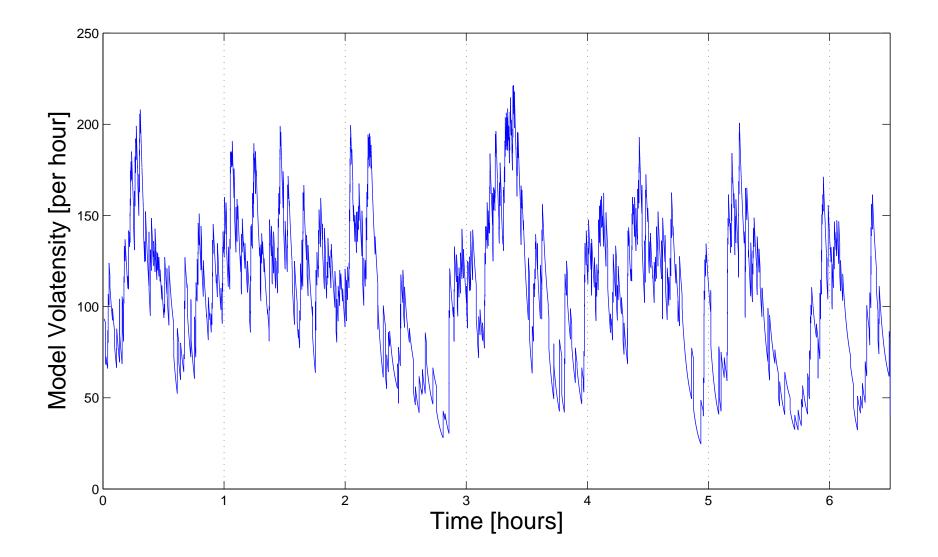
Reproducing stylized features of volatensity

Slowly decaying autocorrelation:



Reproducing stylized features of volatensity

Volatensity bursts:



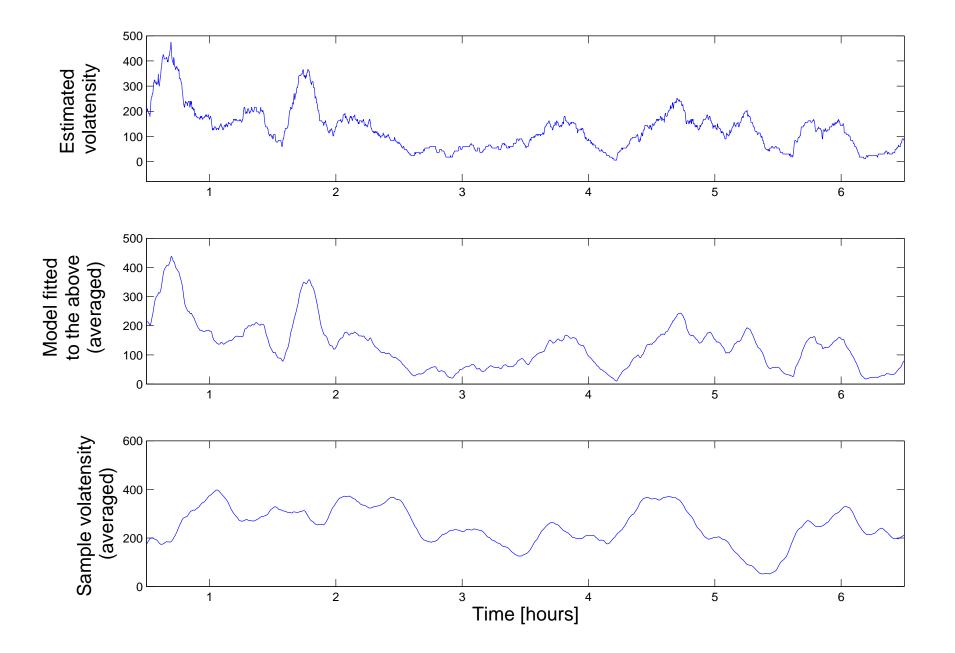
Why do we need the two terms?

	ACD part	Hawkes part
self-exciting	•	•
slow autocorrelation decay	•	
power-law decay of intensity between jumps		•
suitability for intraday modelling	•	•
ease of simulation	•	•
feasibility of calibration	•	•

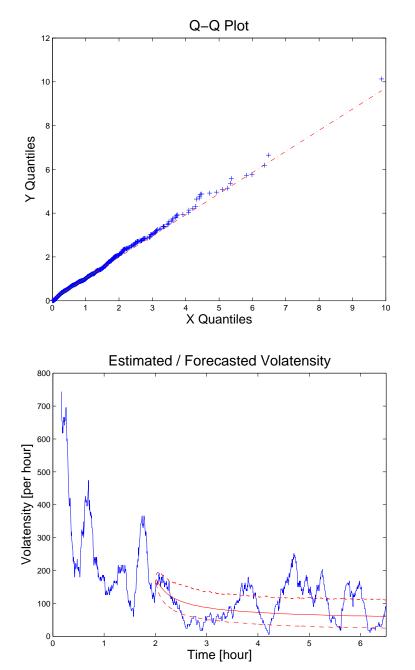
Calibrating the intraday volatensity model

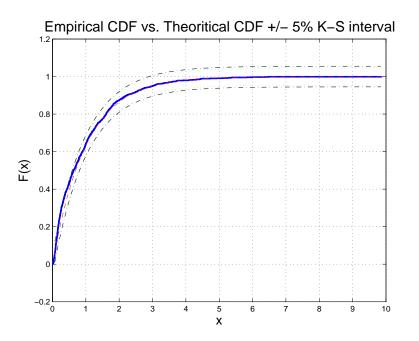
- 1. Cleaning and converting the data:
 - deleting trades outside the standard trading hours,
 - averaging the trade price in single time points,
 - determining the counting process based on a fixed threshold.
- 2. Estimating model parameters using a two-step procedure:
 - least-squares fitting of the intensity curve to obtain a starting point,
 - MLE estimation using the starting point.
- 3. Statistical goodness-of-fit tests for time-changed interarrival times, which should be independent exponentials (Meyer 1971):
 - mean/variance,
 - Ljung-Box test,
 - Q-Q plot,
 - Kolmogorov-Smirnov Test.

Historical vs. fitted volatensity



Statistical tests & forecasting





For time-changed interarrival times:

- sample mean = 1.00
- sample variance = 1.15
- Ljung-Box test (with lags 10-80) accepts the null hypothesis that the model fit is adequate

Conclusions and future work

- We have succeeded in incorporating in our model most of the stylized features of volatility: clustering, slow decay of autocorellation, and power-law decay after a jump.
- This is an intraday model, but it can be extended to a multiday one.
- One way to achieve this is using the so-called 'seasonality functions' to take into account the fact that trading patterns exhibit similarity across different days.
- Another way is to regard the parameters of our model as a realization of a daily time-series and then fitting a model to it (e.g. ARMA).
- Both of those would allow us to make a forecast several days into the future and thus develop a trading strategy.