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Abstract

An electronic limit order book is resilient when it reverts to its normal shape

promptly after large trades. This paper suggests a continuous-time impulse re-

sponse function based on intensities, which formalizes resiliency in terms of a time-

frame and probability of order book replenishment. This is then estimated for

trading on an LSE order book, using an appropriate parametric model which views

orders and cancellations as a mutually-exciting ten-variate Hawkes point process.

Consistent with findings in the related literature, in over 60 per cent of cases, the

order book does not replenish reliably after a large trade. However, if it does re-

plenish, it does so with a fairly fast half life of around 20 seconds. Various other

dynamics are quantified.
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1 Introduction

Traders often prefer an electronic limit order book which is resilient, so that the sup-

ply of unmatched offers to trade (i.e. limit orders), when substantially depleted in a

large transaction, then replenishes rapidly at or near previously prevailing prices. This

resilient replenishment is out of the exchange’s hands, being realized through the or-

der submissions of participating traders, which are momentary events of unpredictable

timing.

To quantify resiliency, this paper models the random timing of these central events

directly. It uses the categorization of event types in Biais, Hillion, and Spatt (1995)

as a way to distinguish resiliency events and the shocks that precede them from other

orders. A vector of intensities thus emerges, one for each category of event. By estimating

‘mutually-exciting’ interactions among these intensities, the paper quantifies resiliency

in easily interpretable terms. Specifically, it assumes that if a limit order book lacks

resiliency it replenishes too unreliably, or too late. These two dimensions, conditional

probability and delay, are distinguished by estimating impulse response functions in

continuous time which can be judged either too small or too slow. Four such functions are

distinguished, describing respectively the response at the bid or ask to a large purchase

or sale. Comparing the four functions adds a third, price dimension to the resiliency

study.

For Barclays equity on the London Stock Exchange, the estimated impulse response

functions all have rather short half-lives: of under 20 seconds. However, they are fairly

slight, only implying a resilient response to big trades in under 40 per cent of cases. Thus

when it occurs, the resilient response to a shock is fast – but it occurs quite infrequently.

This is consistent with the dynamic illiquidity reported in electronic foreign exchange

markets by Danielsson and Payne (2002). It also corroborates the long memory reported

in Degryse, de Jong, van Ravenswaaij, and Wuyts (2005), whereby wide spreads some-

times narrow only in the distant (by microstructure standards) future. The relationship

to the findings of Coppejans, Domowitz, and Madhavan (2004) is difficult to define, be-

cause they study the shape of the order book at a lower, five minute, frequency. However,

it is consistent with the periodic liquidity crises they report following sharp price move-

ments. The study also finds that after spreads widen, liquidity supply is equally likely to

be restored on either side of the book. This accords with a theory of market order price

impact, whether information-bearing or not.

The paper’s fully parametric model is rich enough to capture and control for the
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various dynamics of trades, orders and order cancellations. This leads to an abundance

of parameters. However, its closed-form log-likelihood function has an additive separa-

bility, permitting the econometrician to estimate and interpret only a subset containing

the parameters pertaining to resiliency. Of course, when the model is used for other

purposes, other parameter subsets can be estimated. Taking an interest in the drivers of

large market orders, the paper does report some extra parameters, finding among other

things evidence of copycat market order submission. Some additional results emerge as

a byproduct of the resiliency estimation, for example we learn how order cancellation is

sometimes followed by very rapid replacement.

The model is most applicable on markets which are not yet highly resilient: on markets

such the Chicago Board of Trade’s (CBOT’s) market for the 10 Year US Treasury Bond

Future, spreads are very seldom wider than the minimum price increment (under 1 per

cent of the time), rendering the measures of resiliency proposed here somewhat singular

and less useful. The paper is closely related to Bauwens and Hautsch (2004), Engle

(2000), Engle and Russell (1998), and Engle and Lunde (2003). Hasbrouck (1999) and

Bisière and Kamionka (2000) also study the limit order book as a multivariate point

process.

The paper proceeds as follows. Section 2 discusses the concept of resiliency and

its econometric interpretation in continuous time. Section 3 proposes an approach to

identify those events on an order book that characterize resiliency. Section 4 presents

the econometric details of the model, while Section 5 brings it to the data. The results

are discussed in Section 6, and Section 7 concludes. An Appendix provides a complete

account of the results, and discusses data issues in more detail.

2 Order book resiliency

The taxonomy due to Kyle (1985) for the “slippery and elusive concept” of market liq-

uidity remains current in the literature: he suggests its principal elements to be tightness

– the narrowness of the bid-ask spread; depth – the rate at which the potential volume of

a market order grows as its execution price deteriorates; and resiliency – “the speed with

which prices recover from a random, uninformative shock”. The particular importance of

resiliency in the case of an electronic limit order book, where the price-smoothing agency

of a specialist or market maker is absent, has recently been noted by theorists and econo-

metricians alike. In theoretical studies, Foucault, Kadan, and Kandel (2005) and Rosu
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(2004) propose conditions under which resiliency is high, while Degryse, de Jong, van

Ravenswaaij, and Wuyts (2005) and Coppejans, Domowitz, and Madhavan (2004) study

the phenomenon empirically using non-parametric and VAR-based techniques.

As mentioned in the Introduction, the model here is different. Limit order books

recover from large trades through a moderate number of instantaneous events that bring

spreads down to normal levels, namely the submissions of fresh limit orders. The question

of interest can thus be framed as how fast these events occur, or indeed how likely they

are to occur at all. This motivates the paradigm of Engle (2000), which proposes treating

high frequency market data as the realization of a point process in continuous time: that

is, as a succession of distinct, momentary events that occur at random times. Assuming

it is simple with intensity adapted to its natural filtration,1 such a process can be fully

specified by giving its (typically vector-valued) intensity’s functional dependence on that

filtration. Define its intensity at time t conditional on its natural filtration up to but not

including time s ≤ t, Fs, as,

λ(t|Fs) = lim
δt↓0

Pr [N(t + δt) > N(t)|Fs]

δt
, (1)

where N(t) is the number of events to have occurred up to and including time t. Refer to

λ(t|Ft) simply as λ(t), the value of the process λ at time t. Also define Fs+, the natural

filtration up to and including time s.

Within this framework, resiliency is captured simply by the way large trades alter

the future intensities of fresh limit order submissions (these events are defined precisely

in Section 3). In particular, if intensities are for a time greatly increased following the

liquidity demand shock embodied by a large trade, then resiliency is high. The rate at

which they tend back to average levels gives a measure of how fast the resilient order

book responds to the shock. More formally, if a shock of type m, denoted Em, happens

at time s, then its impact on these intensities, say λr, at a later time t can be defined as

λr(t|Fs+)− λr(t|Fs), (2)

where λr(t|Fs+) = λr(t|Fs, Em) includes knowledge of Em. If resiliency is invariant over

time, i.e. if Em has the same effect whatever the value of s, then there exists a function

Grm such that

Grm(t− s) = λr(t|Fs+)− λr(t|Fs). (3)

1A point process is simple if conditional on Ft as δt becomes smaller, the probability of observing
two or more events in (t, t + δt), divided by the probability of observing one event in (t, t + δt), tends to
zero.
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in 
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Market sale that doesn’t move the bid
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Ask between the quotes

Bid between the quotes
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Market buy that moves the ask
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C

C

S

S

S

S

S

S

S

S

Order 
submission or 
cancellation

S

B

S

B

S

B

S

B

S

B

Buy 
or 

sell?

-

-

� (LO)

� (LO)

� (MO)

� (MO)

� (LO)

� (LO)

� (MO)

� (MO)

Triggers 
immediate 
execution ? 

-

-

�

�

�

�

�

�

�

�

Moves 
prices 

?

2,820 

2,740 

3,110

2,840 

2,550 

2,660 

3,940 

3,390 

4,790 

4,830 

Average 
volume

Table 1: Table showing the categorization and characteristics of events. MO refers to
market orders, LO to limit orders. The average volume statistics are in numbers of shares.

Thus defined, Grm serves as a continuous time analogue to the impulse response function

used by Coppejans, Domowitz, and Madhavan (2004). In the parametrization proposed

later it rises before dying away in the short or medium term. From the definition of

intensity, it follows that (if the integral is finite)

∞∫

0

Grm(u)du (4)

is the expected increase in the number of future resiliency events at time s compared to

the counterfactual world where Em had not occurred. This concept is complemented by

a related notion of Grm’s ‘half-life’, which gives a convenient description of the rate at

which the order book reverts to normal after a shock.

3 Identifying resiliency-related events

During continuous trading in January 2002 the shape of the limit order book on the

London Stock Exchange SETS platform for Barclays Plc stock, whose price averaged

£22.40, underwent 117.5 thousand changes, or 10.5 per minute. The times of these

changes were recorded to the nearest second. Each such change was due to a single order

submission or cancellation. Among these were all the shocks that widened spreads, as

well as all the events through which the order book replenished resiliently.

5



As a precursor to the econometric implementation, criteria are needed identifying

the subset of events which pertain to resiliency. Kyle (1985)’s definition of resiliency,

cited in Section 2, concerns “random, uninformative” liquidity demand shocks, ruling out

shocks which are informative or expected. Via the estimated variation in their intensities,

the current model finds liquidity demand shocks at times more expected, at time less

expected. However, no shock is fully unexpected. Similarly, large trades can involve

more or less private information, and this can be measured in their long-term market

impact. However, long-term impact is not observed by the traders who in the near

term replenish the limit order book resiliently. Nor is private information identified in

this reduced-form econometric approach. Given these issues, the paper studies resiliency

after any liquidity demand shock, not just those that are “random” and “uninformative”.

Define an aggressive order to be one that produces exceptional changes in the eco-

nomic outcomes available to traders. By this criterion, a liquidity demand shock is an

aggressive market order. Equally, an aggressive limit order, where it follows an aggressive

market order, is characteristic of resilient replenishment. Biais, Hillion, and Spatt (1995)

propose a price-based technique to identify aggressive market and limit orders. Their

categorization is applied to the current data and recorded in Table 1.2 They think of

aggressiveness as a relative term. Here, however, we will judge an order to be aggressive

if and only if it changes the prevailing best bid or best ask: limit orders by improving

on the current best quoted price; market orders by completely filling the best-priced

opposing limit orders. In the current data, such orders (the top four entries in Table 1)

number only 18.6 thousand, 16 per cent of all events.

An alternative means of identifying aggressive orders is via their offered or traded

volume of shares. A high volume is indicative of aggressiveness. A quantile cutoff could

be defined above which large orders are viewed as aggressive. However, as the choice of

such a cutoff (or related notion) is not immediate, here we favor the Biais, Hillion, and

Spatt (1995) methodology to identify aggressiveness, nevertheless including volume as a

conditioning variable of secondary importance.

Aggressive and unaggressive activity together constitute ten types of event, producing

a 10-variate point process. They are numbered as shown in Table 1. Thus, events of type

1 are liquidity demand shocks due to buying, and events of type 2 are those due to

selling. Similarly, events of type 3 are resiliency events involving bids, and events of type

4 are resiliency events through asks. Four impulse response functions will therefore be of

2On the buy side and on the sell side we combine two categories in Biais, Hillion, and Spatt (1995).
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interest: from types 1 and 2 to types 3 and 4. – i.e. G3,1, G4,1, G3,2 and G4,2.

4 Econometric model

Hasbrouck (1999) also categorizes the events on a limit order book to give a multivariate

point process, but does not parameterize its intensity. In a univariate framework, Engle

(2000) parameterizes the intensity λ in (1) indirectly using an Autoregressive Conditional

Duration (ACD) model, introduced in Engle and Russell (1998). The ACD model is

extended to multiple event types in Engle and Lunde (2003), and used to generate an

explanatory variable in the study of Engle and Lange (2001). The current paper departs

from Engle (2000) by, as in the Latent Factor Intensity (LFI) model of Bauwens and

Hautsch (2004), giving a direct specification of the intensity rather than one via the

durations between events. This provides an analytic representation of the expression

in (3). The model is due to Bowsher (2005), which draws from Hawkes (1971). The

data is viewed as a 10-variate point process, driven by a 10-variate counting process, N ,

over positive times, R+ (so that Nt is a 10-vector whose entries record the number of

elapsed events of each type before time t), with an associated intensity vector, λ, which

is adapted to the process’ natural filtration.3 As shown in Bowsher (2005), the model is

fully specified by the equation for λ,

λ(t; θ) = µ(t; θ) +

∫

(0,t)

W (t− u; θ)dN(u), (5)

where µ > 0 is a deterministic 10-vector-valued function on R+, W > 0 is a 10 × 10

matrix-valued function on R+, and the integration is Stieltjes. The vector θ contains the

parameters. In later discussions of λ(t), µ(t) and W (t), θ is left implicit. The function W

contains the autoregressive exciting effects, whereby events in the past increase current

intensities. Figure 1 illustrates this for the simpler univariate case. Note that W appears

horizontally inverted in this Figure. The multivariate case is more complex, but somewhat

clarified by inferring directly from (5) the following characterization of λr, for any r ≤ 10:

λr(t) = µr(t) +
10∑

m=1




∫

(0,t)

Wrm(t− u)dNm(u)


 , (6)

which contains only univariate Stieltjes integration. So in the 10-variate case, on each

intensity, λr, 10 of these autoregressive exciting effects (i.e. Wrm : m ≤ 10) operate

3The econometric model works identically for any dimension, M , not just M = 10.
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W (t-ti)
�
(t) is the sum

of these heights 
added to µ(t).

t
time

t1 t2 t3 t4

intensity

Figure 1: Illustrates the self-exciting nature of the point process specification in (5). In
this example crosses indicate the times of past events.

additively and independently, each capturing the past occurrences of a different type of

event, m. These are added to a non-dynamic underlying part, µr. The diagonal entries

of W will be called self-exciting effects, while off-diagonal entries are cross-exiting effects.

Note that if µ ≡ 0 then the exciting effects in W would never be realized, and so λ = 0.

For non-trivial results we therefore require that µ is somewhere positive.4

As will be explained in detail later, W alone determines the impulse response functions

discussed in the Introduction. It has 100 entries, as each of the ten types of event

potentially responds to every other type, whether aggressive or unaggressive. In the

current application, however, resiliency will be captured by only four of these 100 entries,

where aggressive limit orders (buy and sell) respond to aggressive market orders (buy

and sell). We follow Bowsher (2005) in incorporating intraday seasonality into µ via a

piecewise linear spline. This controls for time of day effects in a simultaneous estimation.

This modelling approach to the limit order book is closest to that of Bisière and

Kamionka (2000), which also estimates a point process model using, as this paper, the

order segmentation of Biais, Hillion, and Spatt (1995). However, their specification is

via the durations between events, whose distributions depend only on the type of event

4Avoiding the notation of Stiltjes integration, (6) may be written

λr(t) = µr(t) +
10∑

m=1

( ∞∑

i=1

Wrm(t− ti)Izi=mIti<t

)
, (7)

where ti denotes the time, and zi the type (from 1 to 10) of the i’th event in the pooled point process.
I denotes the Indicator Function.
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that began them and the concurrent state of the limit order book. By contrast, the very

last event to have occurred has no special status in the current model. The advantages

of directly specifying the intensity process also accrue to the LFI model of Bauwens and

Hautsch (2004). At the cost of some computational complexity, the LFI generalizes the

current framework to the case where λ is adapted to a wider filtration than that of the

observed point process. Other related papers include Dufour and Engle (2000), Russell

(1999), Heinen and Rengifo (2003) and Hollifield, Miller, and Sand̊as (2004). Finally,

note that a re-parametrization here in terms of durations is not straightforward: at any

time t the conditional duration until the next event substantially depends on the type of

that event, as well as on the timings and types of all prior events.

4.1 Resiliency in the econometric model

Section 2 showed how a point process model can quantify resiliency by estimating rises

in the intensities of resiliency events subsequent to a shock. Resiliency depended on the

function Grm(t− s), which was defined as

λr(t|Fs, Em)− λr(t|Fs),

where a shock of type m, Em, occurs at s, and λr is the intensity of resiliency events.

As discussed in Section 3, the liquidity demand shocks denoted Em are identically events

of types 1 and 2 (so m takes two values: 1 and 2), while resiliency events are types 3

and 4 (so r takes values 3 and 4). It is mathematically convenient to embed these four

functions, G3,1(t), G4,1(t), G3,2(t) and G4,2(t), within the complete matrix of response

functions, which has 100 entries like the matrix W (t).

Definition 1 Let G be a 10× 10 matrix of functions defined on R+. Denoting a repre-

sentative column thereof by Gm, for any t > s,

Gm(t− s) ≡ λ(t|Fs, Em)− λ(t|Fs), (8)

should this be invariant to s ≥ 0, where Em is an event of type m at time s.

Interpretation in terms of causality Suppose that a shock of type m occurs at time

s. Then G’s mth column, Gm(t − s), contains the expected increase at time t > s in

the 10 intensities compared to a counterfactual world where the shock had not occurred.

This counterfactual comparison, if estimated to be significantly positive, is suggestive of

a causal connection from the shock to future events. However, it does not rule out the
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Wrm(t-s)

Grm(t-s)

time, ts

intensity
increase

indirect
effect

direct
effect

Figure 2: Illustrates the response in the intensity of events of type r after a shock of type
m at time s. Direct and indirect (i.e. chain reaction or domino) effects are distinguished.

possibility of an unobserved common cause, nor that the shock be caused by subsequent

events, via traders’ expectations. We will therefore use in this context the more moderate

language that the shock precipitates future effects on the limit order book.

Proposition 4.1 In the current model G exists and satisfies the integral equation

G(t) = W (t) +

∫

(0,t)

W (t− u)G(u)du. (9)

Furthermore,
∞∫

0

G(t)dt =



Id−

∞∫

0

W (t)dt





−1 ∞∫

0

W (t)dt. (10)

Proof. See Appendix B.

Discussion G is therefore determined by W . (9) shows it is the sum of two parts.

The first part is W itself, and captures the direct exciting effects of a shock on future

intensities. The second part, a convolution of G and W , captures indirect, chain reaction

or domino effects, whereby the shock precipitates intermediate events, which themselves

augment future intensities. This distinction is illustrated in Figure 2. As noted in Section

2, integrating G over R+ gives a matrix whose {r,m} element is the expected increase

in future events of type r given an event of type m. The second part of Proposition 4.1

shows how this expectation (for any m and r) can be estimated given an estimate of W .
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Using the event definitions of Section 3, the impulse response functions of interest are

G3,1, G4,1, G3,2 and G4,2. To estimate any one of these requires W to be estimated in its

entirety. However, concentrating only on their direct component substantially reduces

the number of pertinent parameters, since then only W3,1,W4,1,W3,2 and W4,2 need be

estimated. If indeed only a small part of W is of interest, it will be desirable to reduce

the computational task by disregarding its irrelevant parts. The following corollary of

Bowsher (2005) provides conditions for the parametrization under which this is feasible.

Corollary 4.2 Suppose that the data is observed over the interval [0, T ]. Let λr be

the univariate intensity of the r’th event type, r = 1 ... 10. Suppose that θ can be

partitioned into 10 sets, denoted θr, such that for all r, λr depends on θr but on no other

parameters. Suppose that θ1, θ2, ..., θ10 are variation-free. Then MLEs for θr can be

found by maximizing ∫ T

0

−λr(u)du +
∑

i:ti,r<t

log λr(ti,r), (11)

where {ti,r} is the sequence of the times of the events of type r.

Proof. See Bowsher (2003, Theorem 2.1, p.6 ff). This follows from the additive separa-

bility of the log-likelihood function.

We therefore provide a parametrization, θ, which has an appropriate partition so that

this Corollary applies. Then, to estimate W3,1,W4,1,W3,2 and W4,2, (11) need only be

maximised for event types 3 and 4. Thus, 20 of the 100 entries in the matrix W are

estimated. While only four of these are of interest for resiliency, the other 16 provide

information about order book dynamics which are somewhat incidental to its resiliency,

but are reported for Barclays in the empirical implementation. As mentioned in the

Introduction, the intensities of Barclays’ liquidity demand shocks, types 1 and 2 events,

are also studied in the same way.

4.2 Parametrization

To complete the model, parametrizations of µ and W are now given which satisfy the

conditions of Corollary 4.2. For each r, µr is taken as a daily seasonal piecewise linear

spline with knots at 8am (when the trading day begins), 8:30am, 9am, 12pm, 3pm and

4:30pm (the end of the trading day).5 Set W (0) ≡ 0. An exponential decay is fitted to

W ’s off-diagonal entries: for u > 0

Wrm(u) = αrmβrme−βrmu (12)

5µ(t) is set to zero after the end of the trading day.
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whenever r 6= m, so that Wrm has area αrm and a half life of ln(2)/β
rm

. This describes

cross-exciting effects, where an event precipitates an event of a different type.

The sum of two exponentials is used for diagonal entries where due to self-exciting

effects an event precipitates more of its own type of event, so

Wrr(u) = αrrβrre
−βrru + γrδre

−δru. (13)

Impose the constraints that αrm, βrm, γr and δr are strictly positive parameters for all m

and r. Finally, βrr and δr are identified by requiring that βrr > δr. This model choice

reflects an important feature found in the order book data: that self-exciting effects tend

to have a quick impact, but also a longer lasting autoregressive intensity component. The

longer lasting component is captured by the expression γrδre
−δru.

It was mentioned in Section 3 that an alternative way to identify aggressive orders,

not pursued here, is to look for those with exceptionally high traded or offered share

volumes. To assess the importance of share volume here, we additionally allow αrm to

depend on the share volume of the preceding event, say vi:

αrm ≡ ηrmeφrmvi , (14)

where ηrm and φrm are further parameters. An identical formulation is adopted for γr

using further parameters η̃r and φ̃r: γr ≡ η̃re
φ̃rvi . When estimated for the current data,

φrm and φ̃r are sometimes positive and sometimes negative, but are mainly close to zero.

In presenting the results vi is normally set to 5, 000.

Finally, note that the parameter set, θ, thus defined, has a partition so that Corollary

4.2 applies, with

θr = {ηrm; φrm; βrm; η̃r; φ̃r; δr; nodes of µr : m = 1, ..., 10}, (15)

for in the model the intensity λr depends on these parameters alone.

4.3 Inference

Ogata (1978) provides theoretical results on the asymptotic distribution theory of the

MLEs, θ̂, for the parameters, θ, of Corollary 4.2, provided that the process is univariate

and stationary. He shows that as the observed period grows without limit, the MLEs

are consistent and asymptotically normal. This provides a basis for inference since the

MLEs’ covariance matrix can then be estimated with the usual numerical calculations of

second derivatives.
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However, the current model is multivariate, as well as non-stationary, since it depends

on the time of day via the spline µ. This paper follows Bowsher (2005) in assuming

that the MLEs are similarly consistent in this more general problem, though to my

knowledge this remains unproven in the literature. Bowsher (2003) addresses the problem

via simulation, with favorable results.

4.4 Mis-specification testing

If the rule determining the intensity λ of a univariate point process is known, then a

procedure to stretch or compress the time scale can be performed, which transforms

the point process into a Poisson process of parameter 1.6 Mis-specification tests can

concentrate on the goodness of this candidate Poisson process as derived from the data

and estimation.

The time-varying multiplicative factor to be applied to stretch or compress the time

scale is simply the intensity. This is intuitive, for it means that if at a given moment

events are arriving with intensity λ then they would arrive with intensity 1 if time was

passing at rate λ. Unfortunately, the true λ is not available: however it may be replaced

by the estimated intensity as implied by the MLEs, θ̂. For given event type, r, define the

time-deformed sequence of durations by





ti,r∫

t(i−1),r

λr(t; θ̂)dt : i = 1, 2, ...





, (16)

where {ti,r} is the sequence of the times of the events of type r. The mis-specification

test adopted here is to check that (16) lacks autocorrelation at lags of 15 and 25 using

Box-Ljung;7 and lacks excess dispersion using the statistic proposed by Engle and Russell

(1998),
√

N((σ̂2 − 1)/
√

8), where σ̂2 is the sample variance of the sequence in (16) and

N is its length. Further assessment of fit is provided by QQ plots against an exponential

distribution.

5 Empirical implementation

In January 2002 there were 22 days of trading on the LSE SETS electronic limit order

book for Barclays. On each day, the list of all events was viewed as a 10-variate point

6Theorem 4.1 (p.14) of Bowsher (2005) shows this, provided that with probability one any realization
of the process produces events of all types indefinitely (see its Equation (17)).

7We also check for autocorrelation in the squared durations at lags of up to 25.
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Figure 3: The estimated intensity of aggressive asks on the morning of 2 January 2002
(events per hour).

process, using the categorization proposed in Section 3. Viewing each trading day as

an independent realization of the proposed data-generating process, the conditional log-

likelihood function in Corollary 4.2 was numerically maximized. This was performed in

Ox (see Doornik (2001)), applying the MaxBFGS algorithm with numerical derivatives

in turn to each of the event types 1,2,3 and 4 (each maximization took 4-6 hours). The

estimated model passes nine of twelve specification tests performed on it at the 10 per

cent confidence level, and a further one at the 1 per cent confidence level. QQ plots of

the time-deformed durations are presented in Figure 7. Some reassurance that global,

not local, maxima were found in the numerical maximization is given by the striking

similarities between the separately and independently estimated dynamics of bids and

asks (types 3 and 4), as well as between those of market purchases and sales (types 1

and 2). A sample of the estimated intensity path over time is presented in Figure 3.

A problem arose regarding the granularity of the data, which as previously noted is

rounded to the nearest second: 40 per cent of events therefore have the same time-stamp

as some other event. The treatment of these multiple events, which is discussed in detail

in the Appendix, rules out exciting effects between events with the same timing. This is

most costly on the description of exciting effects that attenuate fast. However, it emerges

from the estimation that the exciting effects pertinent to resiliency have half-lives greater

than these, making them relatively immune to the rounding.
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6 Results for the Barclays limit order book

The results are framed in terms of direct effects as captured by W and exclude the indirect

or knock-on effects that are additionally included in G, as in (9). Full results are extensive,

and are reported in Tables 2, 3, 4 and 5. Figures 4 and 5 provide more accessible bubble

chart representations of the main results for the reader, including those about resiliency.

These two figures each contains two charts. All four charts are interpretable in the same

way. Each relates to the causes of a single event type r = 1, 2, 3 or 4. They are estimated

separately and independently. They show discs, each of which represents a single exciting

effect, i.e. an element of the matrix W , say Wrm. Its position on the vertical axis gives its

magnitude, αrm, while its position on the horizontal axis (a log scale) gives its half life,

ln 2
βrm

. The magnitude measures the average number of events of type r precipitated by

each event of type m. The diameter of the disc shows the number of observed events of

type m, the type that precipitates the effect. The discs on the left-hand charts are labeled

with the type of the precipitating event, m.8 The shadings of the discs on adjacent charts

are related: passing from one chart across to the other, the same shading is used for pairs

of exciting effects which are buy-sell mirrors of one another. Given this, for simplicity

the right-hand charts are not labeled: m is not given for each disc, but can be inferred

by comparison with the chart to the left. All effects are those of orders for 5,000 shares.

The information in Figures 4 and 5 is now discussed. Subsequent statements concerning

the dynamics of the limit order book are made in ordinary language, but they have a

precise probabilistic interpretation concerning W .

6.1 Barclays’ quantified resiliency

Barclays’ resiliency is captured in Figure 4, whose charts both contain a pair of isolated

discs in their top left quadrant. These four discs represent the four impulse response

functions describing resiliency: through the exciting effects of aggressive market orders

(buy and sell) on aggressive limit orders (buy and sell). Their lateral position measures

the half-life of resilient reaction, while their height measures their magnitudes. The

parameter values they record are: α4,1 = 0.17; ln2
β4,1

= 15 sec; α3,1 = 0.15; ln2
β3,1

= 19 sec;

α4,2 = 0.19; ln2
β4,2

= 16 sec; α3,2 = 0.17; ln2
β3,2

= 12 sec.

A likelihood ratio test rejected at 5 per cent the hypothesis that all four magnitudes

were 0.2. Rather, they are all estimated to be lower. Therefore, viewed individually both

the bid and the ask have less than a 20 per cent chance of replenishing reliably after a large

8In Figure 5 some unimportant discs are not labeled.
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Figure 4: A bubble chart representation of aggressive limit order dynamics.

market order. Jointly, they resiliently replenish the limit order book less than 40 per cent

of the time. This is consistent with the dynamic illiquidity reported in Danielsson and

Payne (2002) and the periodic liquidity crises following sharp price movements predicted

by Coppejans, Domowitz, and Madhavan (2004), as well as the long memory reported in

Degryse, de Jong, van Ravenswaaij, and Wuyts (2005), whereby wide spreads sometimes

narrow only in the medium or long term.

The estimated half-lives are all below 20 seconds. Moreover, a likelihood ratio test

rejected at 5 per cent the hypothesis that all four half-lives were 20 seconds. Concluding

that half-lives are all below 20 seconds, it follows that if the order book does replenish, it

has more than a 50 (75) per cent chance of doing so within 20 (40) seconds. This is quite

fast: for example, it is too fast to be captured by 5 minute sampling, and is substantially

faster than typical half-lives considered in the calibration exercise in Obizhaeva and Wang

(2005).

In a likelihood ratio test, it was not possible to reject at 10 per cent the hypothesis

that all four effects had identical magnitudes of 0.17. We therefore conclude that there is

little evidence that the bid reacts any more or less than the ask, following either a large

market purchase or a large market sale. Therefore, after an aggressive market sale, only

half the time does the market’s resilient response (where there is one) involve replacing

bids thereby executed. The rest of the time, it is rather new price-improving asks that

narrow spreads, which moreover may typically arrive faster, see Figure 4. The same holds

for a market buy. Thus, market orders often move the quotes: they have price impact.
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Discussion In the data we see large market orders that cause spreads to become sud-

denly unusually wide. Then limit orders can, for a given level of execution risk and delay,

achieve unusually favorable prices. This attracts limit orders to the book, which narrow

spreads: an effect present in the theoretical work of Rosu (2004) and Foucault, Kadan,

and Kandel (2005). Limit orders at a given price tick are served in time priority. Hence

they race to be early to the market at times of wide spreads. However there may be

a winner’s curse in this race if the initial market order resulted from asymmetric infor-

mation. The results of this section suggest that the race to replace liquidity supply is

brief, lasting only tens of seconds after the liquidity demand shock. It takes place equally

fast and often on both sides of the book, though a priori we might have expected more

hesitation to winner’s curse effects on the side where the market order trades.

6.2 Other dynamics of aggressive limit orders

After what sequence of events is liquidity supply likely to increase on a limit order

book? When are spreads likely to narrow? These are questions about the dynamics of

aggressive bidding and asking. These dynamics exhibit significant buy-sell symmetry.

As depicted in Figure 6, the background intradaily splines are of very similar shapes

and sizes. Furthermore, all the exciting effects on aggressive bids are reflected in similar

exciting effects on asks, of similar magnitudes and half-lives, as depicted in Figure 4. Full

results are reported in Tables 2 and 3.

6.2.1 Aggressive limit orders following cancellations

A cancellation has a 2 to 3 per cent chance of precipitating a price-improving limit bid,

and a similar chance of precipitating a price-improving limit ask. Where this concerns

the replacement of a cancelled order with one on the same side of the book, the half life of

this effect is a little as 1 to 2 seconds. This supports a conjecture that traders sometimes

cancel a stale limit order and replace it rapidly with one at a more pertinent price. This

effect has a negative elasticity with respect to share volume. Thus, if cancelled, an order

for 1,000 shares is roughly twice as likely to be replaced as one for 5,000 shares. Where a

cancellation precipitates a limit order on the other side of the book, this effect is relatively

slow, with a half life of around 80 to 90 seconds.
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Figure 5: A bubble chart representation of aggressive market order dynamics.

6.2.2 Aggressive limit orders after aggressive limit orders

Aggressive, price-improving limit orders have a 6 to 7 per cent chance of precipitating

further similar price improvements, with a half life of approximately one minute. How-

ever, orders which enhance liquidity supply without moving prices are much less likely to

do so. This is consistent with a conjecture that a price-improving limit bid (ask) carries

more information than one that does not move prices, and therefore is more likely to be

followed by price rises (falls).

In addition, with a much slower half life of 13 to 17 minutes, aggressive, price-

improving limit orders have a 16 to 22 per cent chance of precipitating further similar

price improvements. This second self-exciting effect, specified in (13), suggests positive

medium-term autocorrelation in limit order submission intensities.

6.3 The dynamics of aggressive market orders

When are spreads likely to widen? Can this be predicted? These questions concern the

dynamics of aggressive market orders. Like those of aggressive limit orders, their observed

dynamics show great buy-sell symmetry. As indicated in Figure 6, the underlying splines

are very similar to one another, although fundamentally different to those reported for

limit orders. They fall to a minimum at lunch, before rising again in the afternoon.

Despite some isolated asymmetries, dynamic effects on each side of the market mirror

one another as noted in Section 6.2 for aggressive limit orders. All the effects now

discussed are reported in Tables 4 and 5.
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6.3.1 Aggressive market orders following limit orders

A price-improving limit bid precipitates aggressive market purchases 7 per cent of the

time. This effect has a half life of 19 seconds. If it is large, for example comprising

more than 5,000 shares, it has a negligible chance of triggering an aggressive market sale

causing its execution. However, if it is sized at 1,000 shares, it has a 5 per cent chance

of being hit. A natural interpretation of this is that 5 per cent of the time, sellers are

watching and waiting for a small improvement in the best bid before submitting a market

order. However, if this improvement involves a large volume of shares, such as 5,000, then

in a way reminiscent of Easley and O’Hara (1992), it signals future rises in price, which

deter the waiting sellers from acting. These effects are closely mirrored on the other side

of the market. They are reported in Figure 5 (see also Tables 4 and 5).

6.3.2 The effect on market orders of market orders themselves

The largest exciting effect on market orders is a self-exciting effect at a timescale of 15

to 30 minutes (the half life of this effect is estimated at 25 minutes for aggressive market

purchases, and 16 minutes for aggressive market sales). Each aggressive market order has

a 25 to 30 per cent chance of precipitating repeats over this time frame. This therefore

describes medium-term positive autocorrelation in market order frequencies.

Further to this, more moderate short-run dynamics are captured by the model. These

are copycat effects, where market buys (sales) precipitate renewed market buying (sell-

ing). The effect on aggressive market purchases of unaggressive market purchases is large

and rapid, with a magnitude of 13 per cent and a half life of 8 seconds. Thus, if a market

order clears some liquidity at the best ask, but leaves some limit orders unfilled, it is often

followed by another order that fills the remaining asks at the best ask. By contrast, the

short-run effect (as opposed to the aforementioned medium-term effects) on aggressive

market purchases of prior aggressive purchasing is slower and smaller. Traders are less

likely to copy a market order if they must trade at still less advantageous prices. The

volume of the market order is a relatively insignificant factor for these effects (except

indirectly, in that it determines whether a market sale fills all, or just some, of the limit

bids at the best bid). All this is recorded in Figure 5 (see also Tables 4 and 5).
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7 Conclusion

To quantify resiliency, a dynamic model of limit order book activity is proposed, and is

partially estimated for Barclays shares on the LSE’s electronic limit order book. The

model takes the form of a multivariate point process in continuous time with an adapted

intensity. It is reasonably well specified and throws up a number of striking dynamic

effects. Aggressive market orders are submitted above all in the wake of similar but

unaggressive market orders. They are also are sometimes submitted to hit small, price-

improving limit orders on the other side of the book. Aggressive limit orders are typically

placed to replenish liquidity following aggressive market orders, but can also be submitted

to update a stale limit order. There is some evidence of positive medium-term autocor-

relation in event intensities. Finally, the resiliency of the limit order book is quantified in

three respects: its magnitude, its delay and its trade direction. Resilient replenishment

follows a shock less than 40 per cent of the time, and when it does follow, it is equally

likely to be at the bid as at the ask. It is quite fast, with a half-life of under 20 seconds.
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A Events falling within the same second

Forty per cent of the events observed on the SETS limit order book for Barclays Plc over

the studied period were marked with the same time stamp as another event. This was

purely due to the rounding of time stamps to the nearest second. However, the statistical

framework of this paper is one of simple point processes where contemporaneous events

never occur.

Three approaches exist to resolve these problems. The choice between them will have

greatest impact on the estimation of exciting effects that attenuate on timescales near

to one second, such as the tendency, documented in Section 6.2.1, of traders to resubmit

cancelled orders in the next 1 to 2 seconds. It is likely that the estimated magnitude and

rate of decay of these effects would differ from the estimates herein reported if the data

were more precisely timed.

On the first approach, the data is thinned so that only one event at each time stamp is

retained. Given the prevalence of this problem, this approach seems inappropriate here.

Second, a uniform random variable with support equal to [-0.5,0.5] (in seconds) can be

added to the time stamp of each event. However, this approach sometimes imposes an

incorrect ordering on the order book events. In this setting this is unhelpful, since the

order of events is very important. These two approaches ensure that the data is a simple

point process.

The paper adopts a third approach: the data is not altered prior to maximizing the

likelihood. It therefore contains contemporaneously timed events. Since in the parame-

trization W (0) = 0, these events have no effect one on the other. The diagnostic testing

procedure of Section 4.4 now yields many durations of length zero, as well as a corre-

sponding shortage of durations near zero (at levels < 0.05). The following procedure

was therefore applied: any term of the sequence in (16) which was less than 0.05 was

discarded, and 0.05 was subtracted from the remaining terms. Recall that if E is an

exponentially distributed random variable of parameter 1, then (E − 0.05), truncated to

R+, is also.9 The resulting sequence should therefore also be i.i.d. exponential. This pro-

cedure cuts out mis-shapings in the empirical distribution near zero. As it only disregards

a few terms, it retains much of any original autocorrelation.

9Redraw if E < 0.05.
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B Proof of Proposition 4.1

The proposition may be derived thus:

Gm(t− s) := λ(t|Fs, Em)− λ(t|Fs) (17)

= E





µ(t− s) +

∫

[s,t)

W (t− u)dNu|Fs, Em





(18)

− E





µ(t− s) +

∫

[s,t)

W (t− u)dNu|Fs





(19)

= Wm(t− s) +

t∫

s

W (t− u) {λ(u|Fs, Em)− λ(u|Fs)} du (20)

= Wm(t− s) +

t∫

s

W (t− u)Gm(u− s)du, (21)

where Wm(t− s) is the m’th column of W and appears in (20) since with probability 1

dNs|Fs, Em ≡ (0, 0, ..., 1, ..., 0)′, (22)

where 1 appears in the m’th entry. From (21) it follows that G is a transformation of

W . Stacking (21) over m, and integrating it over t, setting s to zero, and changing the

order of the double integration,

∞∫

0

G(t)dt =

∞∫

0

W (t)dt +

∞∫

0





∞∫

u

W (t− u)dt



 G(u)du. (23)

Rearranging,
∞∫

0

G(t)dt =



Id−

∞∫

0

W (t)dt





−1 ∞∫

0

W (t)dt. (24)
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Type of the causing event
Number of 

events
lower estimate upper lower estimate upper

1 Cancelled bids 20,921     0.02 0.02 0.03 1.2 1.3 1.4 1 Time-adjusted durations:
2 bids at or below best bid 25,121     0.01 0.01 0.02 23.47 32.08 43.83 2 Mean (should be 1) 0.98
3 bids between the quotes 5,292       0.04 0.06 0.09 43.5 69.2 110.0 3
4 market buys that don't move ask 5,885       0.01 0.02 0.03 10.45 17.81 30.33 4 Var. (should be 1) 1.02
5 market buys that do move ask 3,673       0.14 0.15 0.17 16.7 19.1 21.8 5
6 Cancelled asks 19,424     0.03 0.03 0.04 58.0 84.1 121.6 6 Robust Ljung-Box (15 lags)
7 asks at or above best ask 22,433     n/a n/a n/a n/a n/a n/a 7 of squares p-value 0.24
8 asks between the quotes 5,281       0.02 0.03 0.06 29.8 53.2 94.8 8
9 market sales that don't move the bid 5,114       n/a n/a n/a n/a n/a n/a 9

10 market sales that do move the bid 4,351       0.16 0.17 0.19 10.8 12.4 14.1 10 Robust Ljung-Box (25 lags)
autoregressive intensity effect 5,292       0.18 0.22 0.26 548 774 1094 of squares p-value 0.56

Test of excess dispersion
Type of the causing event p-value 0.28

number lower estimate upper
Cancelled bids 20,921     -0.23 -0.18 -0.13 Likelihood 13,917  
bids at or below best bid 25,121     0.04 0.04 0.05
bids between the quotes 5,292       0.02 0.03 0.05
market buys that don't move ask 5,885       0.05 0.06 0.07
market buys that do move ask 3,673       -0.03 -0.01 0.01
Cancelled asks 19,424     0.02 0.03 0.05 Time lower estimate upper
asks at or above best ask 22,433     n/a n/a n/a 08:00 22.1 25.1 28.6
asks between the quotes 5,281       0.06 0.08 0.11 08:30 7.1 9.3 12.0
market sales that don't move the bid 5,114       n/a n/a n/a 09:00 3.3 4.5 6.3
market sales that do move the bid 4,351       0.01 0.02 0.02 12:00 0.1 0.5 2.6
autoregressive intensity effect 5,292       -0.02 0.01 0.03 15:00 2.5 3.5 5.1
Total 117,495   16:30 1.3 3.1 7.0

(events per hour)

Effect of event of 5,000 shares 
(number of events) half-life of effect (seconds)

Elasticity of exciting magnitude to a 1,000 
increase in share volume

Specification Testing

Intraday Spline
Intensity at node

Table 2: Estimated parameters determining the intensity of bids between the quotes.

This table reports results for the arrival of events of type r = 3. The model is defined by

λr(t) = µr(t) +
10∑

m=1




∫

(0,t)

Wrm(t− u)dNm(u)


 ,

where µr(t) is a piecewise linear intraday spline and for m 6= r

Wrm(u) = αrmβrme−βrmu and Wrr(u) = αrrβrre
−βrru + γrδre

−δru,

subject to the constraint that βrr > δr. Furthermore

αrm ≡ ηrmeφrmvi and γr ≡ η̃re
φ̃rvi ,

where vi is the share volume of the shock. All parameters are > 0. Throughout, upper
and lower 95% confidence intervals are given, using the basis for inference set out in
Section 4.3. The upper-right table reports specification test results as detailed in Section
4.4. The lower-right table reports the nodes of µ3. Setting vi = 5, 000, the upper-left
table reports α3m and ln(2)/β3m for all m. In its lowest line, ‘autoregressive intensity
effect’, it reports γ3 and ln(2)/δ3. The lower-left table reports 1, 000φ3m for all m, and,
in its lowest line, 1, 000φ̃3.
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Type of the causing event
Number of 

events
lower estimate upper lower estimate upper

1 Cancelled bids 20,921     0.03 0.04 0.05 64.1 89.7 125.2 1 Time-adjusted durations:
2 bids at or below best bid 25,121     n/a n/a n/a n/a n/a n/a 2 Mean (should be 1) 0.98
3 bids between the quotes 5,292       0.02 0.04 0.08 115.5 275.7 638.2 3
4 market buys that don't move ask 5,885       n/a n/a n/a n/a n/a n/a 4 Var. (should be 1) 1.01
5 market buys that do move ask 3,673       0.15 0.17 0.18 12.4 14.5 16.9 5
6 Cancelled asks 19,424     0.02 0.03 0.03 1.4 1.5 1.6 6 Robust Ljung-Box (15 lags)
7 asks at or above best ask 22,433     0.02 0.02 0.03 33.0 46.4 65.1 7 of squares p-value 0.10
8 asks between the quotes 5,281       0.05 0.07 0.10 38.6 58.0 87.0 8
9 market sales that don't move the bid 5,114       0.01 0.01 0.02 5.7 9.8 16.9 9

10 market sales that do move the bid 4,351       0.17 0.19 0.20 14.4 16.0 17.8 10 Robust Ljung-Box (25 lags)
autoregressive intensity effect 5,281       0.12 0.16 0.21 665 975 1431 of squares p-value 0.02

Test of excess dispersion
Type of the causing event p-value 0.44

number lower estimate upper
Cancelled bids 20,921     0.01 0.03 0.05 Likelihood 13,999  
bids at or below best bid 25,121     n/a n/a n/a
bids between the quotes 5,292       0.01 0.03 0.05
market buys that don't move ask 5,885       n/a n/a n/a
market buys that do move ask 3,673       0.01 0.02 0.03
Cancelled asks 19,424     -0.17 -0.12 -0.06 Time lower estimate upper
asks at or above best ask 22,433     0.04 0.05 0.06 08:00 23.5 26.6 30.1
asks between the quotes 5,281       0.06 0.07 0.09 08:30 5.6 7.6 10.4
market sales that don't move the bid 5,114       -0.01 0.01 0.03 09:00 1.6 2.6 4.2
market sales that do move the bid 4,351       -0.01 0.00 0.00 12:00 0.0 0.0 0.0
autoregressive intensity effect 5,281       0.00 0.04 0.07 15:00 1.3 2.2 3.7
Total 117,495   16:30 1.0 2.4 5.8

(events per hour)

Effect of event of 5,000 shares 
(number of events) half-life of effect (seconds)

Elasticity of exciting magnitude to a 1,000 
increase in share volume

Specification Testing

Intraday Spline
Intensity at node

Table 3: Estimated parameters determining the intensity of asks between the quotes

This table reports results for the arrival of events of type r = 4. The model is defined by

λr(t) = µr(t) +
10∑

m=1




∫

(0,t)

Wrm(t− u)dNm(u)


 ,

where µr(t) is a piecewise linear intraday spline and for m 6= r

Wrm(u) = αrmβrme−βrmu and Wrr(u) = αrrβrre
−βrru + γrδre

−δru,

subject to the constraint that βrr > δr. Furthermore

αrm ≡ ηrmeφrmvi and γr ≡ η̃re
φ̃rvi ,

where vi is the share volume of the shock. All parameters are > 0. Throughout, upper
and lower 95% confidence intervals are given, using the basis for inference set out in
Section 4.3. The upper-right table reports specification test results as detailed in Section
4.4. The lower-right table reports the nodes of µ4. Setting vi = 5, 000, the upper-left
table reports α4m and ln(2)/β4m for all m. In its lowest line, ‘autoregressive intensity
effect’, it reports γ4 and ln(2)/δ4. The lower-left table reports 1, 000φ4m for all m, and,
in its lowest line, 1, 000φ̃4.
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Type of the causing event
Number of 

events
lower estimate upper lower estimate upper

1 Cancelled bids 20,921     0.01 0.01 0.01 2.8 3.5 4.4 1 Time-adjusted durations:
2 bids at or below best bid 25,121     0.00 0.00 0.01 6.31 10.13 16.26 2 Mean (should be 1) 0.98
3 bids between the quotes 5,292       0.06 0.07 0.09 14.7 18.6 23.6 3
4 market buys that don't move ask 5,885       0.13 0.13 0.14 7.38 8.11 8.92 4 Var. (should be 1) 0.98
5 market buys that do move ask 3,673       0.08 0.09 0.10 12.3 15.0 18.2 5
6 Cancelled asks 19,424     0.00 0.00 0.00 4.5 10.1 22.5 6 Robust Ljung-Box (15 lags)
7 asks at or above best ask 22,433     0.00 0.00 0.00 27.6 49.1 87.4 7 of squares p-value 0.68
8 asks between the quotes 5,281       0.00 0.00 0.00 6.7 8.9 11.8 8
9 market sales that don't move the bid 5,114       n/a n/a n/a n/a n/a n/a 9

10 market sales that do move the bid 4,351       n/a n/a n/a n/a n/a n/a 10 Robust Ljung-Box (25 lags)
autoregressive intensity effect 3,673       0.25 0.31 0.37 951 1509 2396 of squares p-value 0.38

Test of excess dispersion
Type of the causing event p-value 0.63

number lower estimate upper
Cancelled bids 20,921     0.03 0.04 0.05 Likelihood 8,450    
bids at or below best bid 25,121     0.03 0.04 0.06
bids between the quotes 5,292       0.03 0.04 0.04
market buys that don't move ask 5,885       0.03 0.03 0.04
market buys that do move ask 3,673       0.02 0.03 0.03
Cancelled asks 19,424     -4.90 -4.05 -3.20 Time lower estimate upper
asks at or above best ask 22,433     -5.73 -4.08 -2.42 08:00 1.3 2.3 4.0
asks between the quotes 5,281       -1.63 -1.36 -1.08 08:30 6.7 8.3 10.3
market sales that don't move the bid 5,114       n/a n/a n/a 09:00 1.4 2.2 3.6
market sales that do move the bid 4,351       n/a n/a n/a 12:00 0.2 0.8 3.8
autoregressive intensity effect 3,673       -0.01 0.02 0.04 15:00 2.4 3.5 5.0
Total 117,495   16:30 4.3 6.4 9.5

Effect of event of 5,000 shares 
(number of events) half-life of effect (seconds) Specification Testing

Elasticity of exciting magnitude to a 1,000 
increase in share volume

(events per hour)

Intraday Spline
Intensity at node

Table 4: Estimated parameters determining the intensity of aggressive market purchases

This table reports results for the arrival of events of type r = 1. The model is defined by

λr(t) = µr(t) +
10∑

m=1




∫

(0,t)

Wrm(t− u)dNm(u)


 ,

where µr(t) is a piecewise linear intraday spline and for m 6= r

Wrm(u) = αrmβrme−βrmu and Wrr(u) = αrrβrre
−βrru + γrδre

−δru,

subject to the constraint that βrr > δr. Furthermore

αrm ≡ ηrmeφrmvi and γr ≡ η̃re
φ̃rvi ,

where vi is the share volume of the shock. All parameters are > 0. Throughout, upper
and lower 95% confidence intervals are given, using the basis for inference set out in
Section 4.3. The upper-right table reports specification test results as detailed in Section
4.4. The lower-right table reports the nodes of µ1. Setting vi = 5, 000, the upper-left
table reports α1m and ln(2)/β1m for all m. In its lowest line, ‘autoregressive intensity
effect’, it reports γ1 and ln(2)/δ1. The lower-left table reports 1, 000φ1m for all m, and,
in its lowest line, 1, 000φ̃1.
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Type of the causing event
Number of 

events
lower estimate upper lower estimate upper

1 Cancelled bids 20,921     0.01 0.01 0.01 5.6 7.2 9.1 1 Time-adjusted durations:
2 bids at or below best bid 25,121     n/a n/a n/a n/a n/a n/a 2 Mean (should be 1) 0.97
3 bids between the quotes 5,292       0.00 0.00 0.00 5.1 6.4 7.9 3
4 market buys that don't move ask 5,885       0.07 0.10 0.15 799.61 1141.26 1592.55 4 Var. (should be 1) 0.95
5 market buys that do move ask 3,673       0.02 0.02 0.03 2.0 2.5 3.1 5
6 Cancelled asks 19,424     n/a n/a n/a n/a n/a n/a 6 Robust Ljung-Box (15 lags)
7 asks at or above best ask 22,433     0.01 0.01 0.01 7.2 9.7 13.2 7 of squares p-value 0.00
8 asks between the quotes 5,281       0.05 0.06 0.07 11.6 14.7 18.7 8
9 market sales that don't move the bid 5,114       0.15 0.16 0.17 8.0 8.8 9.8 9

10 market sales that do move the bid 4,351       0.09 0.10 0.12 10.8 12.4 14.3 10 Robust Ljung-Box (25 lags)
autoregressive intensity effect 4,351       0.21 0.25 0.29 724 957 1264 of squares p-value 0.00

Test of excess dispersion
Type of the causing event p-value 0.87

number lower estimate upper
Cancelled bids 20,921     0.03 0.04 0.05 Likelihood 10,765  
bids at or below best bid 25,121     -0.66 -0.51 -0.35
bids between the quotes 5,292       -1.93 -1.61 -1.28
market buys that don't move ask 5,885       -0.09 0.01 0.11
market buys that do move ask 3,673       -0.02 0.00 0.03
Cancelled asks 19,424     -0.28 -0.18 -0.08 Time lower estimate upper
asks at or above best ask 22,433     0.00 0.02 0.04 08:00 4.5 6.1 8.2
asks between the quotes 5,281       0.07 0.08 0.09 08:30 8.1 9.8 12.0
market sales that don't move the bid 5,114       0.00 0.01 0.01 09:00 2.3 3.3 4.6
market sales that do move the bid 4,351       0.02 0.02 0.03 12:00 #N/A 0.0 #N/A
autoregressive intensity effect 4,351       -0.05 -0.02 0.01 15:00 2.1 3.0 4.2
Total 117,495   16:30 3.1 4.8 7.4

(events per hour)

Effect of event, size 5,000 
(number of events) half-life of effect (seconds)

Elasticity of exciting magnitude to a 1,000 
increase in share volume

Specification Testing

Intraday Spline
Intensity at node

Table 5: Estimated parameters determining the intensity of aggressive market sales

This table reports results for the arrival of events of type r = 2. The model is defined by

λr(t) = µr(t) +
10∑

m=1




∫

(0,t)

Wrm(t− u)dNm(u)


 ,

where µr(t) is a piecewise linear intraday spline and for m 6= r

Wrm(u) = αrmβrme−βrmu and Wrr(u) = αrrβrre
−βrru + γrδre

−δru,

subject to the constraint that βrr > δr. Furthermore

αrm ≡ ηrmeφrmvi and γr ≡ η̃re
φ̃rvi ,

where vi is the share volume of the shock. All parameters are > 0. Throughout, upper
and lower 95% confidence intervals are given, using the basis for inference set out in
Section 4.3. The upper-right table reports specification test results as detailed in Section
4.4. The lower-right table reports the nodes of µ2. Setting vi = 5, 000, the upper-left
table reports α2m and ln(2)/β2m for all m. In its lowest line, ‘autoregressive intensity
effect’, it reports γ2 and ln(2)/δ2. The lower-left table reports 1, 000φ2m for all m, and,
in its lowest line, 1, 000φ̃2.
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Figure 6: The estimated intraday intensity splines (events per hour)
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Linear Self-Exciting Point Process Model Date of estimation 20-Mar-04

bids between the quotes

Linear Self-Exciting Point Process Model Date of estimation 20-Mar-04

asks between the quotes

Linear Self-Exciting Point Process Model Date of estimation 20-Mar-04

market buys that do move ask

Linear Self-Exciting Point Process Model Date of estimation 20-Mar-04

market sales that do move the bid

Figure 7: QQ plots of time-adjusted durations, i.e. residuals, against an exponential
distribution of parameter 1.
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