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Abstract 

Profile data have received substantial attention in the quality control literature. Most of the prior 

work has focused on the profile monitoring problem of detecting sudden changes in the 

characteristics of the profiles, relative to an in-control sample set of profiles. In this paper we 

present an approach for exploratory analysis of a sample of profiles, the purpose of which is to 

discover the nature of any profile-to-profile variation that is present over the sample. This is 

especially challenging in big data environments in which the sample consists of a stream of high 

dimensional profiles, such as image or point cloud data. We use manifold learning methods to find 

a low-dimensional representation of the variation, followed by a supervised learning step to map 

the low-dimensional representation back into the profile space. The mapping can be used for 

graphical animation and visualization of the nature of the variation, in order to facilitate root cause 

diagnosis. Although this mapping is related to a nonlinear mixed model sometimes used in profile 

monitoring, rather than assuming some prespecified parametric profile model and monitoring for 

variation in those specific parameters, our focus is on discovering an appropriate characterization 

of the profile-to-profile variation. We illustrate with two examples and include an additional 

example in the online supplement to this article on the Technometrics website. 

Keywords:  Profile data, manifold learning, independent component analysis, principal 

component analysis, visualization.  
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1. Introduction 

 Profile data collected for quality control purposes is increasingly common in many industries. 

For the discrete parts industries, these include spatially dense surface measurement data from 

machine vision imaging and/or tracing across the part surface via either contact stylus probes or 

noncontact laser probes. More general image data, which can be viewed as profiles over a 2D 

domain, are commonplace too (Megahed, et al. 2011). Profiles can also represent machine 

signatures that are related to product quality, such as stamping press tonnage measured over the 

time duration of a stamping cycle (Jin and Shi, 1999). Profile data are also common in chemical, 

pharmaceutical, and agricultural industries, for example as dose-response profiles (Williams, 

Birch, Woodall, and Ferry, 2007). Profile data can be extremely high dimensional (e.g., images 

with millions of pixels, surface point cloud measurement data with tens of millions of points per 

part, etc.), and a steady stream of such data may be available for analysis. How to effectively 

reduce dimensionality and identify fundamental phenomena that cause profile-to-profile variation 

is a challenging problem. 

 There is a growing body of literature on monitoring image (Megahed, et al., 2011) and other 

profile data, including nonlinear profile monitoring, (e.g., Williams, Birch, Woodall, and Ferry, 

2007, Williams, Woodall, and Birch, 2007, Jensen and Birch, 2009, Noorossana, et al., 2011). The 

nonlinear mixed (NLM) model used in Jensen and Birch (2009) is of the form xi(u) = f(u, i) + 

error, where f(u, ) is some known function of a set of domain variables u (e.g., u is a 2D vector 

of pixel coordinates for an image profile; a scalar time-index for a tonnage signature profile; a 2D 

vector of spatial surface coordinate indices for a point cloud of data representing a scanned part 

surface; a scalar dosage amount in a dose-response profile; etc.) parameterized by a vector of 

unknown parameters , and {xi(u): u  Ui} are the measurements (e.g., of pixel grayscale level 

for an image; of stamping tonnage; etc.) constituting the ith profile (i = 1, 2, . . ., N) in a sample of 

N measured profiles, where Ui denotes the discrete set of known domain values at which the ith 

profile is measured. The parameters i are assumed to vary randomly from profile to profile. In the 

NLM model, "nonlinearity" refers to the situation that f(u, ) is a nonlinear function of , so that 
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nonlinear regression methods must be used to estimate each i. Throughout, we assume Ui = U is 

the same set of domain values for each profile, a situation that has been referred to as a common 

fixed design (e.g., Zou, et al., 2008, Zhang and Albin, 2009). For situations in which this is not the 

case, one should interpolate (over the domain variables u) the data for each profile to transform it 

into a common fixed design structure. If such interpolation is not meaningful or reliable, and the 

domain values Ui differ for each profile, then our method is not applicable. 

 The NLM-based profile monitoring work assumes the parametric model f(u, ) is known in 

advance, and the systematic profile-to-profile variation is accounted for by variation in i over the 

sample of profiles. Their objective is to monitor for changes in i over time using some form of 

control chart, e.g., a multivariate T2 chart. The objective that we address in this paper is 

substantially different and much more exploratory in nature, in line with the exploratory aspects 

of Phase I control charting (Jones-Farmer, et al., 2014). Suppose we have collected a sample of 

measured profiles from the product or manufacturing process, but we have no prepostulated 

parametric model to represent the profile-to-profile variation. Using only the sample of profiles, 

our objective is to identify, visualize, and understand the nature of the profile-to-profile variation 

that is occurring over the sample. The intent is that this will facilitate the quality improvement 

process of identifying and eliminating the root causes of the variation and/or suggest an appropriate 

parametric model to adopt in further studies. In essence, our objective is to discover and visualize 

the nature of the variation, whereas the objective of the NLM-based profile monitoring work is to 

monitor for changes in specific sources of variation whose nature is known in advance (via a 

parametric model f(u, ) that has been identified in advance).  

 There has also been prior work on nonparametric profile monitoring that, rather than assuming 

a specific parametric model, fits some nonparametric smoother to each profile (e.g., Walker and 

Wright, 2002, Zou, Tsung, and Wang, 2008, Qiu, Zou, and Wang, 2010). Like the NLM-based 

work, the objective of this body of work is largely control chart monitoring for changes in the 

profiles over time, with little applicability to identifying the nature of the variation. Walker and 

Wright (2002) is an exception, as their objective is to assess the sources of profile-to-profile 
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variation, but their approach and scope are substantially different from ours. They used an 

ANOVA-type variance decomposition to quantify the contributions of a few general 

characteristics, such as differences in the average profile level (averaged across u, for each profile), 

differences between pre-specified groups of profiles, etc. Their approach is not intended to 

discover the nature of variation sources that have not been previously identified.  

 Our paradigm is closer to that of Apley and Shi (2001), Apley and Lee (2003), Lee and Apley 

(2004) and Shan and Apley (2008). They assumed that across a sample of measured parts (or more 

generally, a sample of multivariate data) there are a few major, systematic sources of part-to-part 

variation, each of which leaves distinct spatial variation pattern in the data. Their objective, like 

ours, is to discover the nature of the variation sources and the patterns left by the sources, based 

only on a sample of measured parts, with no prior knowledge or parametric models of the variation. 

The primary distinction is that their approach is only applicable to identifying linear variation 

patterns, whereas ours is more generally applicable to complex nonlinear variation patterns that 

are common in profile data. 

 To illustrate this paradigm and what we mean by nonlinear variation patterns, consider the 

example depicted in Fig. 1, which shows a 1D profile obtained by scanning across a bead on the 

flat surface of an automotive head gasket. The bead is a slightly raised and rounded ridge that 

extends around the perimeter of each cylinder hole in the gasket, the purpose of which is to provide 

a tight seal around each combustion chamber. The profile shown in Fig. 1(a) has been discretized 

into n = 50 points and the measurement data are the surface height [the vertical direction in Fig. 

1(a), with 0 taken to be the nominal height of the flat gasket surface] at the 50 discrete locations 

labeled j = 1, 2, . . ., 50. Hence, the measurement data for profile i can be represented as a vector 

xi = [x
1,i

, x
2,i

, . . ., x
50,i

]T. To connect this to the NLM model, xi is a stacked version of the data 

{xi(u): u  U} for profile i, u is a scalar domain variable, and U is the set of 50 spatial locations 

[corresponding to the horizontal axis in Fig. 1(a)] at which the surface profile height is measured. 

In our example, we have 400 profiles representing the gasket bead surface over a sample of N = 

400 different gaskets. Because this work focuses on variation, {xi: i = 1, 2, . . ., N} can be translated 
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in whatever manner is convenient, e.g., by subtracting the multivariate sample mean vector or the 

nominal/target profile.  

  
Figure 1. Gasket bead example of 1D profile data containing nonlinear variation patterns:  (a) a 

scanned profile across the gasket bead on a single gasket # 1, discretized into 50 points; (b) 

illustration of two different variation patterns, a translation and a flattening of the bead; (c) a 

scatter plot of the first three PCA scores over the 400 profiles; and (d) a scatter plot of the 14th vs 

25th vs 36th component of x over the 400 profiles. Both (c) and (d) show a strong nonlinear 

pattern in the data. 

 Figure 1(b) illustrates two profile-to-profile variation patterns by plotting a set of idealized 

noiseless profiles for ten different gaskets. The first pattern represents the bead flattening (and 

simultaneously elongating) by differing amounts on different gaskets, which can be visualized as 

the profile-to-profile differences within the group of five solid profiles and/or within the group of 

five dashed profiles. The second pattern represents the position of the bead translating left/right by 

differing amounts on different gaskets, which can be visualized as the differences between the 

solid and dashed profiles. The actual profile measurement data are a mixture of these two 

systematic patterns, plus unsystematic random noise. From the sample of 400 such profiles, Figure 

1(c) is a scatter plot of the first three principal component scores obtained by applying linear 

principal component analysis (PCA) to the data. The scatter plot exhibits a distinct nonlinearity 
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that appears as a saddle shaped surface, which clearly indicates the presence of nonlinear variation 

patterns in the data. Figure 1(d) is a scatter plot of three elements of the measurement vector x (the 

14th, 25th and 36th elements, the positions of which are indicated by arrows in Fig. 1(a)), which also 

shows a distinct nonlinearity, although perhaps not quite as clear as in the scatterplot of the PCA 

scores. 

 Loosely speaking (see Section 2 for a more formal definition), linear variation patterns are 

those that cause the measurement vector x to vary over a linear subspace of n-dimensional space, 

the dimension of which is the same as the number of distinct variation sources; and nonlinear 

variation patterns are variation patterns that are not linear, i.e., that cause x to vary over a nonlinear 

manifold in n-dimensional space. If only linear variation patterns are present, scatterplots of 

elements of x show data that are distributed over a linear subspace (aside from noise). If nonlinear 

variation patterns are present, the scatterplots show data that fall on more complex nonlinear 

contours, e.g., as in Figure 1(d). Figure 2, discussed later, illustrates this distinction. It should be 

noted that whether a variation pattern is nonlinear is not directly related to whether the nominal or 

average shape of the profile is a nonlinear function of u. Ding, et al. (2006) and Woodall, et al. 

(2004) contain examples of profile data for which the average shape is nonlinear but the variation 

about the average is predominantly linear and well accounted for by linear PCA or linear 

independent components analysis (ICA). The distinction between linear and nonlinear variation 

patterns is important, because the nature of linear patterns can be discovered and visualized using 

linear PCA, ICA, or factor rotation methods (see Apley and Shi, 2001, Apley and Lee, 2003, Lee 

and Apley, 2004, and Shan and Apley, 2008). For example, the eigenvectors and scores from PCA 

provide a parameterization of the lower-dimensional subspace in which the major variation 

patterns lie. 

 This paper addresses the same objective of discovering and visualizing the nature of profile-

to-profile variation, but we extend the concepts to the case of nonlinear variation patterns. We use 

manifold learning methods to find and parameterize the lower dimensional manifold in which the 

nonlinear variation patterns lie. We also develop a graphical visualization tool that uses the 
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manifold parameterization, together with a follow-up supervised learning step in which the 

manifold parameters are mapped back to the original n-dimensional measurement space, to help 

visualize the nature of the variation patterns. Apley and Zhang (2007) used principal curves to 

identify and visualize a nonlinear variation pattern when only a single variation source is present. 

This work can be viewed as an extension to situations in which multiple sources of variation are 

present. The remainder of the paper is organized as follows. In Section 2, we describe the model 

that we use to represent nonlinear profile-to-profile variation and draw a connection to manifold 

learning. In Section 3, we provide background on manifold learning methods. In Section 4, we 

present our approach for identifying and visualizing the nonlinear variation patterns and illustrate 

with two examples. In Section 5, we further discuss the relationship with the NLM model and the 

dose-response profile example considered in Williams, et al. (2007) and Jensen and Birch (2009). 

In Section 6, we provide guidelines for selecting the dimension p of the manifold, and contrast our 

approach with image and profile registration methods. Section 7 concludes the paper. 

2. A Model for Nonlinear Variation and Connection to Manifold Learning 

 Before introducing the nonlinear model, it is helpful to revisit the model for linear variation 

patterns. Let n denote the number of discrete points measured on each profile, xi denote the n-

length vector of measurements for profile number i, and p denote the number of major variation 

sources present over the sample. The linear model assumed in Apley and Shi (2001) and 

subsequent work on identifying linear variation patterns is 𝐱𝑖 = 𝐂𝐯𝑖 + 𝐰𝑖 , where 𝐂 =

[𝐜1, 𝐜2, … , 𝐜𝑝] is an 𝑛 × 𝑝 constant matrix, 𝐯𝑖 = [𝑣1,𝑖, 𝑣2,𝑖, … , 𝑣𝑝,𝑖]
T
 quantifies the contributions of 

the p variation sources on profile i, and 𝐰𝑖 = [𝑤1,𝑖, 𝑤2,𝑖, … , 𝑤𝑛,𝑖]
T
 represents measurement noise 

and the effects of additional minor, less systematic variation. The p variation sources are assumed 

to be statistically independent. The column vector cj represents the spatial nature of the jth variation 

source and can be interpreted as the pattern caused by the source. The effects {Cvi: i = 1, 2, …, N} 

of the variation sources lie in the p-dimensional subspace spanned by the pattern vectors {c1, c2, . . ., 

cp}. With noise included, the data {𝐱𝑖:  𝑖 = 1, 2, … , 𝑁} lie close to this p-dimensional subspace, as 
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illustrated by the scatterplot of {𝐱𝑖:  𝑖 = 1, 2, … , 𝑁} in Figure 2(a) for the case of p = 2 variation 

sources in n = 3 dimensional measurement space. In this case, the data are represented as 𝐱𝑖 =

𝐜1𝑣1,𝑖 + 𝐜2𝑣2,𝑖 + 𝐰𝑖, where 𝐜1 and 𝐜2 are vectors that span the 2-dimensional subspace in Figure 

2(a), and 𝑣1,𝑖 and 𝑣2,𝑖 can be viewed as the coordinates of the variation pattern component of xi in 

this subspace.  

 
Figure 2  Illustration of the differences between (a) linear variation patterns and (b) nonlinear 

variation patterns, for 3-dimensional data with two variation sources. 

 The nonlinear counterpart of the preceding linear model, which we will assume throughout 

this work, is  𝐱𝑖 = 𝐟(𝐯𝑖) + 𝐰𝑖, where 𝐟(𝐯𝑖) = [𝑓1(𝐯𝑖), 𝑓2(𝐯𝑖), … , 𝑓𝑛(𝐯𝑖)]T denotes some nonlinear 

function that maps the p-dimensional space of variation sources to the n-dimensional space of the 

n discrete measured points on each profile. The linear model is a special case of the nonlinear 

model with f(vi) = Cvi. Whereas the pattern components Cvi due to the variation sources in the 

linear model lie in a linear subspace, the analogous pattern components f(vi) in the nonlinear model 

lie in a p-dimensional manifold in n-dimensional space, as illustrated in Figure 2(b). Notice that 

the common fixed design assumption implies that the matrix 𝐂 in the linear model is the same for 

each profile (i.e., 𝐂 does not depend on i). Similarly, the function 𝐟(∙) in the nonlinear model is the 

same for each i, although its argument 𝐯𝑖 obviously depends on i. 

 To further illustrate, we return to the gasket bead example introduced in Section 1 and depicted 

Figure 1. The p = 2 systematic variation patterns can be parameterized by the two-dimensional 

vector 𝐯𝑖 = [𝑣1,𝑖, 𝑣2,𝑖]
T
, where v1,i represents the amount of bead flattening on gasket number i of 
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the sample, and v2,i represents the amount of left/right bead translation on gasket number i. From 

the scatterplots in Figures 1(c) and 1(d), the variation patterns are clearly nonlinear and cannot be 

represented by the linear model. However, because the variation due to these two sources can be 

parameterized by two scalars, it must be the case that we can represent the data as  𝐱𝑖 = 𝐟(𝐯𝑖) +

𝐰𝑖, for some nonlinear function f() that maps two-dimensional space to n-dimensional space. The 

set {𝐟(𝐯): 𝐯 ∈ 𝒟} , with 𝒟  some subset of p-dimensional space, constitutes a p-dimensional 

manifold in n-dimensional space.  

 Figure 3 illustrates this by plotting f() over the gasket surface in Fig. 3(a) and also in the n-

dimensional measurement space in Fig. 3(b), the latter for only three (14th, 25th, and 36th) of the n 

elements of x. More specifically, Fig. 3(a) shows ten different gasket bead profiles, which are plots 

of 𝐟(𝐯) across the surface of the gasket for ten different values of 𝐯 = [𝑣1, 𝑣2]𝑇. The values of v 

are indicated for four of the ten profiles. The ten bullet points plotted in Fig. 3(b) correspond to 

the same ten profiles in Fig. 3(a). The surface in Fig. 3(b) is the manifold {𝐟(𝐯): 𝐯 ∈ 𝒟} for some 

domain 𝒟, and the profiles in Fig. 3(a) are the same as those shown in Fig. 1(b). A larger 𝑣1 value 

corresponds to a more flattening of the bead, and a larger 𝑣2 value corresponds to a bead that is 

translated further to the right. The group of dashed profiles are for 𝑣2 = 0.5, and the group of solid 

profiles are for 𝑣2 = −0.5 . Within each group, the five profiles are for 𝑣1 =

{−1 , −0.5 , 0 , 0.5 , 1}.  

 
Figure 3. For the gasket bead example, illustration of (a) the physical nature of the two variation 

patterns via plots of the profile 𝐟(𝐯) across the surface of the gasket in the profile geometry space 

for ten different values of 𝐯 = [𝑣1, 𝑣2]𝑇; and (b) the corresponding two-dimensional manifold 
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{𝐟(𝐯): 𝐯 ∈ 𝒟} plotted in (three components of) the n-dimensional measurement space. The ten 

bullets in (b) correspond to the same ten profiles in (a).  

 It is important to note that for problems of this nature, there may be no clean mathematical 

representation of the function f() or the corresponding manifold. Moreover, attempting to 

visualize the geometry of the manifold in the n-dimensional measurement space, as in Fig. 3(b), 

may offer little insight into the nature of the variation patterns. The salient point in Fig. 3(b) is that 

the effects of the variation sources can be represented as a p-dimensional manifold in n-

dimensional space. If we can empirically find a p-dimensional parameterization of the manifold 

using manifold learning techniques applied to a sample of measured profiles, and then empirically 

learn the mapping from this p-dimensional space back to the n-dimensional measurement space, 

we can plot the results in the original profile geometry space to graphically visualize the nature of 

the variation. In the remainder of the paper, we discuss our approach for accomplishing this. As a 

matter of terminology, we refer to plots like Fig. 3(a) as being in the profile geometry space, 

whereas plots like Fig. 3(b) are in the n-dimensional measurement space.  

3. Background on Manifold Learning  

 For the linear model  𝐱𝑖 = 𝐂𝐯𝑖 + 𝐰𝑖 , the variation pattern component 𝐂𝐯𝑖  lies in the p-

dimensional manifold {𝐂𝐯: 𝐯 ∈ 𝒟}, which (for 𝒟 = ℝ𝑝) is a p-dimensional linear subspace. Hence, 

linear PCA can be used to find and parameterize this linear subspace. The span of the p dominant 

eigenvectors from PCA constitutes an estimate of the subspace, and the corresponding p PCA 

scores provide a p-dimensional parameterization.  

 For the nonlinear model  𝐱𝑖 = 𝐟(𝐯𝑖) + 𝐰𝑖, identifying the nonlinear manifold {𝐟(𝐯): 𝐯 ∈ 𝒟} is 

typically a more challenging problem. In this section, we review a number of existing manifold 

learning methods that, given a sample of n-dimensional observations {xi: i = 1, 2, . . ., N}, attempt 

to find an underlying p-dimensional (𝑝 ≪ 𝑛 typically) manifold {𝐟(𝐯): 𝐯 ∈ 𝒟} on which the data 

approximately lie. Manifold learning can be viewed as a nonlinear form of multidimensional 

scaling (MDS), as the algorithms attempt to map each 𝐱𝑖  to a corresponding point in some 

implicitly defined p-dimensional space. The set {𝐳𝑖 ∈ 𝑅𝑝:  𝑖 = 1 , 2 , … , 𝑁} of mapped points in 
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this p-dimensional space represent the coordinates of {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁} on the p-dimensional 

manifold lying in the original n-dimensional space. In this sense, the p coordinates from manifold 

learning can be viewed as an implicit p-dimensional parameterization of the manifold. Traditional 

MDS (Torgerson, 1952) does precisely this, although the structure of the mapping has a certain 

linearity imposed. For nonlinear manifold learning, a number of algorithms have been developed, 

including ISOMAP (Tenenbaum, de Silva and Langford, 2000), geodesic nonlinear mapping 

(GNLM) (Yang, 2004), Sammon mapping (SM) (Sammon, 1969), local linear embedding (LLE) 

(Roweis and Saul, 2000), Hessian local linear embedding (HLLE) (Donoho and Grimes, 2005), 

and local tangent space alignment (LTSA) (Zhang and Zha, 2004). A survey of manifold learning 

algorithms can be found in Huo, et al. (2007). Principal surface algorithms (Hastie, 1984, Delicado, 

2001) may be viewed as a form of manifold learning, although formal manifold learning 

algorithms have emerged as more popular implementations with more software packages available, 

and the so-called principal surface algorithms seem primarily intended for low-dimensional (small 

n) applications. In the remainder of this section, we briefly review the ISOMAP algorithm. Diverse 

applications of the various manifold learning algorithms can be found in the preceding references 

and in Ekins, et al. (2006), Duraiswami and Raykar (2005), and Patwari and Hero (2004).  

 ISOMAP is almost a direct nonlinear generalization of MDS. The classical MDS algorithm 

attempts to ensure that the pairwise Euclidean distances between the p-dimensional representation 

{𝐳𝑖:  𝑖 = 1 , 2 , … , 𝑁} are as close as possible to the pairwise Euclidean distances between the 

original {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁}. Specifically, MDS finds the set {𝐳𝑖:  𝑖 = 1 , 2 , … , 𝑁} to minimize 

the objective function ∑ (𝑑𝑖𝑗 − ‖𝐳𝑖 − 𝐳𝑗‖)
2

𝑖<𝑗 , where  𝑑𝑖𝑗 = ‖𝐱𝑖 − 𝐱𝑗‖ is the Euclidean distance 

between 𝐱𝑖  and  𝐱𝑗 . Preserving Euclidean distances is reasonable when {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁} 

approximately lie in a p-dimensional linear subspace, as in Fig. 2(a). However, when {𝐱𝑖:  𝑖 =

1 , 2 , … , 𝑁} approximately lie on a p-dimensional nonlinear manifold, as in Fig. 2(b), it makes 

more sense to preserve geodesic distances. As illustrated in Fig. (4), the geodesic distance between 

two points is the shortest path connecting them along the manifold, which may be much different 

than their Euclidean distance if the manifold is highly nonlinear. 
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Figure 4. Illustration of geodesic distance along a manifold and the difference between geodesic 

and Euclidean distances. 

Noting this, Tenenbaum, et al. (2000) proposed their ISOMAP algorithm to find the p-dimensional 

representation {𝐳𝑖:  𝑖 = 1 , 2 , … , 𝑁} to minimize the objective function ∑ (𝑑𝑖𝑗
𝑔

− ‖𝐳𝑖 − 𝐳𝑗‖)
2

𝑖<𝑗 , 

which is the same as MDS but with Euclidean distance 𝑑𝑖𝑗 replaced by the geodesic distance 𝑑𝑖𝑗
𝑔

 

between 𝐱𝑖  and 𝐱𝑗 . To approximate the geodesic distance between data points, ISOMAP first 

builds a graph 𝐺 with N vertices corresponding to {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁} and edges that link each 

𝐱𝑖  with its 𝐾 nearest neighbors for some chosen K. The edges are weighted by the Euclidean 

distances 𝑑𝑖𝑗 . The geodesic distance between 𝐱𝑖  and  𝐱𝑗  is then taken to be the length of the 

shortest path between 𝐱𝑖 and  𝐱𝑗 on graph 𝐺.  

 We note that del Castillo, et al. (2014) used the ISOMAP algorithm to analyze 3D point cloud 

data, although they used it in a completely different manner than we do. Their original data are 3D 

surface measurement data for a single measured part, i.e., { 𝐱𝑖 ∈ 𝑅3:  𝑖 = 1 , 2 , … , 𝑁} are the 3D 

coordinates for 𝑁 points measured on the surface of a single part. They use manifold learning to 

map the point cloud data for a single part from 3D space to a 2D space of manifold coordinates 

that represent the surface coordinates of each measured point on that part. In contrast, we use 

manifold learning to analyze part-to-part (or profile-to-profile) variation across a sample of 𝑁 

parts, and each  𝐱𝑖 ∈ 𝑅𝑛 represents the collection of all 𝑛 measurements on part number 𝑖. We use 
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manifold learning to map the high 𝑛-dimensional space to a much lower 𝑝-dimensional space of 

manifold coordinates that represent the sources of variation. 

4. Using manifold learning to identify and visualize profile-to-profile variation  

 For the profile data { 𝐱𝑖 ∈ 𝑅𝑛:  𝑖 = 1 , 2 , … , 𝑁} that behaves according to the model  𝐱𝑖 =

𝐟(𝐯𝑖) + 𝐰𝑖 with p distinct variation sources present, the coordinate representation {𝐳𝑖 ∈ 𝑅𝑝:   𝑖 =

1, 2, … , 𝑁} from manifold learning serves as an estimate of (some transformed version of) the 

sources {𝐯𝑖 ∈ 𝑅𝑝:   𝑖 = 1, 2, … , 𝑁}. In order to gain insight into the nature of the variation, however, 

it is helpful to visualize the manifold 𝐟(𝐯) as the variation sources 𝐯 are varied. In light of the 

relationship  𝐱𝑖 = 𝐟(𝐯𝑖) + 𝐰𝑖 , we accomplish the latter by fitting an appropriate supervised 

learning model with { 𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁} as the multivariate output (aka response) variables and 

the estimated {𝐯𝑖:  𝑖 = 1, 2, … , 𝑁} from the manifold learning algorithm as the input (aka predictor) 

variables. The fitted supervised learning model then serves as an estimate of 𝐟(𝐯), which can be 

interactively visualized in the profile geometry space using a graphical user interface. Details of 

our procedure are described in the following. 

Step 1. Apply linear PCA to {𝐱𝑖:  𝑖 = 1 , 2 , 3 , … , 𝑁} to reduce dimensionality and noise. 

 As discussed in Apley and Zhang (2007), the p-dimensional manifold 𝐟(𝐯) will typically lie, 

at least approximately, in some P-dimensional linear subspace of the n-dimensional measurement 

space with p < P < n. Thus, applying linear PCA to  𝐱𝑖 = 𝐟(𝐯𝑖) + 𝐰𝑖 will tend to filter out the 

noise component 𝐰𝑖, while preserving much of the signal component 𝐟(𝐯𝑖). The idea is to apply 

the manifold learning algorithm to the PCA score vectors {𝐞𝑖 ∈ 𝑅𝑃:  𝑖 = 1 , 2 , 3 , … , 𝑁} associated 

with the largest P eigenvalues. Although manifold learning could be applied to the original n-

dimensional data, there are two benefits of using linear PCA as a preprocessing step. One is 

computational, and the other is performance-related. Regarding the latter, all of the manifold 

learning algorithms rely heavily on the local structure in the data and must identify the sets of 

neighbors that lie on the same local portion of the manifold. Because this is more difficult to 

accomplish reliably in higher dimensions and/or with higher noise levels, the performance of 
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manifold learning methods can be improved using PCA to reduce the dimensionality and/or the 

noise. Some manifold learning methods (e.g., HLLE, Donoho and Grimes, 2005) are more 

sensitive to high dimensionality/noise than others. We have observed this in our simulations, by 

comparing plots of the estimated 𝐟(𝐯) (as in Figures 9 and 11) with and without linear PCA. PCA 

also reduces the computational expense of the neural network fitting (see Step 3 below) via the 

dimensionality reduction, although it has little impact on the computational expense of the 

manifold learning in Step 2.  

Step 2. Apply a manifold learning algorithm to the P-dimensional PCA scores {𝐞𝑖:  𝑖 =

1 , 2 , 3 , … , 𝑁}. 

 This step is a direct application of an existing manifold learning algorithm. The p-dimensional 

coordinate representation produced by the manifold learning algorithm is taken to be the estimates 

{𝐯̂𝑖 = [𝑣̂1,𝑖, 𝑣2,𝑖, … , 𝑣𝑝,𝑖]
T

:  𝑖 = 1 , 2 , 3 , … , 𝑁} of the variation sources. To be more precise, these 

should be viewed only as estimates of some transformed version of the variation sources. Any of 

the manifold learning algorithms can be used for this step. In the examples of this paper, we used 

the ISOMAP algorithm. 

Step 3. Fit a single layer, multi-output neural network model to approximate the manifold 𝐟(⋅). 

 One could consider any appropriate supervised learning method for this step. We focus on a 

neural network model in our examples, because of its ability to handle multiple output variables 

that share similar dependence on the input variables. In our case we have an n-variate output 𝐱𝑖 

and a p-variate input 𝐯̂𝑖  for 𝑖 = 1 , 2 , … , 𝑁. To estimate the manifold 𝐟(⋅) when n is small, we 

could fit a single neural network model with n nodes in the output layer, p nodes in the input layer, 

and a single hidden layer. Denoting the fitted neural network model as 𝐟(𝐯) =

[𝑓1(𝐯), 𝑓2(𝐯), … , 𝑓𝑛(𝐯)]
T

, 𝐟(⋅)  represents the estimated manifold, and 𝑓𝑗(𝐯)  represents the 

functional dependence of the jth element of the measurement vector on the variation sources 𝐯. A 

single neural network with n nodes in the output layer can efficiently represent the situation that 

some elements of 𝐟(𝐯) share similar functional dependencies on 𝐯 (which is clearly the case for 
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the neighboring elements of the gasket profile patterns illustrated in Figure 1), but it also allows 

other elements of 𝐟(𝐯) to have very different dependencies on 𝐯. 

 However, when the data are high dimensional (i.e., large n), fitting a neural network with n 

nodes in the output layer is computationally intensive and can also be unstable. Consequently, 

instead of using the n-dimensional vectors {𝐱𝑖:  𝑖 = 1 , 2 , 3 , … , 𝑁} as the output of the neural 

network, we use the r-dimensional vectors {𝐞𝑖:  𝑖 = 1 , 2 , 3 , … , 𝑁} of the first r PCA scores (r 

need not be the same as P). If we denote the fitted neural network for predicting 𝐞 (as a function 

of 𝐯) by 𝐠̂(𝐯), an estimate of 𝐟(⋅) can be constructed via 𝐟(𝐯) = [𝐪1, 𝐪2, … 𝐪𝑟]𝐠̂(𝐯), where {𝐪𝑗 ∈

𝑅𝑛: 𝑗 = 1, … , 𝑟} denote the r eigenvectors associated with the r PCA scores that comprise 𝐞. To fit 

the neural network model, we used the R package nnet with cross-validation to choose the number 

of nodes in the hidden layer and the shrinkage parameter.   

Step 4. Use a graphical user interface (GUI) to visualize the estimated 𝐟(𝐯) in the profile geometry 

space.  

 In our examples, we use a Matlab GUI to visualize the estimated manifold, which ultimately 

helps visualize the nature of the variation patterns and identify their root causes. We use p slide 

bar controls to represent the p elements of 𝐯, which represent the p variation sources. As an user 

varies the elements of 𝐯 using the slide bars, the n elements of 𝐟(𝐯) are plotted dynamically in the 

profile geometry space (see Figure 10, discussed shortly, for an illustration of the GUI). 

Interactively dragging a slide bar back-and-forth serves to animate and visualize the nature of the 

profile-to-profile variation caused by the corresponding variation source. The intent is to provide 

the user with insight on the nature of the variation, which, when coupled with engineering 

knowledge of the manufacturing process, helps to identify the root causes of the variation.  

 Before revisiting the gasket bead example, we next illustrate the preceding steps with an 

example involving image profile data.  

 Example with Image Data. Image data are increasingly common in manufacturing quality 

control (Megahed, et al., 2011). In this example, we analyze a sample of 400 penny images. To 

simulate variation patterns we translated and rotated the pennies in each image, and we also added 
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random noise to each image. Figure 5 shows a random sample of 25 of the 400 penny images. The 

size of each image is 32×32 = 1024 pixels, so that the measurement vector 𝐱𝑖 for penny image i is 

a 1024-length vector, each element of which represents the grayscale level (scaled to the interval 

[0,1]) of the corresponding pixel. The two simulated variation patterns were a translation of the 

penny over an arc-shaped trajectory and a rotation of the penny. It is somewhat difficult to discern 

the nature of the two patterns from the raw image data in Figure 5. As we will demonstrate shortly, 

the patterns become much clearer using the manifold learning and visualization approach.   

  

Figure 5. A subsample of 25 noisy penny images with two underlying variation patterns.  

 We begin (Step 1) by applying linear PCA to the sample {𝐱𝑖:  𝑖 = 1 , 2 , 3 , … , 400} of the 

1024-dimensional data. Figure 6 shows a scatterplot of the first 3 PCA scores, which demonstrates 

a pronounced nonlinearity. Figure 7 is a scree plot of the first 20 eigenvalues, which account for 

90.02% of the total variance in 400 images. We retained P = 20 principal components and worked 

with the sample {𝐞𝑖:  𝑖 = 1 , 2 , 3 , … , 400} of 20-dimensional PCA score vectors. We then applied 

(Step 2) the ISOMAP manifold learning algorithm to {𝐞𝑖:  𝑖 = 1 , 2 , 3 , … , 400} with p = 2, for 

which the estimated manifold coordinates {𝐯̂𝑖 = [𝑣1,𝑖, 𝑣2,𝑖]
T

:  𝑖 = 1 , 2 , 3 , … , 400} are plotted in 

Figure 8. 
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Figure 6. 3D scatterplot of the first 3 linear PCA scores for the penny image data 

 
Figure 7. Scree plot showing the proportion and cumulative proportion of variance for the first 

20 linear principal components for the penny image data. 

 
Figure 8. Estimated coordinates for the 2-dimensional representation of the manifold for the 

penny image data using the ISOMAP algorithm. The 25 open red circles correspond to the 25 

penny images plotted in Figure 9. 
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 The manifold coordinates in Figure 8 provide little direct insight into the nature of the variation 

patterns. To understand the nature of the variation patterns, we next fit (Step 3) a multi-response 

neural network model using the two-dimensional data {𝐯̂𝑖 = [𝑣1,𝑖,𝑣2,𝑖]
𝑇

:  𝑖 = 1 , 2 , … , 400} as the 

input and the PCA score vectors {𝐞𝑖 ∈ 𝑅100:  𝑖 = 1 , 2 , 3 , … , 400} as the output. We chose r = 

100, because it accounted for almost all (99.7%) of the variation in the data. Note that the data to 

which the neural network model was fit were comprised of N = 400 rows/observations, p = 2 input 

variable columns, and r = 100 output variable columns. Denoting the fitted neural network by 𝐠̂(𝐯), 

we took the estimated manifold to be 𝐟(𝐯) = [𝑓1(𝐯), 𝑓2(𝐯), … , 𝑓1024(𝐯)]
𝑇

= [𝐪1, 𝐪2, … , 𝐪100]𝐠̂(𝐯). 

As a static visualization of the nature of the two variation patterns represented by the two-

dimensional manifold, Figure 9 plots 25 different penny images. Each image in Figure 9 is a plot 

of 𝐟(𝐯) in the profile geometry space for 𝐯 corresponding to one of the 25 open red circles in 

Figure 8. Scanning across each row of Figure 9 indicates that the variation pattern corresponding 

to 𝑣1 is an arc-shaped spatial translation of the pennies. Similarly, scanning down each column of 

Figure 9 indicates that the variation pattern corresponding to 𝑣2 is a rotation of the pennies. These 

agree quite closely with the two variation patterns that were introduced to the image data. 

Compared to the random sample of raw penny images in Figure 5, the nature of the patterns is 

much easier to visualize in Figure 9.  

 

Figure 9. Static visualization of the estimated variation patterns represented by the two-

dimensional manifold. The 25 images are plots of 𝐟(𝐯) for values of 𝐯 coinciding with the 25 

𝑣1 

𝑣2 
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open red circles in Figure 8. Scanning across each row, the variation pattern corresponding to 𝑣1 

is an arc-shaped spatial translation of the pennies; scanning down each column, the variation 

pattern corresponding to 𝑣2 is a rotation of the pennies. 

 While the visualization in Figure 9 is static (suitable for published paper format), a dynamic 

visualization is typically more effective at conveying the nature of the profile-to-profile variation 

patterns. Figure 10(a) depicts a Matlab GUI that we have used for interactive dynamic visualization 

of the profile-to-profile variation patterns. The GUI dynamically plots the estimated 𝐟(𝐯) as the 

user varies the elements of 𝐯 using slide bar controls. Because p = 2 for the penny image data, 

there are two slide bars in Figure 10(a) representing 𝑣1 and 𝑣2. As the user moves the 𝑣1 slide bar 

back-and-forth, the arc-shaped translation pattern is animated as shown in the top panel of Figure 

10(b). Likewise, as the user moves the 𝑣2  slide bar back-and-forth, the rotational pattern is 

animated as shown in the bottom panel of Figure 10(b). 

 
Figure 10. (a) Interactive graphical visualization tool interface for conveying the nature of the 

variation patterns estimated from manifold learning and (b) six different snapshots of the 

visualization corresponding to six different combinations of v1 and v2 specified by the slide bars. 

Compare to the static visualization in Figure 9. 

 It should be noted that if one knew in advance that the image-to-image variation consisted 

exclusively of translations and rotations, then a parametric modeling approach in which one used 

image processing techniques specifically to estimate the amount of rotation and translation of each 

penny would obviously estimate the patterns more effectively than manifold learning, which does 

not take into account any advance knowledge of the nature of the variation. The strength of the 

manifold learning approach is its generality and applicability to situations in which one has no 

(a) (b) 
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advance knowledge or parametric models of the variation and, instead, seeks to discover the nature 

of the variation based only on a sample of profiles. We discuss this further in Section 6.2. 

 Gasket Bead Example.  The results of applying the manifold learning approach to the gasket 

bead data are shown in Figure 11. Figure 11(a) is a plot of the estimate manifold coordinates {𝐯̂𝑖 =

[𝑣1,𝑖, 𝑣2,𝑖]
T

:  𝑖 = 1 , 2 , 3 , … , 400} for a sample of 400 gasket profiles. The ISOMAP algorithm 

was applied to the linear PCA scores with the top P = 3 scores retained. Figure 11(b) is a plot of 

the estimated manifold 𝐟(𝐯) = [𝑓1(𝐯), 𝑓2(𝐯), … , 𝑓50(𝐯)]
T
 in the profile geometry space (analogous 

to Figure 9 for penny images) for the 10 values of 𝐯 = [𝑣1, 𝑣2]𝑇 indicated by the open red circles 

in Figure 11(a). The nature of the estimated patterns from Figure 11(b) is quite close to that of the 

patterns shown in Figure 3(a), with 𝑣1 representing the bead flattening pattern and 𝑣2 representing 

the left-right bead translation pattern. Similar to what is illustrated in Figure 10, a GUI with slide 

bar controls for 𝑣1 and 𝑣2 could be used to animate the flattening and translation patterns.  

 
Figure 11. For the gasket bead example, (a) scatterplot of the estimated two-dimensional 

manifold coordinates 𝐯̂𝑖 = [𝑣1,𝑖, 𝑣2,𝑖]
T
; and (b) plot of the estimated manifold 𝐟(𝐯) for ten 

different values of 𝐯 = [𝑣1, 𝑣2]𝑇 corresponding to the open red circles in (a). 

5. Dose-response profile example 

 As an example of the NLM model xji = xi(uji) = f(uji, i) + wji (i is the profile index; uji is the 

jth domain location at which profile i is measured; xji and wji are the profile measurement and 

random error at location j on profile i, respectively), Williams, Birch, Woodall, and Ferry (2007), 
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Williams, Woodall, and Birch (2007), and Jensen and Birch (2009) considered the drug dose-

response model  

 𝑥𝑗𝑖 = 𝜃1𝑖 +
𝜃2𝑖−𝜃1𝑖

1+(𝑢𝑗𝑖 𝜃3𝑖⁄ )
𝜃4𝑖

+ 𝑤𝑗𝑖,               (1) 

where uji a scalar drug dosage, xji is the response of a subject to dosage xji for batch i of the drug, 

and 𝛉𝑖 = [𝜃1𝑖 , 𝜃2𝑖 , 𝜃3𝑖 , 𝜃4𝑖]𝑇 are unknown parameters that characterize the dose-response profile 

for batch i. The parameters 𝛉𝑖 vary randomly from batch-to-batch. If we restrict uji = uj (all profiles 

are measured at the same domain locations) their stacked version of the NLM model can be written 

as  𝐱𝑖 = 𝐟(𝛉𝑖) + 𝐰𝑖 ,, which is the same as our profile variation model with the parameters 𝛉𝑖 

acting as the parameterized variation sources vi.  

 The aforementioned papers assumed the parametric model (1) is known in advance, which is 

equivalent to assuming the nature of the variation is known in advance, and their objective was to 

monitor for changes in the profile parameters 𝛉𝑖 . In contrast, our manifold learning and 

visualization approach could be used to discover an appropriate parameterization that captures the 

nature of the major sources of profile-to-profile variation (i.e., profile-to-profile variation in the 

parameters 𝛉𝑖), which we illustrate in the online supplement to this article on the Technometrics 

website. 

6. Discussion 

6.1 A method for choosing p 

 In Step 2, we use a manifold learning algorithm to estimate the p-dimensional representation 

of the original n-dimensional data. The parameter p is the intrinsic dimension of the manifold (in 

our context, the number of distinct variation sources), and it must be chosen by the user. In this 

section, we present a simple graphical approach for choosing an appropriate value for p. 

 We can view the output 𝐟(𝐯̂𝑖) of our algorithm as a lower-dimensional approximation of  𝐱𝑖. 

Specifically, 𝐟(𝐯̂𝑖)  represents a p-dimensional approximation (using the nonlinear manifold 

coordinates 𝐯̂𝑖) of the n-dimensional vector  𝐱𝑖. Consequently, ‖𝐱𝑖 − 𝐟(𝐯̂𝑖)‖ represents the error in 

the approximation, which should theoretically decrease to zero as p increases to n. If a small value 
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is selected for p, below the true dimension of the manifold, the error should decrease markedly as 

p is increased. On the other hand, if a large value is selected for p, above the true dimension of the 

manifold, then further increasing p should decrease the error by only a small amount, consistent 

with including some of the noise component in manifold approximation. In light of this, our 

procedure for selecting p is to plot the relative error 

 𝑅𝐸 =
∑ ‖ 𝐱𝑖−𝐟(𝐯̂𝑖)‖𝑁

𝑖=1

2

∑ ‖ 𝐱𝑖−𝐱̅‖𝑁
𝑖=1

2                 (2) 

versus p and look for the elbow in the curve. In (2), 𝐱̅ = ∑ 𝐱𝑖
𝑁
𝑖=1  is the sample average, and RE 

represents the proportion of total variance in {𝐱𝑖:  𝑖 = 1 , 2 , 3 , … , 𝑁} that is not accounted for by 

its p-dimensional manifold representation. This approach is analogous to looking for the elbow in 

a cumulative scree plot to choose the appropriate number of eigenvalues in linear PCA, because 

𝐟(𝐯̂𝑖) is analogous to the projection of 𝐱𝑖 onto the space spanned by the first p eigenvectors in PCA. 

 Figure 12 illustrates the approach for the gasket bead example, for which there were truly p = 

2 variation sources present. There is a distinct elbow at p = 2 in Figure 12, which indicates that the 

two-dimensional estimated manifold accounted for most of the variation in the original data.  

 
Figure 12. For the gasket bead example, illustration of how a plot of RE versus p is used to 

select an appropriate value for the dimension p of the manifold. 

6.2 Feature discovery versus known feature extraction and profile registration  

 There is a large body of work on parametric registration and feature extraction for profile and 

image data (e.g., Dryden and Mardia, 1998, Ramsay and Silverman, 2005). Such work assumes 
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essentially the same NLM-type model xi(u) = f(u, i) + error discussed in the introduction. Like 

the NLM work reviewed in the introduction, it also assumes the function f(,) is of known, 

predetermined form, and the parameters i (which vary from profile to profile) have predetermined 

meaning. Given the data for profile number i, the profile registration objective is to estimate/extract 

the value of the parameters i so that the functional representation f(u, i) best matches the profile 

data. This is fundamentally different than the manifold learning method of this paper, for the same 

reason that the NLM work reviewed in the introduction is fundamentally different:  Our objective 

is to discover the nature of the function f(,) and a corresponding parameterization  that represents 

the profile-to-profile variation, with no prior knowledge of what this function or parameterization 

might be. 

 The difference boils down to whether one knows in advance what one is looking for, regarding 

the nature of the profile-to-profile variation. In our penny image example, if one knew in advance 

that image-to-image variation was comprised entirely of translations and rotations of the pennies, 

then image registration methods could have been used to identify the amount of translation and 

rotation in each image. In this case, the function f(,) would be predetermined based on rigid body 

kinematics and computer vision modeling,  would be a 3-dimensional vector representing the 

rigid body motion of the penny in a plane, and the profile analysis objective would have been to 

find the value of  for which the function f(,) best matches the observed data for each profile.  

 In order to use such parametric image registration methods, clearly one must know the nature 

of the variation and its mathematical model f(,) in advance.  Without using any prior knowledge 

of this function, the manifold learning approach was able to discover that the image-to-image 

variation was a translation and a rotation, as illustrated clearly in Figures 9 and 10. Taking into 

account the knowledge of the nature of the variation, the parametric image registration approach 

obviously would have estimated the translations and rotations more accurately and efficiently. 

However, the results in Figures 9 and 10 still demonstrate the power of the manifold learning 

approach to discover the nature of previously unknown and unmodeled variation.   
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 It should be noted that there is another body of work on nonparametric profile/image 

registration (Qiu and Xing 2013a, Xing and Qiu, 2011), but this also is fundamentally different 

than our manifold learning approach. Parametric registration methods use a low-dimensional 

parametric transformation (via ) of known, predetermined form to best match the profile data to 

its mathematical model or some template profile. In contrast, nonparametric registration methods 

use some smoothly varying local transformation (e.g., a locally linear stretching with the amount 

of stretching varying smoothly over the profile domain variable u) to transform or warp each 

profile to best match some template or model. Because the transformations are nonparametric and 

do not represent each profile registration via a small set of parameters , it would be difficult to 

use them as a basis for discovering and visualizing the nature of the underlying variation via 

developing low-dimensional visualization controls like the ones that we use with our manifold 

learning method (e.g., the two slide bar controls in Figure 10 associated with the two learned 

manifold coordinates 𝑣1 and 𝑣2). 

 However, using the manifold learning approach in conjunction with a profile registration 

method may be an attractive strategy for situations in which known variation sources are present 

and their effects are easily modeled (e.g., the penny image translation and rotation or the 

translational pattern for the gasket bead in Figure 1(b)), but additional unknown variation sources 

are also present. The profile registration method could be used as a preprocessing step to first 

estimate the parameters that represent the variation sources of known, predetermined form. Then, 

the manifold learning approach could be used on the residual errors from the registration step, in 

order to discover the nature of any additional variation sources beyond the known ones. Apley and 

Lee (2010) developed an analogous method for simultaneously identifying premodeled and 

additional unmodeled variation sources, but for the situation in which all patterns are linear. For 

the nonlinear situation, when profiles have complex shape and/or are very high-dimensional, 

extracting features from the profile to be used in the registration process (e.g., as in Qiu and Xing, 

2013b) may also be useful.  
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7. Conclusions 

 This paper has presented a manifold learning based approach to identify and visualize the 

nature of profile-to-profile variation in a sample of profile data. Relative to plotting the raw profile 

data {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁} , plotting the estimated manifold 𝐟(𝐯) as 𝐯 varies generally provides 

much clearer visualization of the nature of the variation patterns. For example, compare the raw 

penny images plotted in Figure 5 versus the estimate manifold for the pennies plotted in Figure 9. 

In general, the manifold learning approach facilitates visualization of the variation for at least three 

reasons. First, manifold learning inherently reduces the level of noise in the estimated 𝐟(𝐯), relative 

to noise present the original data, leaving the systematic variation patterns more visible. This is 

analogous to how linear PCA reduces noise levels. Second, the p coordinates of the p-dimensional 

manifold are kept distinct, so that the individual patterns can be visualized as each element of 𝐯 is 

varied individually. In contrast, when plotting the raw profiles {𝐱𝑖:  𝑖 = 1 , 2 , … , 𝑁}, comparing 

any sequence of profiles will reflect the combined effects of all p variation sources mixed together. 

Third, and perhaps most importantly, the manifold learning visualization orders the profiles in 

terms of increasing values of each element of 𝐯. For example, 𝑣1 smoothly increases as one scans 

left-to-right in Figure 9, and 𝑣2  smoothly increases as one scans bottom-to-top. This smooth 

ordering of the profiles according to the effects of each variation source allows the nature of the 

patterns to be seen much more clearly than simply plotting a sequence of raw profiles, for which 

the effects of the variation sources are in random, or partially random, order.  

 Finally, our approach has a distinctly different objective than most profile monitoring work. 

Namely, our objective is exploratory (Phase I) discovery of the nature of the variation across a 

sample of profiles, as opposed to monitoring (Phase II) to detect changes in the profiles. However, 

the manifold learning approach could also be used to discover an appropriate parametric model 

structure, for example, to serve as the basis for the Phase II NLM monitoring. This may be 

particularly beneficial for complex, high-dimensional profile data, for which it is difficult to 

postulate appropriate parametric mathematical models and for which extreme dimensionality 

reduction is helpful. 
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