LP Formulations for Radiation Treatment Planning (IMRT)

Benjamin Armbruster

joint work with Russell Hamilton, Martin Lachaine, and J. Cole Smith
Radiation Therapy

1. meet doctor
2. CT scan
3. M.D. identifies tumor, organs, writes prescription
4. dosimetry/physics creates plan
5. treatment: M-F, 5-8 wks
6. followups

Goals: tumor control and organ functionality
Leaves allow custom apertures
Typical Data and Problem Complexity

- leaves 0.5-1 cm thick
- max aperture 40 cm
- ~5-9 beam angles
- ~5-30-100 aperture shapes per beam angle

- CT 512x512 pixels (0.5-1mm), 1-5mm slices
- dose calculation 2-5mm mesh
The Model

dose at location \(j \) = \(\sum_i \) weight given to beamlet \(i \) \times \text{normalized dose to location } j \text{ from beamlet } i

or \(D_j = \sum_i w_i \times d_{ij} \)
Cumulative dose-volume histogram

PTV:
-Requested,
-Optimizer result

Post-rectum:
-Requested,
-Optimizer result
Plan 1

Constraints:
- PTV > 1
- PTV < x

Goal: \(\text{min } x \)

Result: \(x = 1.01 \)

Dose contour levels:
- 1.15
- 1.00
- 0.80
- 0.50
- 0.30

*Dose normalized to prescription dose

PTV = tumor
Plan 2

constraints:
• PTV > 1
• PTV < 1.15
• rectum outside PTV < x

goal: min x
result: x = 0.59
Plan 3

Constraints:
• PTV > 1
• PTV < 1.15
• Avg. dose in rectum outside PTV < x

Goal: Min x
Result: x = 0.15
Plan 4

cconstraints:
• PTV > 1
• PTV < 1.15
• femurs < 0.25
• avg. dose in rectum outside PTV < x

goal: min x

result: x=0.30

dose contour levels

<table>
<thead>
<tr>
<th>level</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>red</td>
</tr>
<tr>
<td>1.00</td>
<td>red</td>
</tr>
<tr>
<td>0.80</td>
<td>yellow</td>
</tr>
<tr>
<td>0.50</td>
<td>blue</td>
</tr>
<tr>
<td>0.30</td>
<td>green</td>
</tr>
</tbody>
</table>
Plan 5

constraints:
• PTV > 1
• PTV < 1.15
• femurs < 0.25
• avg. dose in rectum outside PTV < 0.33
• avg. dose in bladder < x

goal: min x
result: x=0.54
Plan 6

constraints:
• PTV > 1
• PTV < 1.15
• femurs < 0.375
• avg. dose in rectum outside PTV < 0.50
• avg. dose in bladder < 0.71
• avg. external dose < x

goal: min x
result: x=0.17
Plan 7

Constraints:
- **PTV > 1**
- **PTV < 1.15**
- **femurs < 0.375**
- **avg. dose in rectum outside PTV < 0.50**
- **avg. dose in bladder < 0.71**
- **external < 1**
- **avg. external dose < x**

Goal: min x

Result: x = 0.17
Plan 8

constraints:
• PTV > 1
• PTV < 1.15
• femurs < 0.375
• avg. dose in rectum outside PTV < 0.50
• avg. dose in bladder < x
• external < 1
• avg. external dose < 0.26

goal: min x
result: x=0.37
Plan 9

Constraints:
- PTV > 1
- PTV < 1.15
- Femurs < 0.375
- Avg. dose in rectum outside PTV < 0.50
- Avg. dose in bladder < x
- External < 0.80
- Avg. external dose < 0.26

Goal: Min x

Result: x = 0.39

Dose distribution

<table>
<thead>
<tr>
<th>dose contour levels</th>
<th>1.15</th>
<th>1.00</th>
<th>0.80</th>
<th>0.50</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTV</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Bladder</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Left femur</td>
<td>Pink</td>
<td>Pink</td>
<td>Pink</td>
<td>Pink</td>
<td>Pink</td>
</tr>
<tr>
<td>Right femur</td>
<td>Cyan</td>
<td>Cyan</td>
<td>Cyan</td>
<td>Cyan</td>
<td>Cyan</td>
</tr>
<tr>
<td>Rectum</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>PTV</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>
Hard constraints fit tumor control

- probability cell survives: $s_j = \exp[-D_j \alpha]$
 - $s_j << 1$

- probability all clonagenic tumor cells die:

 $$p = \prod (1-s_j) \approx 1-\sum s_j \approx 1-\max s_j = 1-\exp[-\alpha \min D_j]$$

 hence $p = f(\min \text{dose})$
Hard constraints fit serial organs?

- serial organs: need all cells to functions
 - example: spinal cord
- probability all cells survive, p

 recall $s_j = \exp[-D_j \alpha]$

 $p = \prod s_j = \exp[-\alpha \sum D_j]$
 hence $p = f(\text{mean dose})$

- caveat: $s_j = \exp[-D_j \alpha - D_j^2 \beta]$ and data ambiguous on importance of β
Cumulative dose-volume histogram

- $D_j \leq 40$ for all j in Rectum
- $D_j \leq 30 + \text{BigNum} \times x_j$
 - x_j binary
 - $\sum x_j \leq 0.5 \times \text{num mesh points in Rectum}$
penalty functions

penalty function for organ

Dose (Gy)
Tail averages

• $\text{avg}_{\text{over } X\% \text{ of volume with highest dose}} D_j \leq U$
• $\text{avg}_{\text{over } X\% \text{ of volume with lowest dose}} D_j \geq L$
• each such constraint needs an artificial variable for every mesh point
• introduced by Romeijn et al.

• formulation for upper tail average:
 – $w_j \geq D_j - z, \quad w_j \geq 0$
 – $z + 1/(X\% \text{ vol}) \sum w_j \leq U$
 – we want $w_j = \max(0, D_j - z)$
 – we want $z = \min_{\text{over } X\% \text{ of volume with highest dose}} D_j$
gradient objective

\[
\min \sum_{\nu} \mathbf{u}_\nu \cdot \nabla \text{dose}_\nu
\]
Questions