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ABSTRACT 

 Gaussian process modeling, or kriging, is a popular method for modeling data from 

deterministic computer simulations, and the most common choices of covariance function are 

Gaussian, power exponential, and Matérn. A characteristic of these covariance functions is that 

the basis functions associated with their corresponding response predictors are localized, in the 

sense that they decay to zero as the input location moves away from the simulated input sites. As 

a result, the predictors tend to revert to the prior mean, which can result in a bumpy fitted 

response surface. In contrast, a fractional Brownian field model results in a predictor with basis 

functions that are nonlocalized and more sigmoidal in shape, although it suffers from drawbacks 

such as inability to represent smooth response surfaces. We propose a class of Brownian 

integrated covariance functions obtained by incorporating an integrator (as in the white noise 

integral representation of a fractional Brownian field) into any stationary covariance function. 

Brownian integrated covariance models result in predictor basis functions that are nonlocalized 

and sigmoidal, but they are capable of modeling smooth response surfaces. We discuss 

fundamental differences between Brownian integrated and other covariance functions, and we 

illustrate by comparing Brownian integrated power exponential with regular power exponential 

kriging models in a number of examples. 
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1. INTRODUCTION 

 Computer simulation is widely used in many branches of science and engineering and is still 

gaining momentum in terms of application areas. The fidelity and complexity of computer 

simulations have also advanced significantly, which renders many simulations still very time-

consuming to run in spite of advances in computing power. To deal with this, metamodels (or 

emulators) are often used to approximate the simulation response surface based on a finite 

number of evaluations, which might be constrained by the simulation budget. Introduced for this 

purpose by Currin et al. (1988) and Sacks, Welch, Mitchell and Wynn (1989), the kriging (aka 

random field regression or Gaussian process modeling) approach is a useful and popular method 

in practice that has found its way into many textbooks on the topic of metamodeling the output 

of computer simulations (Santner, Williams and Notz 2003; Fang, Li and Sudjianto 2006).   

 Suppose we select a set of n distinct input sites S = {x1, x2, …, xn} and evaluate the scalar 

simulation response function y(x) at these input sites, where x = [x1, x2, …, xd]T denotes the set of 

d input variables. Let y = [y1, y2, …, yn]T = [y(x1), y(x2), …, y(xn)]T denote the corresponding n 

response values. Kriging models the response surface y(x) as a realization of a stochastic random 

field Y(x) over the d-dimensional input variable space. The most commonly used random fields 

are Gaussian random fields (GRFs), with constant mean function E[Y(x)] = µ and covariance 

function R(x, x') = Cov[Y(x), Y(x')]. A widely used covariance function is the power exponential 

(PEXP) covariance  

𝑅(𝐱,𝐱′) = 𝜎2 ∏ 𝑒𝑒𝑒{−|𝜙𝑖(𝑒𝑖 − 𝑒′𝑖)|𝜈}𝑑
𝑖=1 ,                                                        (1) 

where σ2 is the prior variance of Y(•), and Φ = diag{φ1, φ2, …, φd} and v (1 ≤ v ≤ 2) are the 

lengthscale and exponent parameters that reflect the smoothness of the GRF. When v = 2, the 

covariance structure in (1) is called a Gaussian covariance. With a constant mean, the approach 

is referred to as ordinary kriging; whereas for a nonconstant mean that is a function of x 

(typically a polynomial with unknown coefficients), the approach is referred to as universal 

kriging. Many researchers believe there is little need to include a non-constant mean function in 

standard kriging models (Welch et al. 1992), and this is especially the case for the covariance 
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model that we propose in this paper because of its nonlocalized nature (see Section 4.1). 

Consequently, we consider only a constant mean. 

 The kriging predictor 𝑦�(𝐱) of y(x) is defined as the best linear unbiased predictor of Y(x) 

given y, or equivalently, the posterior mean predictor in an empirical Bayesian framework (with 

the MLEs of the lengthscale parameters viewed as fixed), which is (Stein 1999) 

𝑦�(𝐱) = �̂� + 𝐫𝑇(𝐱)𝐑−1(𝐲 − �̂�𝟏).                                               (2) 

Here, R is an n×n matrix whose ith row, jth column element is R(xi, xj), r(x) is an n×1 vector 

whose ith element is R(x, xi), 1 is a n-length column vector of ones, and �̂�= [1TR-11]-11TR-1y.  

 Although GRFs with Gaussian, PEXP, and Matérn covariance are the most common choice 

of kriging model for computer simulations (Santner, Williams and Notz 2003), they have a 

characteristic that can be undesirable, depending on the application. Namely, the fitted response 

surface can have a bumpy appearance because the predictor 𝑦�(𝐱) reverts to the mean as the 

predictive location 𝐱 deviates from the simulation sites. A number of prior works have discussed 

this phenomenon and/or developed methods to mitigate it (e.g., Li and Sudjianto 2005, Joseph 

2006, Xiong, at al. 2007, Joseph, Hung and Sudjianto 2008, Staum 2009, Gramacy and Lee 2012, 

Ba and Joseph 2012, Zhang and Apley 2014). To illustrate, consider the following example from 

Xiong et al. (2007), also considered in Ba and Joseph (2012), in which d = 1 and the response 

surface is the function y(x) = sin(30(x – 0.9)4)cos(2(x – 0.9)) + (x – 0.9)/2. Suppose we have 

observed the simulation response at the 15 input sites shown in Figure 1, which constitute 12 

evenly spaced points over the region [0, 0.45] plus 3 additional points evenly spaced over the 

region [0.45, 1]. The input sites were more densely spaced over the [0, 0.45] region because the 

response surface varied more over that region. When the data are fitted by a PEXP covariance 

model with a constant prior mean, the maximum likelihood estimates (MLEs) of the parameters 

are �̂� = −0.15 , 𝑣� = 1.79, 𝜙� = 10.9751 , and 𝜎�2 = 0.10 , and the corresponding kriging 

predictor and 95% prediction intervals (PIs) are plotted in Figure 1(a). Notice that 𝑦�(𝑒) has a 

bumpy appearance over the region 𝑒 > 0.5 and tends to revert to the mean �̂� as x deviates from 
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the input sites. Similar but even more extreme reversion to the mean occurs in this example if we 

use the Gaussian covariance function (not shown here) instead of PEXP. 

        
 

Figure 1.  Plot of the function y(x) = sin(30(x – 0.9)4)cos(2(x – 0.9)) + (x – 0.9)/2 (dark dashed line), the kriging predictor 𝑦�(𝑒) 
(solid line), and 95% PIs (gray dotted line) for (a) PEXP covariance function and (b) FBF covariance function. The horizontal 

dashed line in (a) is the fitted PEXP mean �̂�. 

 Collecting more observations at additional input sites (e.g., especially over the region 

𝑒 ∈ [0.5, 1] in Figure 1) would result in a less bumpy 𝑦�(𝑒). However, one could argue that the 

input sites are already nearly dense enough to capture the overall trend of the response surface in 

this region, and the prediction with our proposed covariance model (shown later, in Figure 3) 

looks quite reasonable. More generally, there may be barriers that prevent one from collecting a 

“sufficiently dense” set of input sites. A complex computer simulation may involve a large 

number of input variables, and input sites inevitably are sparser in higher dimensional space. 

Moreover, metamodels are most useful precisely when the computational expense of running the 

simulation is high, in which case there may not be sufficient computational budget to ensure a 

dense set of input sites. 

 Ultimately, a bumpy appearance to 𝑦�(𝐱) in Figure 1(a) is a consequence of the localized 

nature of the basis functions (as defined in Section 4.1) associated with 𝑦�(𝐱), each of which 

peaks at a simulation site xi and decays to zero as 𝐱 moves away from xi. Motivated by the goal 

of avoiding a bumpy 𝑦�(𝐱) that reverts to the mean, Zhang and Apley (2014) investigated a 
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fractional Brownian field (FBF) as the GRF covariance model. In comparison to Figure 1(a), 

Figure 1(b) shows that the kriging predictor for a FBF model does not revert to the mean. An 

FBF can be viewed as a certain integral of a white noise GRF [see (6), later], and Zhang and 

Apley (2014) discuss how this integration results in nonlocalized basis functions via which the 

FBF model avoids a bumpy predictor that reverts to the mean. They also note that a drawback of 

the FBF model is that it may not provide a smooth enough predictor to effectively represent 

many smooth response surfaces, evidence of which can be seen in Figure 1(b) and in Figure 5, 

discussed later.  

 In this article, we propose a new class of GRF covariance models that result in nonlocalized, 

sigmoidally shaped basis functions, but that can be smoother than the FBF basis functions and 

provide better representation of smooth response surfaces. The core idea is as follows. In the 

white noise integral representation of an FBF, we replace the white noise GRF with any GRF 

having a stationary covariance function (e.g., PEXP, Gaussian, Matérn, etc.). We refer to the 

resulting model as a Brownian integrated (BI) GRF and the associated covariance function as a 

BI covariance function. For all of the examples in this paper, we use a PEXP covariance function 

for the underlying GRF to be integrated, and we refer to this as a BIPEXP model.  

 The relationship between the underlying stationary GRF and its BI counterpart is analogous 

to the relationship between a stationary autoregressive moving average (ARMA) time series 

model and its ARIMA counterpart. ARIMA models often perform quite well in forecasting time 

series that tend to wander, whereas ARMA models are typically better for time series that 

fluctuate up and down while remaining centered about some long term mean. In Section 4.4 we 

compare the performances of PEXP and BIPEXP models for a number of real examples and 

mathematical test function examples from the literature. The BI covariance model performed 

better than its nonintegrated counterpart in all of our real examples, but the results were mixed 

for the mathematical test functions. We conjecture that this is because the real examples involve 

more nicely behaved response surfaces (from deterministic computer simulations of real physical 

systems, with no measurement error), whereas the mathematical test functions tend to fluctuate 
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and are more wiggly with more local minima and maxima. A common perception in machine 

learning is that nicely behaved response surfaces are usually better modeled via sigmoidal basis 

functions than via localized basis functions (e.g., via a neural network versus a radial basis 

function network), and vice-versa for response surfaces with many local minima and maxima, 

and the same may be true for a BIPEXP versus PEXP model.  

 The format of the remainder of the paper is as follows. In Section 2 we review the FBF 

model, and in Section 3 we define our BI covariance model and discuss a number of issues 

related to its use for kriging. In particular, we show that the BI covariance can be conveniently 

evaluated via a one-dimensional integral, regardless of the dimension d of the input domain over 

which the BI process is defined. Section 4 discusses various characteristics of a BI covariance 

model, such as sigmoidal versus localized basis functions, and compares the performances of 

PEXP versus BIPEXP models for a number of examples. Section 5 concludes the paper. 

2. REVIEW OF FBFS FOR KRIGING 

 In ordinary kriging, the response surface is modeled as a realization of a GRF  

 Y(x) = µ + Z(x),                  (3) 

where µ is the mean, and Z(x) is a GRF with zero mean and covariance function R(•,•). The 

predictor is given by (2), and the prediction mean square error (MSE) is 

 𝜎2(𝐱) = 𝑅(𝐱,𝐱) − 𝐫𝑇(𝐱)𝐑−1𝐫(𝐱) + [1 − 𝟏𝑇𝐑−1𝐫(𝐱)]2/𝟏𝑇𝐑−1𝟏,           (4) 

which coincides with the posterior variance in an empirical Bayesian framework (Currin, 

Mitchell, Morris and Ylvisaker, 1991) in which the covariance parameters are treated as fixed, 

and a noninformative prior is assumed for µ.  

 Zhang and Apley (2014) considered an FBF as the GRF covariance model for kriging. A 

standard FBF of index 0 < p < 2 is a random field 𝐵𝑝: 𝑅𝑑 → 𝑅 satisfying (see Lindstrom, 1993) 

(i) Bp(0) = 0 with probability one; 

(ii) for all 𝐱1,𝐱2, … , 𝐱𝑛 ∈ 𝑅𝑑 , the random vector Bp(𝐱1), Bp(𝐱2), …, Bp(xn) is jointly 

Gaussian with mean zero; 
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(iii) for all 𝐱1,𝐱2 ∈ 𝑅𝑑, 𝐸 ��𝐵𝑝(𝐱1) − 𝐵𝑝(𝐱2)�
2
� = ‖𝐱1 − 𝐱2‖𝑝, or equivalently, 

          𝐶𝐶𝑣�𝐵𝑝(𝐱1),𝐵𝑝(𝐱2)� = 1
2

(‖𝐱1‖𝑝 + ‖𝐱2‖𝑝 − ‖𝐱1 − 𝐱2‖𝑝);                  (5) 

(iv) sample paths are continuous with probability one. 

 From properties (i) and (ii), it follows that a FBF has increments Bp(x0+δ)−Bp(x0) that are 

stationary in the sense that Cov[Bp(x0+δ1)−Bp(x0), Bp(x0+δ2)−Bp(x0)] = 1
2

(‖𝛅1‖𝑝 + ‖𝛅2‖𝑝 −

‖𝛅1 − 𝛅2‖𝑝) does not depend on x0. Moreover, Lindstrom (1993) has shown that a FBF can be 

represented as the white noise integral 

𝐵𝑝(𝐱) = ∫ 𝑘𝑝,𝑑�‖𝐱 − 𝐳‖(𝑝−𝑑) 2⁄ − ‖𝐳‖(𝑝−𝑑) 2⁄ �𝑊(𝐳)𝑑𝐳ℝ𝑑  ,                      (6) 

where W(•) is a Gaussian white noise field on ℝd, and 𝑘𝑝,𝑑 is a constant that depends only on the 

index p and the dimension d (see (10) for details).  

 Aside from a few nuances such as choosing an arbitrary input site to serve as the origin (see 

Section 3.4), using an FBF model for kriging is a straightforward application of the standard 

kriging equations with the covariance function given by (5). The fact that Cov[Bp(x1), Bp(x2)] 

does not decay to zero as x2 deviates from x1 is what results in nonlocalized, sigmoidal basis 

functions for the FBF 𝑦�(𝐱). This is ultimately due the inclusion of an integrator in an FBF model, 

via the white noise integral representation (6). As discussed in Zhang and Apley (2014), this is 

the mechanism by which the FBF predictor avoids reversion to the mean and a bumpy 𝑦�(𝐱). This 

can be observed in the FBF predictor in Figure 1(b), for which the MLE of p was 1 (with p = d = 

1, the FBF predictor reduces to piecewise linear interpolation), and the MLE of 𝜙 was 0.9075. 

As noted in Zhang and Apley (2014), the main drawback of the FBF predictor is that it cannot 

adequately model many smooth response surfaces. With p = 1, the derivative of 𝑦�(𝐱) at each 

input site does not exist. Although the derivative exists at input sites for p > 1, in which case 

𝑦�(𝐱) is smoother than for p = 1, the second derivative of 𝑦�(𝐱) does not exist. Zhang and Apley 

(2014) provide a number of examples that illustrate how the FBF predictor eliminates the 

bumpiness in 𝑦�(𝐱) but also lacks adequate smoothness characteristics to effectively represent 

some response surfaces. They conclude that it is most effective for modeling response surfaces 
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that have abrupt features like jumps or sharp peaks. The BI covariance model that we define in 

the following section includes an integrator, like the FBF model, and inherits all of the 

characteristics attributed to this, but it is capable of modeling smooth response surfaces.  

3. THE BI-COVARIANCE MODEL FOR KRIGING 
3.1 Definition of the BI Gaussian Random Field 

We define a BI GRF as (6), but with the white noise field W(•) replaced by any zero-mean GRF 

𝐶(•) having stationary, isotropic covariance function:  

𝐵𝑝𝐶(𝐱) = ∫ 𝑘𝑝,𝑑�‖𝐱 − 𝐳‖(𝑝−𝑑) 2⁄ − ‖𝐳‖(𝑝−𝑑) 2⁄ �𝐶(𝐳)𝑑𝐳ℝ𝑑  .                       (7) 

Let 𝑅𝐶(‖𝐱 − 𝐱′‖) = 𝐶𝐶𝑣[𝐶(𝐱),𝐶(𝐱′)] denote the covariance function of 𝐶(•). The reason we 

assume isotropic covariance for 𝐶(•)  is to enable convenient calculation of the covariance 

function of 𝐵𝑝𝐶(𝐱) as described in Section 3.3. However, because anisotropy is usually necessary 

in kriging to capture lengthscale characteristics that differ in each input coordinate direction, we 

allow for this by introducing lengthscale parameters as described in Section 3.4.   

 With the notational convention in (7), a standard FBF is denoted by 𝐵𝑝𝑊(𝐱). As mentioned in 

the introduction, we view the integration of the stationary field 𝐶(•) in (7) as analogous to 

integrating a stationary ARMA time series model to yield an ARIMA model. Any stationary, 

isotropic covariance model for C(•) can be used, although we focus attention on a PEXP 

covariance model because of its popularity for modeling response surfaces in computer 

simulations of engineering systems.   

3.2 Some Statistical Characteristics of a BI Gaussian Random Field  

 It is straightforward to show that 𝐵𝑝𝐶(𝟎) = 0, and 𝐸�𝐵𝑝𝐶(𝐱)� = 0 for all x. Below, we derive 

an expression for  

𝑉𝐵(𝐱, 𝐱′) = 𝑉𝑉𝑉�𝐵𝑝𝐶(𝐱) − 𝐵𝑝𝐶(𝐱′)�                                             (8) 

and show that 𝐵𝑝𝐶(𝐱) is intrinsic stationary in the sense that 𝑉𝐵(𝐱,𝐱′) depends only on ‖𝐱 − 𝐱′‖ 

(see Cressie, 1991, for a discussion of intrinsic stationarity).  

 From (8) and (7), 
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 𝑉𝐵(𝐱, 𝐱′) = 𝑉𝑉𝑉�𝐵𝑝𝐶(𝐱) − 𝐵𝑝𝐶(𝐱′)� = 𝐸 ��𝐵𝑝𝐶(𝐱) − 𝐵𝑝𝐶(𝐱′)�
2
� 

  = 𝐸 �∫ 𝑘𝑝,𝑑 �‖𝐱 − 𝐳‖
𝑝−𝑑
2 − ‖𝐱′ − 𝐳‖

𝑝−𝑑
2 �ℝ𝑑 𝐶(𝐳)𝑑𝐳∫ 𝑘𝑝,𝑑 �‖𝐱 − 𝐳′‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳′‖

𝑝−𝑑
2 � 𝐶(𝐳′)𝑑𝐳′ℝ𝑑 � 

  = ∫ ∫ 𝑘𝑝,𝑑
2 �‖𝐱 − 𝐳‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳‖

𝑝−𝑑
2 � �‖𝐱 − 𝐳′‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳′‖

𝑝−𝑑
2 �ℝ𝑑ℝ𝑑 𝐸[𝐶(𝐳)𝐶(𝐳′)]𝑑𝐳𝑑𝐳′ 

  = ∫ ∫ 𝑘𝑝,𝑑
2 �‖𝐱 − 𝐳‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳‖

𝑝−𝑑
2 � �‖𝐱 − 𝐳′‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳′‖

𝑝−𝑑
2 �ℝ𝑑ℝ𝑑 𝑅𝐶(‖𝐳 − 𝐳′‖)𝑑𝐳𝑑𝐳′. 

Defining 𝐳′ = 𝐳 + 𝐲 and using a change of variables in the preceding gives 

        𝑉𝐵(𝐱, 𝐱′) = ∫ ∫ 𝑘𝑝,𝑑
2 �‖𝐱 − 𝐳‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳‖

𝑝−𝑑
2 � �‖𝐱 − 𝐳 − 𝐲‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐳 − 𝐲‖

𝑝−𝑑
2 �ℝ𝑑ℝ𝑑  

                                                                                                                         × 𝑅𝐶(‖𝐲‖)𝑑𝐳𝑑𝐲 

                       = ∫ ∫ 𝑘𝑝,𝑑
2 ∙ 1

2
[ℝ𝑑ℝ𝑑 �‖𝐱 − 𝐳‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
 

                            −�‖𝐱 − 𝐳‖
𝑝−𝑑
2 − ‖𝐱 − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
+ �‖𝐱′ − 𝐳‖

𝑝−𝑑
2 − ‖𝐱 − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
    

                            −�‖𝐱′ − 𝐳‖
𝑝−𝑑
2 − ‖𝐱′ − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
] ∙ 𝑅𝐶(‖𝐲‖)𝑑𝐳𝑑𝐲 

                       = ∫ 𝑘𝑝,𝑑
2 ∙ 1

2
∙ 𝑅𝐶(‖𝐲‖){∫ [ℝ𝑑ℝ𝑑 �‖𝐱 − 𝐳‖

𝑝−𝑑
2 − ‖𝐱′ − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
 

                            −�‖𝐱 − 𝐳‖
𝑝−𝑑
2 − ‖𝐱 − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
+ �‖𝐱′ − 𝐳‖

𝑝−𝑑
2 − ‖𝐱 − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
              

                            −�‖𝐱′ − 𝐳‖
𝑝−𝑑
2 − ‖𝐱′ − 𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
]𝑑𝐳}𝑑𝐲.                                                  (9) 

Lindstrom (1993) derives the result 

∫ �‖𝐱 − 𝐳‖
𝑝−𝑑
2 − ‖𝐲 − 𝐳‖

𝑝−𝑑
2 �

2
𝑑𝐳ℝ𝑑 = ‖𝐱 − 𝐲‖𝑝𝑘𝑝,𝑑

−2 .                                 (10) 

Combining (9) and (10) gives 

        𝑉𝐵(𝐱, 𝐱′) = ∫ 1
2
∙ 𝑘𝑝,𝑑

2 ∙ 𝑅𝐶(‖𝐲‖) ∙ 𝑘𝑝,𝑑
−2 ∙ 2(‖𝐱 − 𝐱′ + 𝐲‖𝑝 − ‖𝐲‖𝑝)𝑑𝐲ℝ𝑑  

                       = ∫ {‖𝐱 − 𝐱′ + 𝐲‖𝑝 − ‖𝐲‖𝑝}𝑅𝐶(‖𝐲‖)𝑑𝐲ℝ𝑑 ,                                                          (11) 

where we have used the result ∫ ‖𝐱 − 𝐱′ + 𝐲‖𝑝𝑅𝐶(‖𝐲‖)𝑑𝐲ℝ𝑑 = ∫ ‖𝐱 − 𝐱′ − 𝐲‖𝑝𝑅𝐶(‖−𝐲‖)𝑑𝐲ℝ𝑑  

= ∫ ‖𝐱′ − 𝐱 + 𝐲‖𝑝𝑅𝐶(‖𝐲‖)𝑑𝐲ℝ𝑑 , with the first equality following via the change of variables 

𝐲 → −𝐲. 

 From (11), and because 𝑅𝐶(‖𝐲‖) is isotropic, it follows that the variance 𝑉𝐵(𝐱,𝐱′) of the 

increment is a function of only ‖𝐱 − 𝐱′‖. To see this, suppose we have two other vectors 𝐳 and 𝐳′ 
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such that ‖𝐳 − 𝐳′‖ = ‖𝐱 − 𝐱′‖ . Then we can write 𝐱 − 𝐱′ = 𝐐(𝐳 − 𝐳′)  for some orthogonal 

matrix 𝐐. If we change the integration variable in (11) for 𝑉𝐵(𝐳, 𝐳′) from 𝐲 → 𝐐𝐲, it follows that 

𝑉𝐵(𝐳, 𝐳′) = 𝑉𝐵(𝐱,𝐱′), which implies that 𝑉𝐵(𝐱,𝐱′) depends only on ‖𝐱 − 𝐱′‖. Thus, 𝐵𝑝𝐶(𝐱) is an 

intrinsic stationary GRF. Furthermore, let 𝑅𝐵(𝐱,𝐱′) = 𝐶𝐶𝑣�𝐵𝑝𝐶(𝐱),𝐵𝑝𝐶(𝐱′)� denote the covariance 

function of 𝐵𝑝𝐶(𝐱). Because 𝐵𝑝𝐶(𝟎) = 0, it follows that 𝑉𝐵(𝐱,𝐱′) can be specified in terms of 

𝑅𝐵(𝐱,𝐱′), and vice-versa, via the relationship 

            2𝑅𝐵(𝐱, 𝐱′) = 𝑉𝐵(𝐱,𝟎) + 𝑉𝐵(𝐱′,𝟎) − 𝑉𝐵(𝐱,𝐱′) 

           = 𝑉𝐵(‖𝐱‖) + 𝑉𝐵(‖𝐱′‖) − 𝑉𝐵(‖𝐱 − 𝐱′‖),                                                       (12) 

where, with a slight abuse of notation, we have written 𝑉𝐵(𝐱, 𝐱′) = 𝑉𝐵(‖𝐱 − 𝐱′‖). We note that 

the function 𝑉𝐵(∙) depends on 𝑅𝐶(∙) and p, although we have suppressed this in the notation. 

 As stated in Lindstrom (1993), (6) is not valid for the case that p = d = 1, and neither is (7). 

However, (11) and (12) do still yield a valid covariance function for p = d = 1. Because the 

kriging approach described subsequently uses the covariance function, but not (7) directly, the 

approach remains valid for p = d = 1. 

3.3 Computing the Covariance Function of a BI Gaussian Random Field 

To be used for kriging, it is necessary to repeatedly compute 𝑅𝐵(𝐱,𝐱′) [via 𝑉𝐵(𝐱,𝐱′) and (12)] 

for various input values x and x'. For d = 1, (11) can be used to evaluate 𝑉𝐵(𝐱, 𝐱′) via the one-

dimensional integral. For d > 1, however, the d-dimensional integration in (11) is clearly 

computationally prohibitive. In this section we show that (11), and thus (12), can be evaluated 

via a one-dimensional integral for any d.  

 Because (11) is a function of only ‖𝐱 − 𝐱′‖, without loss of generality we can assume that 

𝐱 − 𝐱′ is aligned with the first coordinate axis, as illustrated in Figure 2. Define 𝐻 = ‖𝐱 − 𝐱′‖. 

For fixed H, because 𝑅𝐶(‖𝐲‖) is isotropic, the integrand in (11) depends only on r and θ, where 

we have defined r = ‖𝐲‖, and 𝜃 = cos−1[𝐲𝑇(𝐱′ − 𝐱) (𝑉 ∙ 𝐻)⁄ ] to be the angle between y and 

𝐱′ − 𝐱. Hence, the d-dimensional integral in (11) can be reduced to a two-dimensional integral 

using polar coordinates as follows and as illustrated in Figure 2. 
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Figure 2.  Illustration of how the variance of the BI increment in (11) can be calculated using a two-dimensional integral. 

 First note that the integrand of (11) assumes the constant value {‖𝐱 − 𝐱′ + 𝐲‖𝑝 −

‖𝐲‖𝑝}𝑅𝐶(‖𝐲‖) = �(𝐻2 + 𝑉2 − 2𝐻𝑉cos𝜃)𝑝/2 − 𝑉𝑝�𝑅𝐶(𝑉)  over the ring in Figure 2 that 

corresponds to the fixed values of r and θ. Moreover, the integral of a unit integrand over the 

ring is the circumference of the ring (for the d = 3 case), which is 𝑉(𝑉,𝜃) = 2𝜋𝑉 sin 𝜃, and the 

differential cross-sectional area element for the ring is 𝑉𝑑𝜃𝑑𝑉 . Hence, for the d = 3 case 

illustrated in Figure 2, the polar coordinate version of the integral of (11) becomes  

 𝑉𝐵(𝐻) = ∫ {‖𝐱 − 𝐱′ + 𝐲‖𝑝 − ‖𝐲‖𝑝}𝑅𝐶(‖𝐲‖)𝑑𝐲ℝ3  

  = ∫ ∫ �(𝐻2 + 𝑉2 − 2𝐻𝑉 ∙ cos 𝜃)𝑝 2⁄ − 𝑉𝑝�𝑅𝐶(𝑉)𝜋
0

∞
0 𝑉(𝑉,𝜃)𝑉𝑑𝜃𝑑𝑉 

 More generally, in higher dimensions, the circumference of the ring over which the integrand 

in (11) is constant (for fixed r and θ) is replaced by the surface volume of a d−2 dimensional 

sphere of radius 𝑉 sin𝜃  in d-dimensional space, which is 

𝑉(𝑉,𝜃) = 2𝜋(𝑑−1)/2(𝑉 sin𝜃)(𝑑−2) Γ �𝑑−1
2
�� , where Γ denotes the gamma function. Thus, for any 

d ≥ 2, the polar coordinate version of (11) becomes  

 𝑉𝐵(𝐻) = ∫ ∫ �(𝐻2 + 𝑉2 − 2𝐻𝑉 ∙ cos 𝜃)𝑝 2⁄ − 𝑉𝑝�𝑅𝐶(𝑉)𝜋
0

∞
0 𝑉(𝑉,𝜃)𝑉𝑑𝜃𝑑𝑉 

  = ∫ ∫ �(𝐻2 + 𝑉2 − 2𝐻𝑉 ∙ cos 𝜃)𝑝 2⁄ − 𝑉𝑝�𝑅𝐶(𝑉)𝜋
0

∞
0

2𝜋(𝑑−1)/2𝑟𝑑−1(sin𝜃)𝑑−2

Γ�𝑑−12 �
𝑑𝜃𝑑𝑉,             (13) 
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which further simplifies to (Wolfram, 2014) 

 𝑉𝐵(𝐻) = 2𝜋�
𝑑
2�

Γ�𝑑2�
∫ 𝑅𝐶(𝑉) ∙ 𝑉𝑑−1 ∙ �−𝑉𝑝 + (𝐻 + 𝑉)𝑝 ∙ 𝐹 �𝑑−1

2
,−𝑝

2
;𝑑 − 1; 4𝐻𝑟

(𝐻+𝑟)2�� 𝑑𝑉
∞
0         (14) 

where F(•,•;•;•) denotes the Gaussian or ordinary hypergeometric function (often denoted by 

2F1(•,•;•;•) in the literature), which in general is defined via an infinite sum.  

 Evaluating the infinite sum in the hypergeometric function may negate the benefits of 

reducing the two-dimensional integral in (13) to the one-dimensional integral in (14). However, 

when d is odd, the hypergeometric function simplifies to a function that can be easily computed 

without an infinite summation, as described in the online supplement. Consequently, if d is even, 

we recommend the trick of artificially increasing the dimension of the input space by one, adding 

an extra redundant dimension whose coordinate value is always 0 in the (d+1)-dimensional 

augmented input vector x. In this case, all of the input sites and any input value at which one 

wishes to predict the response will lie in a subspace that has one fewer dimension than the (d+1)-

dimensional space over which the BI Gaussian random process is defined. We have encountered 

no numerical problems (or problems of any type) caused by augmenting the dimension in this 

manner, and it allows the BI covariance function to be evaluated via the one-dimensional integral 

of (14) without having an integrand that must be evaluated as an infinite sum.  

 Although this even-d trick does not generally give the same results as if (14) were evaluated 

exactly for even d, the resulting covariance model may have no less conceptual appeal. One way 

to view the trick is that it is like having a simulation model in which d+1 inputs can be varied, 

but the experimenter decides to only vary the first d inputs when collecting the data, keeping the 

(d+1)st input constant. This happens frequently in practice, as complex simulation experiments 

rarely vary every input that can be varied. The primary presumption behind the even-d trick is 

that, in the hypothetical scenario in which the experimenter also were to vary the (d+1)st input, 

the response would behave as a BI covariance model in (d+1)-dimensional input space.  

 The expression (14) is valid for any isotropic covariance function 𝑅𝐶(𝑉) , such as the 

isotropic Gaussian covariance, isotropic Matérn covariance, or the isotropic version 
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𝑅(𝐱,𝐱′) = 𝜎2𝑒𝑒𝑒{−‖𝐱 − 𝐱′‖𝜈}                                                          (15) 

of the PEXP covariance. Notice that the PEXP covariance of (1) for 𝜈 < 2 is not isotropic (under 

Euclidean distance) even when Φ is the identity matrix. In the remainder of this paper, we use 

the isotropic PEXP covariance of (15) in the BIPEXP covariance model (lengthscale parameters 

are included via (16) later) Unless otherwise noted, the PEXP covariance model by itself will 

refer to the version in (1). In the literature, this seems to be more popular than the version in (15) 

with x−x' replaced by Φ[x−x'].  

3.4 Using the BI Covariance Model for Kriging  

 Except for a few nuances discussed in this section, using the BI covariance model for 

kriging is fairly straightforward, and (2) and (4) can be applied directly with the covariance 

calculated via (12) and (14) (for d ≥ 2) or (12) and (11) (for d = 1). In terms of handling the 

nuances, our treatment in this section mirrors that of Zhang and Apley (2014).  

 If we model the response surface as a BI GRF plus an unknown constant mean µ, then the 

constraint 𝐵𝑝𝐶(𝟎) = 0 implies that Y(0) = µ. In light of this, we arbitrarily choose one of the input 

sites (which we label x1) as the origin, view the observed response y1 at that input site as perfect 

prior knowledge of µ, and model the response surface as 

     𝑌(𝐱) = 𝑦1 + 𝐵𝑝𝐶�𝚽(𝐱 − 𝐱1)�,         (16) 

where 𝚽 = diag{𝜙1,𝜙2, … ,𝜙𝑑} are the lengthscale parameters with each 𝜙𝑖  > 0. The same as 

for the PEXP lengthscale parameters, a smaller 𝜙𝑖  means the response surface varies more 

slowly in the ith spatial coordinate.  

 For the remainder of the paper, let y denote the vector of n−1 remaining observations, R 

denote the (n−1)×(n−1) covariance matrix of y, etc.  For an FBF model, Zhang and Apley (2014) 

have shown that the choice of input site to serve as the origin is arbitrary in the sense that neither 

the likelihood function of y (and hence the MLE of the parameters), nor the posterior predictive 

distribution of Y(x) at any x (given y, and treating the MLEs as fixed parameters), depends on 
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which input site is chosen as the origin. The arguments used in Zhang and Apley (2014) apply 

directly to the present case of a BI GRF model.  

 It is well-known (see Cressie, 1991) that the kriging predictor can be expressed in terms of 

the variogram, which we have denoted by VB(H) for the BI random field, and one could use the 

variogram form to avoid having to choose an arbitrary input site as the origin. However, the 

covariance function is still required to calculate the MLEs of the parameters. Because of this, and 

because the covariance form of the kriging predictor is more familiar in engineering response 

surface modeling, we adopt the preceding convention in which an arbitrary input site is chosen as 

the origin. In this case, the BI kriging predictor in (2) becomes  

    𝑦�(𝐱) = 𝑦1 + 𝐫𝑇(𝐱)𝐑−1(𝐲 − 𝑦1 ∙ 𝟏),           (17) 

where 1 now denotes the (n−1)-length column vector of ones, and r(x) denotes the (n−1)-length 

column vector whose elements are {Cov[Y(x), Y(xi)]: i = 2, 3, . . ., n}. The elements of r and R 

are defined via Cov[Y(x), Y(x')] = RB(Φ(x−x1), Φ(x'−x1)) using (12) and (14) to calculate RB(•, •). 

The prediction MSE is 𝜎2(𝐱) = 𝑅(𝐱,𝐱) − 𝐫𝑇(𝐱)𝐑−1𝐫(𝐱), which is of the same form as (4) but 

with the right-most term omitted. The right-most term in (4) was due to the uncertainty 

associated with estimating µ, which is irrelevant for a BI covariance model.   

 To use any random field model for kriging, one must either choose or estimate each 

parameter (unless one marginalizes them in a fully Bayesian approach, which we do not use in 

this work). For the PEXP model, the parameters are 𝜇,𝜎2, 𝜈  and lengthscale parameters 

{𝜙1,𝜙2, … ,𝜙𝑑}. For the BIPEXP models, the parameters are µ (estimated implicitly as y1), 

𝑒,𝜎2, 𝜈  and lengthscale parameters {𝜙1,𝜙2, … ,𝜙𝑑}. Hence, relative to the PEXP model, the 

BIPEXP model involves only a single additional parameter p.  

 The likelihood function for the BIPEXP model is  

 𝐿(𝚽,𝑒; 𝐲) = 1
(2𝜋)(𝑛−1) 2⁄ |𝐑|1 2⁄ exp �− 1

2
(𝐲 − 𝑦1 ∙ 𝟏)𝑇𝐑−1(𝐲 − 𝑦1 ∙ 𝟏)�         (18) 

where [R]i,j = RB(Φ(xi+1−x1)), and Φ(xj+1−x1) is calculated as described above. Given specific 

values of �̂�, �̂� and �𝜙�1,𝜙�2, … ,𝜙�𝑑�, the MLE of 𝜎2 can be easily derived from (18) as 
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 𝜎�2��̂�, �̂�, �𝜙�1,𝜙�2, … ,𝜙�𝑑�� = 1
𝑛−1

(𝐲 − 𝑦1 ∙ 𝟏)𝑇𝐑′−1(𝐲 − 𝑦1 ∙ 𝟏)           (19) 

where [R']i,j is the same as [R]i,j but with 𝜎2  = 1. Thus, only 𝜈, 𝑒  and {𝜙1,𝜙2, … ,𝜙𝑑}  are 

estimated directly in the MLE procedure.  

 In the PEXP covariance model, the convention is to restrict v to lie in the closed interval [1, 

2], and we keep with this convention when we use a PEXP 𝑅𝐶(∙) in the BI covariance model. In 

a FBF model p is restricted to lie in the open interval (0, 2). However, we recommend restricting 

p to the interval [1, 2), which we do for all examples in this paper, unless otherwise noted. We 

use a lower bound of 1.0 on p for reasons discussed in the online supplement. Moreover, because 

RB(•, •) is continuous in p, numerical problems may surface if p is too close to 2. In light of this, 

we placed an upper bound of 1.99 on p for all examples in this paper in which p was estimated. 

How far below 2 the upper bound should be set depends on the numerical precision of the 

software and hardware. In all of our examples, we observed no numerical problems or significant 

difference in the predictions when the upper bound on p was raised to 1.9999, versus 1.99. 

However, there may be little practical benefit of allowing a p higher than 1.99, and we prefer the 

numerically safer upper bound of 1.99.  Ranjan, et al. (2011) found that a similar upper bound on 

v for the PEXP model gave much better numerical stability, even though the limiting case v =2 is 

still a valid covariance.  

4. DISCUSSION AND EXAMPLES 

4.1  Sigmoidal Versus Localized Basis Functions 

 Returning to the example in Figure 1, we fit the same data using a BIPEXP covariance model 

with all parameters estimated by MLE (�̂� = 2, �̂� = 1,𝜙� = 33.14,𝜎�2 = 0.02). Figure 3 shows the 

resulting BIPEXP predictor 𝑦�(𝑒) with 95% PIs. The predictor 𝑦�(𝑒) for the BIPEXP model in 

Figure 3 is less bumpy than for the PEXP model in Figure 1(a), and it is smoother than for the 

FBF model in Figure 1(b). The root mean square error (RMSE) for 1,000 test sites evenly spaced 

over the interval [0,1] is 0.0317 for the BIPEXP model, versus 0.0484 for the PEXP model. The 
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95% PIs have similar shape as the PIs for the PEXP model in Figure 1(a), but are slightly 

narrower with different centers 𝑦�(𝑒).   

  
Figure 3.  For the example of Figure 1, y(x) (dark dashed line), the predictor 𝑦�(𝑒) (solid line), and 95% PIs (gray dotted line) for 

the BIPEXP model (compare to Figure 1). 

 To investigate a fundamental difference between a BI covariance model and models like 

PEXP, which is related to the preceding, consider the basis function representation of the general 

kriging predictor in (2): 

 𝑦�(𝐱) = �̂� + ∑ 𝑐𝑖𝑔𝑖(𝐱)𝑛
𝑖=1 ,              (20) 

where {ci: i = 1, 2, . . ., n} are coefficients that depend on the data, and gi(x) = Cov[Y(x), Y(xi)] (i 

= 1, 2, . . ., n) are viewed as basis functions for the response surface predictor. The right panels 

of Figures 4 and 5 show example basis functions for various PEXP, FBF, and BIPEXP models 

for the d = 1 case. The left panels, discussed in Section 4.2, show five random realizations for 

each model. The basis functions in the right panels are for two input sites (xi = 1.0 and xi = 5) 

with the origin taken to be x = 0. The variance parameter was 𝜎2 = 1 for all models. Because the 

convention described in Section 3.4 is to translate the BIPEXP and FBF models so that the origin 

Y(0) = 0 coincides with an observed response value, their covariance functions should really be 

viewed as the conditional covariance function gi(x) = Cov[Y(x), Y(xi) | Y(0) = 0]. Consequently, 
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to provide a more common basis for comparison, the PEXP basis functions plotted in Figure 4 

are also the conditional covariance function gi(x) = Cov[Y(x), Y(xi) | Y(0) = 0] = R(x, xi) − R(x, 

0)R(xi, 0)/R(0, 0), where R(x, x') is the usual PEXP covariance function given by (1).  

 The form of the basis functions strongly influences the nature of the fitted response surface 

𝑦�(𝐱). For a covariance function like PEXP, in which Cov[Y(x), Y(xi)] decays to zero as ‖𝐱 − 𝐱𝑖‖ 

increases, the kriging predictor in (20) reverts to the mean, by definition. The resulting basis 

functions are localized around 𝐱𝑖, as seen in the right column of Figure 4, and the degree of 

localization is governed by the parameters 𝜈 and 𝜙. Depending on the degree of localization, this 

can result in a bumpy 𝑦�(𝐱), as in Figure 1(a). In contrast, for the FBF model, Cov[Y(x), Y(xi)] in 

(5) does not decay to zero as ‖𝐱 − 𝐱𝑖‖ increases. As a result, the FBF basis functions are not 

localized about 𝐱𝑖 The FBF basis functions for p = 1 (see the online supplement) are sigmoidal, 

albeit piecewise linear. This is consistent with the piecewise linear nature of 𝑦�(𝐱) in Figure 1(b). 

As can be seen in the right column of Figure 4, for p > 1, the FBF basis functions are more 

smoothly sigmoidal and result in a smoother 𝑦�(𝐱) . However, achieving a high level of 

smoothness requires p ≈ 2, which introduces serious problems discussed in Section 4.3.  

 Similarly, Cov[Y(x), Y(xi)] for a BI covariance model does not decay to zero as ‖𝐱 − 𝐱𝑖‖ 

increases, and, as a result, the BI covariance basis functions are not localized about 𝐱𝑖. Basis 

functions for the BIPEXP model are shown in Figure 5 for various p, 𝜈, and 𝜙. For p = 1, the 

basis functions are completely sigmoidal and flatten out as 𝐱 grows. Although possessing similar 

global shape and trends, the basis functions for p = 1 in the top two rows of Figure 5 have 

different smoothness near the knots (due to different 𝜈 and 𝜙), and the corresponding realizations 

also have different smoothness. For p < 1 (third row of Figure 5), the BIPEXP basis functions 

have a slightly more localized appearance with features that resemble peaks, while for p > 1 

(bottom row of Figure 5), the basis functions continue to increase as 𝐱 grows. See the online 

supplement for further discussion and examples.  
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Figure 4.  Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for PEXP (top 
two rows) and FBF (bottom two rows) models with d = 1 and various {p, ν, φ}. The two basis functions are for xi = 1 (solid line) 

and xi =5 (dashed line). 
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Figure 5.  Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for BIPEXP 
models with d = 1 and various {p, ν, φ}. The two basis functions are for xi = 1 (solid line) and xi =5 (dashed line). 
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 The issue of localized versus sigmoidal basis functions has an interesting parallel in machine 

learning. Artificial neural networks are typically comprised of sigmoidal activation functions, but 

a radial basis function network is a competing architecture wherein the sigmoidal activation 

functions are replaced with radial ones (typically, Gaussian functions). A common perception in 

machine learning is that certain "nicely-behaved" response surfaces (e.g., ones that are quite 

smooth with few high-frequency components, monotonic, nearly constant over some input 

regions, etc.) are better modeled by sigmoidal functions than by radial basis functions, and vice-

versa for response surfaces with many local minima and maxima and higher-frequency 

components (see, e.g., Flake, 2012; Lee, et al., 1999; Barron, 1993). The same may be true for 

GRF modeling, a conjecture that seems to be supported by the examples in Section 4.4. 

4.2  Scale-Nonstationarity Versus BI-Nonstationarity   

 There is another fundamental difference between BI covariance models and their stationary 

counterparts that is evident from their covariance functions and that can be seen in the random 

realizations in the left panels of Figures 4—5. The stationary PEXP GRFs (top two rows of 

Figure 4) fluctuate up and down in a random manner but stay centered about the mean over the 

long term. If a PEXP Y(x) drifts above its mean at a particular x, it will eventually drift back 

down below the mean as x increases. In contrast, a BI covariance Y(x) wanders in a manner that 

is not centered about some long term mean, and it may grow unbounded as x increases. 

Mathematically, this is easiest to see for the FBF model, for which the variance of the increment 

is 𝑉𝑉𝑉[𝑌(𝐱) − 𝑌(𝐱𝑖)] = ‖𝐱 − 𝐱𝑖‖𝑝 , which grows unboundedly as x moves further from a 

simulation site 𝐱𝑖. If the x-axes in the left panels of Figures 4—5 were extended, the plotted 

realizations of 𝑌(𝐱) for the FBF and BIPEXP models would grow to very large values. This also 

implies that the prediction error variance (and, consequently, the width of a PI) for 𝑌(𝐱) 

continues to grow unbounded as x moves further from all of the simulation sites. In contrast, for 

the stationary PEXP model, the prediction error variance asymptotically approaches the constant 

prior variance 𝜎2 . However, unless one is extrapolating well beyond the experimental input 
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range (which is generally ill advised), this distinction may be more of theoretical interest than of 

practical consequence. For most of the examples in which we have compared PIs for PEXP and 

BIPEXP models (using their respective MLEs, with both models fit to the same data), the PIs 

tend to have similar shape and width.  

 We will refer to the preceding type of nonstationarity – for which the increments 

Y(x+z) − Y(x) are stationary in x for a fixed spatial increment z, but the variance of Y(x+z) − Y(x) 

grows unbounded as ‖𝐳‖ grows – as BI-nonstationarity. Zhang and Apley (2014) discuss other 

distinguishing characteristics of FBFs related to BI-nonstationarity. For example, for two input 

locations 𝐱  and 𝐱′  separated by an angle 𝜃  and with ‖𝐱‖  = ‖𝐱′‖ , the correlation function 

𝐶𝐶𝑉𝑉[𝑌(𝐱),𝑌(𝐱′)] = 1 − 2(𝑝−2)/2[1 − 𝑐𝐶𝑐(𝜃)]𝑝/2  depends only on 𝜃 . Thus, the correlation 

between 𝑌(𝐱) and 𝑌(𝐱′) is exactly the same as the correlation between 𝑌(𝐮) and 𝑌(𝐮′) for unit 

vectors 𝐮  and 𝐮′  aligned with 𝐱  and 𝐱′ , no matter how large is ‖𝐱‖ . Moreover, for a fixed 

simulation input site 𝐱𝑖, although 𝐶𝐶𝑣[𝑌(𝐱),𝑌(𝐱𝑖)] does not decay to zero as 𝐱 moves further 

from 𝐱𝑖, the correlation 𝐶𝐶𝑉𝑉[𝑌(𝐱),𝑌(𝐱𝑖)] = 𝐶𝐶𝑣[𝑌(𝐱),𝑌(𝐱𝑖)]/{𝑉𝑉𝑉[𝑌(𝐱)]𝑉𝑉𝑉[𝑌(𝐱𝑖)]}1/2 does 

indeed decay to zero. These characteristics may or may not be desirable, depending on the nature 

of the response surface being modeled (see Zhang and Apley, 2014, for further discussion).  

 In the kriging literature, BI-nonstationarity is frequently discussed in the context of intrinsic 

kriging (Cressie, 1991). A second type of nonstationarity, which we refer to as scale-

nonstationarity, is also frequently encountered but is fundamentally different than BI-

nonstationarity. Scale-nonstationarity is associated with processes that have scale/smoothness 

characteristics that vary spatially. The response surface in Figures 1 and 3 appears to exhibit 

scale-nonstationarity, as there are more local peaks and valleys over the region x < 0.5 than over 

the region x > 0.5. Most approaches to handle scale-nonstationarity modify standard stationary 

covariance functions by allowing the lengthscale parameters to vary spatially or by transforming 

𝐱 so that 𝑌(𝐱) becomes stationary in the transformed inputs (e.g., Sampson and Guttorp, 1992; 

Schmidt and O’Hagan, 2003; Paciorek and Schervish, 2006; Xiong, et al. 2007; Fuentes, Chen 

and Davis, 2008; Gramacy and Lee, 2008; and Huang, Wang, Breidt and Davis, 2011).  
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 Although the BIPEXP model did a better job than the stationary PEXP model for this 

example (compare Figures 1 and 3), a BI covariance model is not scale-nonstationary, nor is it 

inherently capable of handling scale-nonstationary surfaces. This follows because the increments 

Y(x+z) − Y(x) are stationary in x for a BI covariance model, which implies that the local 

scale/smoothness characteristics are constant over the entire input domain. A possible 

explanation for why the BIPEXP model did a better job than the stationary PEXP model for this 

example is that the former avoids reversion to the mean, which may be exacerbated in scale-

nonstationary situations like in Figure 1 (for which the estimated scale parameter is relatively 

large because of the waviness of the surface in the left half, which results in more reversion to 

the mean in the more sparsely simulated right half).   

 If a response surface is truly scale-nonstationary, then this may be best handled via use of a 

scale-nonstationary model. For situations like in Figure 1, a scale nonstationary model also could 

have mitigated reversion to the mean, although it would accomplish this via a fundamentally 

different mechanism than the BI covariance model. The BI covariance model avoids reversion-

to-the-mean because its sigmoidal basis functions are not localized and do not decay to zero. In 

contrast, although a scale-nonstationary model still has localized basis functions that decay to 

zero, in smoother regions they would ideally decay to zero more slowly (via a smaller local 

lengthscale parameter φ) and result in a less bumpy 𝑦�(𝐱). This assumes that the spatially varying 

scale parameterization can capture the scale-nonstationarity and that the model fitting is well 

behaved, so that the estimated lengthscale parameters are indeed smaller in the smoother regions. 

4.3  Limitations of an FBF model with p ≈ 2 

 An FBF model has nonlocalized, sigmoidal basis functions, but it is typically too locally 

rough to represent many response surfaces. This was concluded in Zhang and Apley (2014), and 

it is somewhat evident from the p = 1.3 case in Figure 4 (also see Figure S2 in the online 

supplement) and from Figure 1(b), in which 𝑦�(𝐱) is piecewise linear. However, because an FBF 

is much smoother locally for p ≈ 2, one might wonder whether using an FBF model with the 
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restriction p ≈ 2 will achieve sigmoidal basis functions while handling smooth response surfaces. 

The p = 1.95 case in Figure 4 illustrates why this is not a viable approach and why the BI 

covariance model is preferable. Specifically, in the limit as p → 2, an FBF Y(x) becomes a linear 

function of x. To see this mathematically, notice that for p = 2 the FBF covariance of (5) reduces 

to 𝐶𝐶𝑣[𝐵2(𝐱),𝐵2(𝐱′)] = 𝐱𝑇𝐱′. This implies that the basis functions 𝐶𝐶𝑣[𝐵2(𝐱),𝐵2(𝐱𝑖)] = 𝐱𝑇𝐱𝑖 

are linear functions of 𝐱, which can be surmised from the right panel of the p = 1.95 case in 

Figure 4. This also implies that all eigenfunctions (associated with nonzero eigenvalues) of the 

FBF covariance kernel are linear functions of 𝐱 . Consequently, using a Karhunen-Loeve 

representation, it follows that an FBF Y(x) for p = 2 must be itself a linear function of x. This, too, 

can be surmised from the left panel of the p = 1.95 case in Figure 4, in which the realizations of 

Y(x) are nearly linear (they would have been exactly linear if we had used p = 2). Consequently, 

an FBF model with p ≈ 2 is incapable of modeling anything other than a response surface that is 

very nearly linear.   

 There is a related numerical problem with using p ≈ 2 in an FBF model. Although FBF 

processes are defined for p = 2 when d = 1, they are not defined for p = 2 when d > 1. When d > 

1, using p = 2 in the FBF covariance function will result in a covariance matrix R that is not 

positive definite. In fact, Zhang and Apley (2014) have shown that the rank of R for an FBF 

model with p = 2 is at most d (regardless of n) and, as a result, R is extremely rank-deficient for 

n >> d.  By continuity of the determinant of a matrix, R will be nearly singular if p ≈ 2. See 

Ranjan et al. (2011) for related discussion of the numerical behavior for the PEXP model for v ≈ 

2.  

4.4  Examples and Comparison of Predictive Performance 

In this section, we compare the predictive performances of the PEXP and BIPEXP models for a 

number of examples that have been previously analyzed in the computer metamodeling 

literature. Our first four examples use models of real physical systems, and the remaining 

examples use mathematical test functions. In each of the examples, the PEXP and BIPEXP 
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models were fit to a set of data from one or more designed experiments, and the fitted models 

were then used to predict the response values at a separate set of test sites. The test prediction 

root mean square error (RMSE) results are summarized in Table 1 for the real examples and in 

Table 2 for the mathematical test functions. We also report the ratio RMSE/SD(y) and the 

percent improvement in test RMSE for the BIPEXP model, defined as (RMSEPEXP 

−RMSEBIPEXP)/RMSEPEXP×100. Here, SD(y) is the sample standard deviation of the response at 

the test sites. Notice that the test r2 = 1− [RMSE/SD(y)]2. We prefer the ratio RMSE/SD(y) over 

r2 as a measure of fit, because r2 can be misleading when modeling deterministic computer 

experiments. For example, an r2 of 0.99 is considered a nearly perfect fit in many regression 

modeling contexts, but not necessarily for modeling deterministic computer experiments. As a 

point of reference, r2 is 0.9659 for the fit in Figure 1(a) and 0.9854 for the fit in Figure 3.   

  PEXP model BIPEXP model % Improve-
ment  Example, Design RMSE RMSE/SD(y) RMSE RMSE/SD(y) 

Heat Exchanger 5.133 52.23% 2.1573 21.95% 58.0 
G-Protein 0.0162 7.71% 0.0145 6.91% 10.5 
Nilson-Kuusk, n = 100 0.0187 9.03% 0.0183 8.84% 2.1 
Nilson-Kuusk, n= 150 0.0169 8.43% 0.0168 8.31% 0.6 
Borehole, n = 27, OA design 4.645 10.25% 1.6849 3.72% 63.7 
Borehole, n = 27, LHD 3.248 7.05% 2.502 5.43% 23.0 

Table 1.  Comparison of test RMSE values for the PEXP and BIPEXP models for examples involving real physical systems. A 
positive % Improvement means the BIPEXP model had lower test RMSE than the PEXP model. 

  PEXP model BIPEXP model % Improve-
ment  Example RMSE RMSE/SD(y) RMSE RMSE/SD(y) 

Xiong et al. (2007) 0.0484 18.47% 0.0317 12.08% 34.5 
Function 1 0.5404 19.49% 0.5634 20.32% -4.1 
Function 2 4.4716 52.18% 3.6637 42.75% 18.1 
Function 3 0.5026 50.16% 0.5878 58.66% -14.5 
Function 4 0.0416 34.32% 0.047 38.80% -11.5 
Function 5 0.2892 42.13% 0.2924 42.59% -1.1 
Function 6 0.0447 13.79% 0.0269 8.30% 39.8 
Function 7 4.1517 7.60% 6.0323 11.05% -31.2 
Function 8 4.72E+03 31.36% 4.42E+03 29.32% 6.5 
Function 9 6.82E+04 48.54% 6.60E+04 46.99% 3.2 

Table 2.  Comparison of test RMSE values for the PEXP and BIPEXP models for examples using mathematical test functions. A 
positive % Improvement means the BIPEXP model had lower test RMSE than the PEXP model. 
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 Details on the input and response variables, the experimental design, the test sites, the 

estimated parameters, etc., for all examples are in the online supplement. Briefly, the four real 

examples are the heat exchanger simulator from Qian, Seepersad, Joseph, Allen and Wu (2006) 

[d = 4 inputs; y = heat transfer rate; 64-run orthogonal-array-based Latin hypercube design 

(LHD)], the borehole model from Morris, Mitchell and Ylvisaker (1993) [d = 8 inputs; y = water 

flow rate through two aquafers; a 27-run, three-level orthogonal array design and 100 different 

27-run LHDs (RMSEs are averaged over the latter)], the G-protein simulator from Yi, et al. 

(2005) [d = 4 inputs; y = concentration of a particular complex in a biochemical reaction; a 41-

run, three-level orthogonal array design], and the Nilson-Kuusk simulator from Nilson and 

Kuusk (1989) with data from Bastos and O’Hagan (2009) [d = 5 inputs; y = reflectance of a plant 

canopy; a 100-run LHD and a 150-run LHD]. For the mathematical test functions, each example 

involved d = 2 inputs and either a 24-run or 48-run LHD (depending on how difficult the test 

function was to model). We averaged the test RMSEs across 100 replicates, where on each 

replicate we generated a different LHD design.  

 Across the real examples (Table 1), the BIPEXP had test RMSE that was between 0.6% and 

63.7% better than the PEXP test RMSE. Zhang and Apley (2014) found that the FBF model 

performed worse than the PEXP model for the borehole example with LHDs, and they concluded 

that this was because the FBF model has difficulty in handling smooth response surfaces. The 

fact that the BIPEXP model performed even better than the PEXP model for this borehole 

example indicates that, unlike the FBF model, it is capable of handling smooth response surfaces. 

The results for the mathematical test functions (Table 2) are mixed, with the BIPEXP model 

performing better for half of the examples, and the PEPXP model performing better for the other 

half. The average percent improvement for the BIPEXP model across the ten examples in Table 

3 is 3.97%, although this number is small relative to the range of variation in the percent 

improvement (from −31.2% for Function 7 to +39.8% for Function 6).  

 It may not be a coincidence that the BIPEXP model outperformed the PEXP model for all of 

the real examples in Table 1, whereas the results were mixed for the mathematical test functions 
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in Table 2. The mathematical test functions were typically more wiggly and less well-behaved 

than the response surfaces in the real examples. As discussed in Section 4.1, the sigmoidal basis 

functions associated with a BIPEXP model are generally better suited to handle well-behaved 

response surfaces.  

4.5  Interpretation of a BI Gaussian Random Field as a Smoothed FBF  

 As discussed in Section 4.3 and in Zhang and Apley (2014), for smooth response surfaces the 

FBF model usually does not perform as well as a PEXP model (for the latter, the MLE of v is 

usually close to its limiting value of 2, in which case it reduces to the very smooth Gaussian 

covariance model). We next show that for a certain class of covariance functions Rc(•) for the 

underlying random field C(•), a BI GRF can be viewed as a smoothed version of an FBF with an 

appropriate smoothing kernel.  

 Suppose the stationary covariance Rc(•) is such that C(•) has a white noise integral 

representation of the form 

 𝐶(𝐱) = ∫ 𝜑(𝐳)𝑊(𝐱 − 𝐳)𝑑𝐳ℝ𝑑                (21) 

where W(•) is white noise on ℝd and ϕ(•) is a kernel smoothing function. Substituting (21) into (7) 

gives 

𝐵𝑝𝐶(𝐱) = � 𝑘𝑝,𝑑�‖𝐱 − 𝐳‖(𝑝−𝑑) 2⁄ − ‖𝐳‖(𝑝−𝑑) 2⁄ � �� 𝜑(𝐲)𝑊(𝐳 − 𝐲)𝑑𝐲
ℝ𝑑

� 𝑑𝐳
ℝ𝑑

 

= ∫ 𝜑(𝐲) �∫ 𝑘𝑝,𝑑�‖𝐱 − 𝐳‖(𝑝−𝑑) 2⁄ − ‖𝐳‖(𝑝−𝑑) 2⁄ �𝑊(𝐳 − 𝐲)𝑑𝐳ℝ𝑑 � 𝑑𝐲ℝ𝑑   

Defining 𝐳′ = 𝐳 − 𝐲, and introducing a change of variables into the preceding gives 

𝐵𝑝𝐶(𝐱) = � 𝜑(𝐲) �� 𝑘𝑝,𝑑�‖𝐱 − 𝐲 − 𝐳′‖(𝑝−𝑑) 2⁄ − ‖𝐲 + 𝐳′‖(𝑝−𝑑) 2⁄ �𝑊(𝐳′)𝑑𝐳′
ℝ𝑑

� 𝑑𝐲
ℝ𝑑

 

= � 𝜑(𝐲) �� 𝑘𝑝,𝑑 �‖𝐱 − 𝐲 − 𝐳′‖
𝑝−𝑑
2 − ‖𝐳′‖

𝑝−𝑑
2 + ‖𝐳′‖

𝑝−𝑑
2 − ‖𝐲 + 𝐳′‖

𝑝−𝑑
2 �𝑊(𝐳′)𝑑𝐳′

ℝ𝑑
� 𝑑𝐲

ℝ𝑑
 

 = ∫ 𝜑(𝐲)𝐵𝑝𝑊(𝐱 − 𝐲)𝑑𝐲ℝ𝑑 − ∫ 𝜑(𝐲)𝐵𝑝𝑊(−𝐲)𝑑𝐲ℝ𝑑 ,           (22) 

where 𝐵𝑝𝑊(•) is an FBF.  
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 The first term on the right hand side of (22) represents a smoothed version of the FBF 𝐵𝑝𝑊(•) 

using the smoothing kernel ϕ(•). The second term is a random variable that is constant over x and 

that can be viewed as ensuring 𝐵𝑝𝐶(𝟎) = 0. In this regard, a BI GRF can be viewed as a smoothed 

version of an FBF. The process of smoothing the FBF also smooths the basis functions, which 

explains why the BIPEXP is better able to represent smooth response surfaces. 

4.6 Computational Expense 

 One drawback of the BI covariance model is that, even though we have reduced the d-

dimensional integral of (11) for computing the BI covariance to the one-dimensional integral of 

(14), there is still no general closed-form expression for the BI covariance. The need for one-

dimensional integration when computing the covariance substantially increases the 

computational expense of the BI covariance approach for the MLE model fitting stage (the 

computational expense of predicting the response at new sites is the same as for a PEXP model if 

one interpolates a lookup table, as described below). The following are some computational 

expense comparisons between BIPEXP and PEXP models using a Matlab implementation on 

Windows laptop with an Intel® Core™ i5-2520M CPU @ 2.50GHz and 2.88 GB RAM. A 

single evaluation (i.e., for a single 𝐱  and 𝐱′ and a single set of parameters) of the BIPEXP 

covariance 𝑅𝐵(𝐱,𝐱′) using (12) and (14) usually took between 100—200 times longer than a 

single evaluation of the PEXP covariance, and this was roughly independent of d. A single 

evaluation of the likelihood function usually took between 30—80 times longer for the BIPEXP 

model than for the PEXP model, some results for which are shown in Table 3. The relative 

computational expense did not depend strongly on n and d for the ranges shown in Table 3. Latin 

hypercube designs were used for all cases in Table 3. 

d 
n 

10 100 1000 
1 32.3 45.4 52.7 
3 39.6 30.6 36.3 
9 43.6 74.8 76.1 

Table 3. Computational expense for the BIPEXP model, relative to the PEXP model, for a single evaluation of the likelihood 
function for various n and d. The numbers shown are the ratios of the two computation times.  
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 Table 4 shows the total computation time (in seconds) for calculating the MLEs for the 

PEXP and BIPEXP models in each of the examples in Table 1. For these examples, the BIPEXP 

model took anywhere between 9 and 176 times longer to fit than the PEXP model.  

   

 Example, Design PEXP BIPEXP Ratio 

Heat Exchanger 31.4 907.4 28.9 
G-Protein 8.8 555.2 63.0 
Nilson-Kuusk, n = 100 59.1 4388.1 74.3 
Nilson-Kuusk, n= 150 224.7 2120.7 9.4 
Borehole, n = 27, OA design 13.8 1232.1 89.6 
Borehole, n = 27, LHD 11.3 2001.9 176.4 

Table 4.  Total computation time (in seconds) for fitting the BIPEXP and PEXP models for the examples in Table 1.  

 After the MLE stage, a brute force use of (14) when predicting new observations would 

result in a computational expense that is roughly 100—200 times higher for the BIPEXP model. 

This follows because a single evaluation of the covariance function typically takes between 

100—200 times longer, and the term 𝐑−1(𝐲 − �̂�𝟏) in the expression for 𝑦�(𝐱) can be calculated 

in advance, during the MLE stage. However, the computational expense for predicting new 

observations can be reduced to a level comparable to that for a PEXP model via interpolation of 

a lookup table for 𝑉𝐵(𝐻), as a function of the scalar distance measure 𝐻, for the specific set of 

parameter MLEs.  

 More specifically, to calculate the prediction 𝑦�(𝐱) at a new site 𝐱  using (17), the vector 

𝐑−1(𝐲 − �̂�𝟏) is calculated in advance, at the last iteration of the MLE stage. For each new site 𝐱, 

the elements of 𝐫(𝐱) are calculated via 𝐶𝐶𝑣[𝑌(𝐱),𝑌(𝐱𝑖)] = [𝑉𝐵(‖𝚽(𝐱 − 𝐱1)‖) + 𝑉𝐵(‖𝚽(𝐱𝑖 −

𝐱1)‖) − 𝑉𝐵(‖𝚽(𝐱 − 𝐱𝑖)‖)]/2 with the 𝑉𝐵(∙) values interpolated from a lookup table of 𝑉𝐵(𝐻) 

versus 𝐻. The lookup table is created in advance, by evaluating (14) for 𝐻 ∈ [0,𝐻𝑚𝑚𝑚], where 

𝐻𝑚𝑚𝑚  denotes the largest value of ‖𝚽(𝐱 − 𝐱1)‖ , ‖𝚽(𝐱𝑖 − 𝐱1)‖ , or ‖𝚽(𝐱 − 𝐱𝑖)‖  that is of 

interest. Figure 6 plots 𝑉𝐵(𝐻) versus 𝐻 for various combinations of {p, ν} for a BIPEXP model 

with d = 1. From this, it can be seen that 𝑉𝐵(𝐻) is a well-behaved function that is straightforward 
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to interpolate. It took roughly 0.5 seconds to calculate 1,000 lookup table values for 𝑉𝐵(∙) via 

(14), so this is clearly not computationally prohibitive to do in advance. 

        
Figure 6.  Plot of 𝑉𝐵(𝐻) vs. 𝐻 for various combinations of {p, ν} for a BIPEXP model with d = 1, over the range (a) H ∈ [0,10] 

and (b) H ∈ [0,1]. 

5. CONCLUSIONS 

 In this article, we have developed a new random field model for use when modeling 

deterministic computer experiment response surfaces via kriging. The BI random field model can 

be viewed as incorporating an integrator (of the fractional Brownian motion type) into a 

conventional GRF model with stationary, isotropic covariance, analogous to incorporating the 

integrator in an ARIMA time series model. The presence of the integrator is what results in 

sigmoidal shaped basis functions, as opposed to the localized basis functions associated with 

more standard covariance models like PEXP. We have shown that the BI covariance can be 

evaluated via the one-dimensional integral of (14), regardless of the dimension of the input space 

and the covariance model chosen for the underlying random field C(•). Although we have 

focused on the BIPEXP model in our examples, the BI random field model can be used with any 

stationary, isotropic covariance model for C(•) (anisotropy is handled by incorporating 

lengthscale parameters into the isotropic BI covariance model).  

 For each of the real examples in Table 1, the BIPEXP model resulted in an improvement in 

test RMSE over the PEXP model. For the mathematical test functions in Table 2, the results were 
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mixed, with the BIPEXP model performing better on some examples, and the PEPX model 

performing better on others. This may relate to what is perhaps the most fundamental difference 

between a BI covariance model versus a covariance model without in integrator – sigmoidal 

versus localized basis functions. As mentioned in Section 4.1, a common perception in the 

machine learning field is that nicely-behaved response surfaces are usually more easily modeled 

with sigmoidal basis functions (as in a neural network) than with localized basis functions (as in 

a radial basis function network). The mathematical test functions in Table 2 were generally more 

wiggly and less nicely-behaved than the response surfaces for the real examples in Table 1. This 

could explain why the BIPEXP model performed better than the PEXP model for the real 

examples, whereas the results were mixed for the mathematical test functions. 

 Without prior knowledge of how nicely-behaved the response surface is, it is difficult to 

know in advance which model is more appropriate. In machine learning, the standard strategy is 

to try different models and use appropriate model selection methods (e.g., AIC, cross-validation, 

etc.) to select the best model. In time series modeling, this is also the standard strategy for 

determining whether an ARMA or ARIMA model is more appropriate. For computer response 

surface metamodeling, a similar strategy of trying both models (a BI covariance model and its 

non-integrated counterpart) and selecting the more appropriate one may be a quite reasonable 

approach. We are currently investigating model selection methods for accomplishing this reliably 

and efficiently.  

 Because there is no closed-form expression for the BIPEXP covariance function, and 

numerical integration is required, the computational expense of the MLE model fitting stage is 

much higher than when using a PEXP model (roughly 50 times higher on average for our 

implementation). However, using the simple lookup table interpolation procedure described in 

Section 4.6, the computational expense when predicting the response at new input sites is 

essentially the same as for a PEXP model. We are currently investigating methods for reducing 

the computational expense for the MLE stage to something that is more on par with a PEXP 

model. For example, if one is content with allowing only a discrete set of choices for {𝑒, 𝜈}, then 
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one could calculate lookup tables in advance for 𝑉𝐵(𝐻) versus 𝐻 for each combination {𝑒, 𝜈}. 

Subsequently, when fitting the model in the MLE stage, these functions could be interpolated to 

quickly calculate the BIPEXP covariance without numerical integration. We are also 

investigating whether (14) reduces to a closed-form expression for any special cases of 

underlying covariance models for 𝑅𝐶(•).  

SUPPLEMENTARY MATERIALS 

The online supplementary materials contain code for implementing the BI-covariance 

calculations, some discussion on the relationship between the PEXP and BIPEXP models, a 

recursive expression for the hypergeometric function needed in (14), details on the examples in 

Sec. 4.4, and additional basis functions and GRF realizations analogous to Figures 4 and 5. 
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