
Fast Accurate Simulation of 
Physical Flows in Demand Networks 

 
Karl Kempf 

Decision Technologies 
Intel Corporation 

5000 W. Chandler Blvd. 
Chandler, AZ  85226 

karl.g.kempf@intel.com      

Kraig Knutson, John Fowler,  
Benjamin Armbruster, 

Praveen Babu, Brett Duarte 
College of Engineering and Applied Science 

Arizona State University 
Tempe, AZ  85287-5906 

KEYWORDS 
Supply Chain, Control, Factory, Warehouse, Transport 
 
ABSTRACT  
More efficient and effective control of supply chains (more 
appropriately called demand networks) is conservatively 
worth billions of dollars to the world economy. Developing 
improved control polices requires simulation of the 
physical, financial, decision, and data flows involved. This 
paper describes our initial work on modeling and simulating 
the physical flows. We show the level of abstraction that is 
appropriate, formulate and test a general model at this level, 
and show minor specializations to incorporate particular 
features of factories, warehouses, and transportation links. 
 
INTRODUCTION 
Improving the operational efficiency of demand networks 
(also known as supply chains) for physical goods is one 
way to boost the national and global economy. 
Understanding the control physics of this kind of demand 
networks is a key to providing continuous improvement of 
their efficiency. Given the inherent complexity of demand 
networks that involve production, developing such an 
understanding requires extensive experimentation to 
formulate and validate control theories. However, this type 
of demand network generates enormous wealth so direct 
experimentation would involve untenable financial risk. 
Therefore some form of modeling and simulation is 
required. 
 
Simulating demand networks requires the modeling of a 
number of quite different but interrelated flows including 
physical, financial, decision, and data. The physical flow 
represents the goods being produced, stored, and shipped 
while the financial flow concerns the payments for the 
materials and services required and the products supplied. 
The data flow represents data about the past, present, and 

the forecast future state of the physical and financial flows. 
The decision flow uses the data available about the physical 
flow, advice from the financial system, and its decision 
policies to provide direction for the physical system. The 
overall goal is to maximize the four customer service factors 
- the right product, in the right quantity, in the right place, at 
the right time - while minimizing the four major costs - 
materials, production, storage, transport. 
 
We have developed a software architecture to model and 
simulate these flows and the interactions between them as 
shown in Figure 1. Although a variety of software modules 
can be connected in this way with multiple modules of like 
or similar functionality, our current implementation includes 
just one of each type and utilizes commercial products. 

INTERCONNECT FACILITIES

a physical module:
discrete event 

simulation

a decision module:
rule-based
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a finance module:
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a data store:
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Figure 1. An architecture for demand network simulation 
 
Using this architecture a wide variety of experiments can be 
imagined for exploring the behavior of demand networks. 
From the physical perspective, the number and connectivity 
of entities can be varied as well as the capacity and 
throughput time of each entity. With the financial module, 
calculations can be done at the end of a simulation for 



evaluating the overall run and at the beginning of or during 
a simulation to support decision-making. Using the decision 
module, various mathematical and heuristic control policies 
can be investigated to quantify their impact on the business. 
The advantage of one central controller versus many local 
controllers can be quantified by using one or multiple 
decision and financial modules. The utility of performing 
financial calculations and decision-making more or less 
frequently can be explored. The data that can flow between 
modules is the basis for their interaction, as is the associated 
database. Experiments can be imagined that test the 
advantage of having precise data immediately versus 
inaccurate stale data.  
 
THE BASIC APPROACH 
The focus of this paper is the modeling and simulation of 
the physical flow that carries raw materials, production 
work in progress (WIP), and finished goods. The entities 
involved in the flow include factories, warehouses, and 
transportation links. In the example shown in Figure 2, there 
are a number of suppliers of materials to the core company, 
the factories and warehouses owned by the core company, a 
number of types of downstream customers of the core 
company, and the transportation infrastructure. 

Figure 2. An example demand network physic flow 
 
As with any modeling and simulation exercise, finding the 
appropriate level of abstraction is necessary. That level of 
abstraction will provide solutions that are accurate enough 

for the problem being studied in as short a time as the 
current state of computer technology will allow. One 
approach that is not appropriate here is tool level discrete 
event simulation. The answers are very accurate, but in a 
demand network with multiple entities in the physical flow, 
run times would be prohibitive. Another approach would be 
the assignment of a few static parameters to model the 
dynamic performance of each entity. This produces answers 
very quickly, but answers that are not accurate enough for 
our purposes.  
 
The key insight leading to the appropriate abstraction is that 
all of the entities in the physical flow of a demand network 
are capacitated. This means that as they are loaded nearer 
and nearer to their capacity, the cycle time required for them 
to perform their function rises nonlinearly and their 
throughput and cycle time performance becomes 
increasingly stochastic as shown in Figure 3. Each entity in 
Figure 2 behaves in this way although each has a different 
capacity, throughput variability, cycle time, and cycle time 
variability. In addition, each may be operated at a different 
point on its characteristic curve depending upon whether 
speed (on the lower left of Figure 3) or volume (on the 
upper right of Figure 3) is the focus. 
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Figure 3. The performance of all demand network entities 
 
THE RESULTING IMPLEMENTATION 
This abstraction leads to the core module that we use to 
model and simulate physical flow in demand networks. This 
core module contains two components.  
 
The first sub-module deals with capacity. At the beginning 
of each time period, some amount of capacity becomes 
available. If fewer units arrive during the time period than 
can be processed by the available capacity, all of the units 
are passed to the second sub-module and the remaining 
capacity is lost. If more units arrive during the time period 
than can be processed, units equal to the capacity are passed 
to the second sub-module, the capacity is exhausted, and the 
remaining units stand in queue until enough capacity 



becomes available to process them. Since capacity is 
variable, this sub-module contains a distribution from which 
a capacity is randomly drawn at the beginning of each time 
period. This distribution is skewed to the low capacity side 
since there are usually more ways to temporarily lose 
capacity than there are to gain it. 
 
The second sub-module deals with cycle time. Again a 
distribution is used to represent variability, this time skewed 
to the high cycle time side since there are usually more 
ways to slow a unit down that there are to speed it up. For 
each unit that is passed from the first sub-module, a cycle 
time is randomly drawn from the distribution and assigned. 
After being held for the appropriate time, units emerge from 
our core module. 
 
Notice that this abstraction and its implementation span the 
approaches initially considered and rejected. If one of our 
modules is used to represent each tool in a demand network 
entity, then a tool level discrete event simulation results. If 
one of our modules is used to represent a whole demand 
network entity and the capacity and cycle time distributions 
are collapsed to single numbers, then the approach relying 
on a few static parameters results. Our module with its 
distributions in tact supplies results approaching the 
accuracy of tool level discrete event simulation in run times 
approaching the use of a few static parameters. We will 
demonstrate these claims in the next three sections. 
 
SINGLE MODULE RESULTS 
The data shown here are for a single module with a discrete 
triangular distribution for capacity (min= 75.0, most 
probable= 150.0, mean= 142.5, max= 195.0, in units/day) 
and a continuous triangular distribution for cycle time 
(min= 21.25, most probable= 22.50, mean= 25.00, max= 
31.25, in days). Figure 4 shows the relationship between 
throughput and the loading of the system relative to its 
maximum capacity. The separation of the 3 lines at lower 
loadings shows the effect of the capacity distribution. The 
nonlinear separation of the lines at higher loadings shows 
the impact of units queuing in front of the capacity sub-
module. 
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Figure 4. Single Module Throughput versus Loading 
The relationship between cycle time and loading is shown 
in Figure 5. The separation of the three lines shows the 
effect of the cycle time distribution, and the nonlinear 
separation of the lines at higher loadings shows the impact 
of units queuing in front of the capacity sub-module. The 
separation of the lines at the lower loadings is a reflection of 
drawing less number from the cycle time distribution. 
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Figure 5.  Single Module Ave. Cycle Time versus Loading 
 
The variability of throughput and cycle time over time is 
shown in Figures 6 and 7 respectively for 94% loading.  
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Figure 6. Single Module Throughput versus Time 
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Figure 7. Single Module Ave. Cycle Time versus Time 
 
All of these plots are consistent with the behavior required 
by Figure 3, and are qualitatively in alignment with data 
from actual fabrication and assembly factories. 
MULTIPLE MODULE RESULTS 
The data shown here are for a simple demand network 
composed of 7 of our modules including, in material flow 
sequence, a fabrication factory (2 modules, one for 
fabrication, one for final test), a transportation link, an 
intermediate warehouse, an assembly factory (2 modules, 
one for assembly, one for final test), and a finished goods 
warehouse. The capacity and cycle time distribution 
parameters are listed in Table 1. 
 
Table 1 – Capacity and Cycle Time Parameters 

  most   

 min prob mean max

CAPACITY         

fabrication 75 150 142.5 195 
test-1 100 200 190 260 

transport 125 250 237.5 325 
inter. w-house 125 250 237.5 325 

assembly 105 210 199.5 273 
test2 80 160 152 208 

f-goods w-house 125 250 237.5 325 

CYCLE TIME         

fabrication 42.5 45 50 62.5 
test1 4.25 4.5 5 6.25 

transport 2.55 2.7 3 3.75 
inter. w-house 1.7 1.8 2 2.5 

assembly 4.25 4.5 5 6.25 
test-2 1.7 1.8 2 2.5 

f-goods w-house 0.85 0.9 1 1.25 
 
The relationship between throughput and cycle time versus 
loading is shown in Figures 8 and 9 respectively. The line 

separations now show the effects of 7 sequential capacity 
distributions, 7 sequential cycle time distributions, and 
sequential queuing in front of 7 capacity sub-modules.  
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Figure 8. Multiple Modules Throughput versus Loading  
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Figure 9. Multiple Modules Ave. Cycle Time vs. Loading 
 
The variability of throughput and cycle time over time is 
shown in Figures 10 and 11 respectively for 94% loading.  
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Figure 10. Multiple Modules Throughput versus Time 
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Figure 11. Multiple Modules Ave. Cycle Time versus Time 
 
Rerunning the experiments with the distributions widened 
generates a more detailed demonstration of the impact of the 
capacity and cycle time distributions on the 7-module 
demand network. Specifically the difference between the 
means and the max and min values of each of the 14 
triangular distributions were doubled. Figure 12 shows the 
impact on throughput at the high loading levels that demand 
networks often experience. The widened distributions result 
in higher variability in throughput at each loading as well as 
higher variability between loadings. Similar results are 
obtained for cycle times as shown in Figure 13. 
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Figure 12. Throughput at Levels of Capacity Variability 
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Figure 13. Cycle Time at Levels of Cycle Time Variability 

 
TIMING RESULTS 
Execution times were collected from experiments conducted 
on a computer running Windows 98™ on a 400 MHz 
Pentium III™ with 4 MB of primary memory. The module 
used in the experiments had a capacity distribution with a 
min of 40, a mean of 50, and a max of 60 units per day, and 
a cycle time distribution with a min of 16, a mean of 20, and 
a max of 24 days. Chains were built using from 1 to 7 of 
this  
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Figure 14. Run Time with Number of Modules and Loading 
module and run at various loadings for 420 days of 
simulated time. The execution times are shown in Figure 14. 
The data contained in Figures 8 through 14 demonstrate that 
high quality results can be generated for a demand network 
of moderate complexity running for over a year near its 
maximum capacity in less than 15 minutes on a computer of 
modest performance. 
 
ENHANCEMENTS FOR FACTORIES 
While the generic module described above can be 
parameterized to represent factories, warehouses, and 
transportation links, each of these three entities does exhibit 
special characteristics. For example, Figure 15 shows the 
partial autocorrelation of cycle time data that we observe for 
actual factories and tool level discrete event simulations of 
factories. While our generic module does not exhibit this 
characteristic, this is easily remedied. To generate a series 
of cycle times with a predetermined autocorrelation we use 
the fact that a random walk has a partial autocorrelation of 
lag 1. If Z is an independently distributed random variable 
with mean μ (1−α) and standard deviation σ(1−α2)1/2, then 
the sequence Xn generated by Xn=αXn-1+Zn has a mean μ, a 
standard deviation σ, and a partial autocorrelation α. We 
implemented this rule in our cycle time sub-module. The 
results are given in Figure 16 and show a qualitatively 
correct autocorrelation in our factory cycle times. 
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Figure 15. Cycle Time Autocorrelation in Actual Factories 
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Figure 16. Cycle Time Autocorrelation in a Factory Module 
 
In addition, actual factories have yield losses. To 
incorporate this feature, we simply added an addition sub-
module with a random number generator and an overall 
factory yield target. Each unit leaving the cycle time sub-
module enters this yield sub-module to determine whether it 
is scrap or leaves the factory as product. Figure 17 shows 
the throughput of the 7-module demand network without 
any yield loss against the throughput of the same system 
with an 80% yield sub-module at the exit of the test-1 
factory after fabrication and a 95% yield sub-module at the 
exit of the test-2 factory after assembly. The cycle time of 
this system is little altered since the bulk of the time is spent 
in the fabrication module and the yield losses are suffered 
after the production units have left this module. 
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Figure 18. Factory Yield Losses 
 
Finally, it is possible to alter the cycle time performance of 
actual factories by re-prioritizing the work in progress. We 
can realize this effect in our factory module by dynamically 
shifting cycle time distributions. A single factory module 
was run for 2 products with identical continuous triangular 
distribution for cycle time (min= 21.25, most probable= 
22.50, mean= 25.00, max= 31.25, in days). In the 10th week 
of simulated operation, all of the distribution parameters of 
product A were shifted to be 5 days longer and all of the 
distribution parameters of product B were shifted to be 5 
days shorter. The results of dynamic re-prioritization are 
shown in Figure 19. 
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Figure 19. Factory Work in Progress Prioritization 
TRANSPORT AND WAREHOUSE 
ENHANCEMENTS 
Specializing our generic module to the individual needs of 
transportation links and warehouses is the focus of our 
current research.  
 
Transportation links are like factories in that once work is 
released into them, they are usually expected to process the 
work as soon as possible. Their capacities vary periodically, 
but they differ in the pattern in which their capacities are 
available. In a factory, the capacity is available throughout 
the day or until it is exhausted. In a transportation link, once 
the truck, boat, or airplane is loaded, it departs and no 
capacity may be available until the next transporter arrives. 



 
Warehouses differ from factories and transport links in that 
they are designed to hold units, not process them as soon as 
possible. Warehouses have a capacity to move units in and 
out and a capacity to hold units, and these two capacities are 
not necessarily related. We have thus far used our capacity 
and cycle time modules to model getting units out of 
warehouses and are considering whether this is adequate.  
 
CONCLUSIONS AND FUTURE WORK 
We have shown that a simple set of modules can quickly 
and accurately provide performance data for demand 
networks constructed from nonlinear stochastic entities 
including factories, transportation links, and warehouses. 
We have shown that the basic module can be simply 
extended to include the particular features of factories and 
believe that the same will be true for transportation links 
and warehouses.  
 
Our future direction is to develop techniques to 
parameterize the capacity, cycle time, and yield 
distributions for our modules to statistically match the 
performance of actual demand network components. We are 
actively collecting performance data from factories, 
transportation links, and warehouses to support this effort. 
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