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Kernel Principal Component Analysis (KPCA) is a technique widely used to understand and visualize non-
linear variation patterns by inverse mapping the projected data from a high-dimensional feature space
back to the original input space. Variation patterns often occur in a small number of relevant features
out of the overall set of features that are recorded in the data. It is, therefore, crucial to discern this set
of relevant features that define the pattern. Here we propose a feature selection procedure that augments
KPCA to obtain importance estimates of the features given the noisy training data. Our feature selection
strategy involves projecting the data points onto sparse random vectors for calculating the kernel matrix.
We then match pairs of such projections, and determine the preimages of the data with and without a
feature, thereby trying to identify the importance of that feature. Thus, preimages’ differences within
pairs are used to identify the relevant features. An advantage of our method is it can be used with any
suitable KPCA algorithm. Moreover, the computations can be parallelized easily leading to significant
speedup. We demonstrate our method on several simulated and real data sets, and compare the results
to alternative approaches in the literature.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Advances in signal acquisition and computational processing
coupled with cheap storage have resulted in massive multivariate
data being collected in today’s processes like semiconductor man-
ufacturing, automobile-body assemblies, inspection systems, etc.
The data can be in form of spatial profiles, time series or images
where the measurements are recorded over several features. These
features are affected by different sources of variation which result
in variation patterns in the data. The goal, therefore, is to identify
these sources of variation based on the process data collected.
Moreover, the variation pattern may be present in only a small
subset of the process variables that are collected. Finding this rel-
evant subset of features is, therefore, critical to understand the
process, and is the focus of our work presented in this paper.

Principal Component Analysis (PCA) is a common technique to
identify variation pattern in data by projecting along the directions
of maximum variability in the data. However, PCA can only identify
linear relationships among features in the data. Kernel Principal
Component Analysis (KPCA) extends PCA to the case where data
contain non-linear patterns as shown by Schölkopf et al. [1]. KPCA
identifies non-linear patterns in data by mapping the data from
input space to a high-dimensional (possibly infinite) feature space,
and performing PCA in the feature space. This is achieved by
employing the kernel trick [2]. Thus, only calculations in terms of
dot products in the input space are required, without an explicit
mapping to the feature space. KPCA is widely used for nonlinear
process monitoring [3–5], fault detection and diagnosis [6–9],
and anomaly detection [10,11].

To visualize the variation pattern in input space, an inverse
transform is used to map the denoised data from feature space
back to the input space. The exact preimage of a denoised point
in feature space might not exist, so that a number of algorithms
for estimating approximate preimages have been proposed [12–
15]. Also, [16,17] considered meta-methods to improve the preim-
age results by averaging from ensembles.

Our task now is to identify the relevant subset of the original set
of features over which the pattern exists (a feature selection task).
The difficulty is to handle the non-linear relationships between
features in input space. Because the feature space in KPCA already
provides an avenue to consider higher-order interactions between
features, it is more appealing to apply a feature selection procedure
ed Syst.
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in feature space itself. However, it is not always possible to obtain
the feature representation in feature space (for example, in the
case of a Gaussian kernel) because the data are not explicitly
mapped. Therefore, the challenge here is to perform feature selec-
tion in the feature space.

Some work has considered feature selection in feature space for
supervised learning. A weighted feature approach was provided by
Allen [18] where weights are assigned to features while computing
the kernel. This feature weighting is incorporated into the loss
function corresponding to classification or regression problem
and a lasso penalty is put on the weights. The features correspond-
ing to non-zero weights obtained after minimizing the objective
(loss function with penalty) are considered the important ones.
Similarly, recent work [19,20] also employed feature weighting
for the cases of Support Vector Machine (SVM) classification and
regression, respectively. For both the cases, an anisotropic Gauss-
ian kernel was used to supply weights to features. Specifically,
Maldonado et al. [19] provided an iterative algorithm for solving
the feature selection problem by embedding the feature weighting
in the dual formulation of SVM problem. The algorithm begins with
an initial set of weights. At each iteration, it solves the SVM prob-
lem for the given set of feature weights, updates the weights using
the gradient of the objective function, and removes the features
that are below a certain given threshold. This procedure is repeated
till convergence. Finally, the features obtained with non-zero
weights are considered important.

Since KPCA is unsupervised, we next consider feature selection
in feature space for unsupervised learning. One common aspect of
all these algorithms, similar to their counterparts in supervised
setting, is they involve some kind of feature weighting mechanism,
and the relevant features are obtained by regularizing (shrinking)
the weights of irrelevant features using some criteria. A method
for feature selection in Local Learning-Based Clustering [21] was
proposed by Zeng and ming Cheung [22]. The feature selection is
achieved by regularizing the weights assigned to features. A
method to measure variable importance in KPCA was suggested
by Muniz et al. [23]. They computed the kernel between two data
points as weighted sum of individual kernels where each individ-
ual kernel is computed on a single feature of each of the two data
points, and the weights assigned to each kernel serve as a measure
of importance of the feature involved in computing the kernel.
They formulated a loss function where a lasso penalty was
imposed on the weights to determine the non-zero weights (and
the corresponding relevant features). In addition to feature selec-
tion in feature space for unsupervised learning, there exist several
other feature selection procedures for unsupervised learning that
operate in the input space. Laplacian Score (LS) was proposed by
He et al. [24] for each feature to estimate its ability to preserve
local structure. The authors construct a nearest neighbor graph,
and identify the important features as those which maintain this
graph structure. Multi-Cluster Feature Selection (MCFS) proposed
by Cai et al. [25] used spectral analysis to select the features that
preserve the multi-cluster structure of the data. The authors com-
pute the nearest neighbors graph, define weights on edges in the
graph, construct the graph Laplacian, and solve the generalized
eigen-problem [26] to obtain the top K eigenvectors. For each
eigenvector, the contribution of each feature is found by solving
a L1-regularized regression. Each feature now has K contribution
values, and the maximum of it is assigned as the MCFS score of
the feature. The features with higher MCFS scores are important.
Unsupervised Discriminative Feature Selection (UDFS) proposed
by Yang et al. [27] aims to select the most discriminative features
which preserve the local structure of the data (via manifold) while
simultaneously accounting for feature correlation. The authors
assume the existence of a linear classifier that classifies each
data point to a class. They propose learning the classifier that
Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
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maximizes their local discriminative score. To this end, they pro-
pose a regularized optimization problem by inducing ‘2;1 norm
on the coefficients of the classifier. Note that each coefficient of
the linear classifier corresponds to a feature in the dataset. They
also propose an iterative algorithm to solve this optimization prob-
lem. The top features are determined based on sorting the ‘2 norm
of the coefficient vectors over all iterations in descending order.

The approaches provided in the literature focus on the case
when noise-free training data are available. However, this is not
the case in areas like manufacturing variation analysis. In practice,
the data are corrupted with noise and has a lot of irrelevant fea-
tures. Thus, we work with a noisy data set from which we need
to find the relevant subset of the features over which the patterns
in the data exist. To this end, we propose our novel approach.

As pointed out previously, an innovative way to do feature
selection in high-dimensional feature space is to assign weights
to features in input space. By using such an approach, we can com-
pute the kernel using all the features instead of iteratively comput-
ing it using a subset of features at a time. The goal next is to
identify the weights (by some regularization criterion) so that
the non-zero weights correspond to the relevant features. We pro-
pose an alternative approach for this feature weighting mecha-
nism. Instead of trying to determine the feature weights through
a regularization approach, we multiply the features by sparse ran-
dom vectors whose entries are independent and identically distrib-
uted drawn from a distribution (such as Gaussian). After projecting
data points onto random subsets of features, we measure feature
importance from differences in preimages, where preimages are
computed with and without a feature. Therefore, more important
features are expected to result in greater differences. The process
is repeated iteratively with different sparse random vectors and
the differences are averaged to estimate the final feature impor-
tance. Our approach above provides robustness to irrelevant fea-
tures in the data by being able to project only on a small random
subset of features at a time, and calculating the final mapped data
matrix in input space from an ensemble of feature subsets. Another
advantage of our approach is it works with any KPCA preimage
algorithm.

We organize the remaining part of our paper as follows. Section
2 provides a brief description of different methods used to visual-
ize the variation patterns in KPCA. For our feature selection
method, we can consider any one of them as the base algorithm.
Section 3 presents a mathematical description of our methodology.
Section 4 shows the results of implementing our algorithm on sev-
eral simulated and real datasets. Finally Section 5 provides
conclusions.

2. Background on preimages in KPCA

KPCA is equivalent to PCA in feature space [1]. Let X denote the
data set with N instances and F features where the instances are
denoted by x1;x2; . . . ;xN . Similar to PCA, we want to find the eigen-
values and eigenvectors of the covariance matrix C in feature
space. If the corresponding set of points mapped in the feature
space uðxiÞ; i ¼ 1;2; . . . ;N are assumed to be centered, C can be
calculated by

C ¼ 1
N

XN

i¼1

uðxiÞuðxiÞ0 ð1Þ

The eigenvalues k and eigenvectors v of matrix C are given by

Cv ¼ kv ð2Þ

It can be shown that an eigenvector corresponding to non-zero
eigenvalue of C can be written as a linear combination of
uðx1Þ; . . . ;uðxNÞ. Using this simplification reduces the original
tion patterns using kernel principal component analysis, Knowl. Based Syst.
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problem of finding eigenvalues and eigenvectors of C to finding the
corresponding eigenvalues and eigenvectors of the kernel matrix K
with entries

Kij :¼ ðuðxiÞ �uðxjÞÞ ð3Þ

The product uðxiÞ �uðxjÞ is evaluated using the kernel trick Aizer-
man et al. [2] without explicitly computing the mapping uð�Þ.

Training data are used to obtain a reliable estimate of the prin-
cipal component subspace in feature space onto which the test
data can be projected. The procedure for visualizing variation pat-
tern in test data can, thus, be summarized in four steps. The first
step is to map the training data from input space to feature space
via the kernel trick [2]. The second step is to calculate the principal
component directions of the training data in feature space as
shown by Schölkopf et al. [1]. The third step is to map the test data
x to feature space and then project onto the space spanned by a
small subset of the principal component directions found above.
This projected test data (denoted by PuðxÞ) is also called the deno-
ised data in feature space. In order to observe the pattern in input
space, the denoised data are mapped back from feature space to
input space in the fourth step. This last step is also referred to as
obtaining the preimage x̂ in KPCA literature. The above steps can
be seen in Fig. 1.

The preimage can be used to visualize the variation pattern of
the data in input space. As mentioned, in general, such an inverse
mapping from feature space to input space may not exist, and the
preimage cannot always be determined exactly [12]. Hence, sev-
eral algorithms have been proposed to estimate the preimage.
Mika et al. [12] proposed a gradient descent approach to numeri-
cally estimate the preimage matrix which, when mapped to the
feature space, is closest (in terms of Euclidean distance) to the
denoised matrix in feature space. Since the objective function
(Euclidean distance) to minimize is non-convex, this approach is
sensitive to initial starting solution. Kwok and Tsang [14] used
the relationship between distance in input space and the feature
space, and estimated the preimage of a test point as a linear com-
bination of the training data points whose projections in feature
space are closest to the denoised data point in feature space. Kwok
and Tsang [14] chose only a few nearest training data points in
order to reduce the computational burden. Bakir et al. [13] applied
kernel regression to the preimage problem where the inverse map-
ping from feature space to input space is posed as a regression
problem. Both approaches by Kwok and Tsang [14] and Bakir
et al. [13] favor noise-free training data.
Fig. 1. KPCA and the preimage problem. Training data are transformed to feature
space and used to learn a principal component plane. A test point x is transformed
and projected to the plane as PuðxÞ. The inverse transform of PuðxÞ may not exist,
and an approximate preimage x̂ is computed.

Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
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More recently, Sahu et al. [17] and Shinde et al. [16] considered
meta-methods to estimate the final preimage. Since the training
data is noisy, we expect the principle component subspace estima-
tion to be unreliable. Thus, instead of estimating a single preimage
from the training data, we resample the training data multiple
times and estimate the final preimage by averaging the preimages
obtained from each sample.

3. Feature selection using sparse random vectors with matched
pairs

We now present a unique approach to learn the preimage as
well as understand the contribution of a feature towards the vari-
ation pattern in the data. We utilize the idea of random projections
where we project onto a small subset of features in each iteration.
Essentially we try to capture the effect of that subset of features in
feature space onto to which we randomly project. By repeating this
procedure over a number of iterations, we create a diversified
ensemble of feature subsets which account for the possible interac-
tions between features that give rise to the variation pattern in the
data. We explain this concept by an example. Let the dataset have
features f 1; f 2; f 3; f 4; f 5; f 6. Suppose we choose the number of
iterations to be three. In the first iteration, we randomly project
onto {f 1, f 2}. In the second iteration, we randomly project onto
{f 2, f 3; f 4}. In the third iteration, we randomly project onto
{f 1; f 4}. The ensemble of feature subsets is given by {{ f 1; f 2},
{f 2; f 3; f 4}, {f 1, f 4}}. We note that here we are creating an ensemble
of feature subsets to estimate the preimage as well as identify the
features that are relevant for the preimage, whereas previously we
created an ensemble of data points by resampling the training data
set [17,16] to estimate the primage. Matched pairs of projections
are created for each feature to estimate the effect of the feature
on the variation pattern. We then calculate the difference in the
preimage as a result of excluding the feature. Thus, important fea-
tures are expected to result in high differences. We refer to our
procedure as MPFS, and describe it mathematically as follows.

Let w be a sparse random vector of dimension F where bcFc
entries are non-zero. Here c is a parameter that controls sparse-
ness. The entries in the sparse random vector are independently
sampled from a distribution (such as Gaussian). Let B be a fixed
number of iterations. Let K be the kernel matrix obtained from
instances in the input space. Let X denote the data matrix with N
rows, N being the total number of data points. Let xi and xj denote
two instances in input space. Assume that we are using a Gaussian
kernel. The ijth entry in K is calculated as

kðxi; xjÞ ¼ exp
� xi � xj

�� ��2
F

r

 !
ð4Þ

For the purpose of MPFS, we modify K to Kw where we obtain the
corresponding ijth entry in Kw as

kwðxi;xjÞ ¼ exp
�ðwT xi �wT xjÞ

2

r

 !
ð5Þ

We also normalized w to unit length in Eq. (5). Preliminary exper-
iments, however, did not show meaningful differences in results
obtained from normalized and nonnormalized w.

For each f ¼ 1;2; . . . ; F in each iteration b (b ¼ 1;2; . . . ; B), we
generate a sparse random vector wb. To create matched pairs, we
transform wb to w�b by the following mechanism. Denote f th entry
of wb by wb½f � and the corresponding entry in w�b as w�b½f �. Then, for
each b, we set

w�b½ f � ¼
0 if wb½ f �– 0
1 otherwise

�
ð6Þ
tion patterns using kernel principal component analysis, Knowl. Based Syst.
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Thus, for every feature f at each iteration b, we generate matched
pairs wb and w�b which differ only at the f th entry. We use wb to
obtain kernel matrix Kwb by substituting w with wb in Eq. (5) and
then use Kwb and X in a preimage estimation algorithm to obtainbXb at iteration b for each f. Similarly, we use w�b to obtain K�wb and
then use K�wb along with X to obtain bXf

b at iteration b for each f.
The importance of feature f, denoted by impf , is calculated as

impf ¼
XB

b¼1

jjbXb � bXf
bjjF

B
ð7Þ

where the Frobenius norm of the matrix is used. The Frobenius
norm of a matrix is defined as the square root of the sum of squares

of elements of the matrix. Thus, if Frobenius norm of (bXb � bXf
b) is

small, there is not much difference in the preimage estimated with
and without feature f. Thus, impf becomes small and feature f is not

so important. Similarly, if Frobenius norm of (bXb � bXf
b) is high, impf

is high and feature f becomes important.
We summarize MPFS in Algorithm 1. gð�Þ denotes a preimage

estimation function. Note that the function gð�Þ takes Kwb (or K�wb)

and X as input, and outputs bXb (or bXf
b) respectively at each itera-

tion b for each feature f.

Algorithm 1. MPFS: Feature Selection Algorithm
Initialize b ¼ 1; f ¼ 1; cM ¼ 0
Initialize feature importance vector imp with F zeros indexed

by impf ; f ¼ 1;2; . . . ; F
for b ¼ 1! B do

for f ¼ 1! F do
Generate sparse random vector wb

Use wb to calculate KwbbXb  gðKwb;XÞ
if w½f � ¼¼ 0 then

Set w½f � ¼ 1 to generate w�b
else

Set w½f � ¼ 0 to generate w�b
end if
Use w�b to obtain K�wbbXf

b  gðK�wb;XÞ
impf  impf þ jjbXb � bXf

bjjFcM  cM þ bXb

f  f þ 1
end for
b bþ 1

end forbX = bM
B�F

for f ¼ 1! F do

impf  
impf

B {importance of f th feature is given by impf }
end for

For each iteration b (b ¼ 1;2; . . . ;B), when we use wb, we are
essentially capturing the interaction between that subset of fea-
tures via kernel matrix Kwb. Because the entries in wb in each iter-
ation are sparse and independently sampled from a distribution,
we work with a diversified ensemble of feature subsets. An advan-
tage is this tends to be more robust towards noisy and irrelevant
features in the data. This is important in our case because we do
not have noise-free training data for our algorithm. Moreover, this
also enables us to work with any existing preimage estimation
Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
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algorithm for KPCA in the literature. Finally, we also note that in
addition to feature selection via MPFS, we also obtain the preimagebX as a result of our algorithm. This suggests that MPFS can also be
thought of as a ‘‘meta’’ approach for estimating preimage in KPCA.
4. Experimental results

We evaluate our method on several simulated and real data sets
to show its efficacy. Since we know the relevant features in simu-
lated data sets beforehand, we can verify if our algorithm is able to
identify them in different scenarios. We first present the results on
simulated data sets, and then show the results on real data sets.

4.1. Results on simulated data

We generate several simulated data sets where each data set
has a pattern (linear or non-linear) embedded into it. The pattern
is only over a subset of relevant features out of the total set of fea-
tures, and we want to find those relevant features. Our feature
selection methodology can work with any KPCA algorithm. For
the purpose of this paper, we use the algorithm proposed in Sahu
et al. [17] as the base algorithm. Preliminary experiments did not
show sensitivity to B. We set B ¼ 50 for all the experiments. For
the experiments we set the Gaussian kernel parameter r ¼ 1,
and the sparseness parameter c ¼ 1=

ffiffiffi
F
p

, where F is the total num-
ber of features in the data. However, we conduct some sensitivity
experiments to evaluate the role of these parameters. We also vary
the noise level in the data through the standard deviation of added
Gaussian noise rG. We experimented with polynomial kernels, and
found the conclusions of the experiments to be the same as those
obtained using Gaussian kernel.

The first data set is the Line2 data set which refers to the fact
that the pattern is linear only over two features out of the total
set of features. More specifically, the data set consisting of 50
instances and 70 features is generated as follows: x1 ¼ 0:1t for
t ¼ 1;2; . . . ;50; x2 ¼ 0:5ð1� x1Þ, and x3; x4; . . . ; x70 are independent
Gaussian noise with mean 0 and variance r2

G, Independent Gauss-
ian noise with mean 0 and variance r2

G are also added to x1 and x2.
Fig. 2 shows the feature importance as a function of the feature
index, along with standard errors for feature importance values
obtained by applying MPFS on 10 independent replicates of the
data set.

The second data set Plane5 refers to the fact that the pattern is a
plane over five features. The data set consists of 50 instances and
70 features generated as follows: x1 ¼ 0:1t; t ¼ 1;2; . . . ;50,
x2; x3; x4 are independently, Gaussian distributed with mean 0
and variance 1, x5 ¼ 1� 0:2x1 þ 3x2 þ 2x3 þ 0:5x4, and
x6; x7; . . . ; x70 are independent, Gaussian noise with mean 0 and
variance r2

G. Independent Gaussian noise with mean 0 and variance
r2

G are added to x1; x2; x3, x4 and x5. The results are shown in Fig. 3
(standard errors for feature importance values are obtained from
generating different x2; x3; x4 10 times).

The third data set Curve3 refers to the fact that the pattern is a
curve over three features. The data set consists of 50 data points
and 70 features generated as follows: x1 ¼ 0:1t; t ¼ 1;2; . . . ;50,
x2 is Gaussian distributed with mean 0 and variance 1,
x3 ¼ x2

2=x1, and x4; x5; . . . ; x70 are independent, Gaussian noise with
mean 0 and variance r2

G. Independent Gaussian noise with l ¼ 0
and variance r2

G are added to x1; x2; x3. Fig. 4 shows the results
(standard errors for feature importance values are obtained from
generating different x2 10 times).

The fourth data set Sphere3 refers to the fact that the pattern is
spherical over three features. The data set consists of 50 data
points and 70 features generated as follows. The pattern is of
the form x2

1þx2
2þx2

3¼25 where x1¼5sinðtÞcosðtÞ, x2¼5sinðtÞ
tion patterns using kernel principal component analysis, Knowl. Based Syst.
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Fig. 2. Feature importance plots for MPFS applied to the Line2 data set with for selected values of noise rG . The procedure is replicated 10 times to obtain standard errors for
feature importance. Under moderate noise (rG ¼ 0:9), x1 and x2 can be identified as relevant features visually.
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Fig. 3. Feature importance plots for MPFS applied to the Plane5 data set for selected values of noise rG . The procedure is replicated 10 times to obtain standard errors for
feature importance. Under moderate noise (rG ¼ 0:9), x1; x2; x3; x4; x5 can be identified as relevant features visually.
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sinðtÞ; x3¼5cosðtÞ, for t¼1;2; . . . ;50, and x4;x5; . . . ;x70 are indepen-
dent, Gaussian noise with mean 0 and variance r2

G. Independent,
Gaussian noise noise with mean 0 and variance r2

G are added to
x1;x2;x3. Fig. 5 shows the results (standard errors for feature impor-
tance values are obtained from 10 replicates).

To evaluate the sensitivity of our results to the parameters
involved (r and c), we conducted the above experiments on Line2
and Sphere3 datasets setting (rG 2 f0:9;3g). Specifically, we took
r 2 0:1;10 and c 2 f 2ffiffiffiffi

70
p ; 3ffiffiffiffi

70
p g. Figs. 6–9 show the results. To see

the effect of intermediate noise levels on Line2 and Sphere3 data-
sets, we chose (rG 2 f1:5;2g) keeping r ¼ 1 and c ¼ 1ffiffiffiffi

70
p . Fig. 10

shows the results (standard errors are obtained from 10 replicates).
We see that for all datasets corrupted with a medium level of noise,
our algorithm is able to detect the important features. However,
when we increase the noise level to high (rG ¼ 3), the algorithm
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Fig. 4. Feature importance plots for our algorithm applied to the Curve3 data set for selec
for feature importance. Under moderate noise (rG ¼ 0:9), x1; x2; x3 can be identified as
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cannot detect all the relevant features. Thus, our algorithm works
well for cases with moderate noise levels.

To compare our approach, we tested the algorithm in Muniz
et al. [23] on the Line2 and Sphere3 data sets with rG ¼ 0:9.
Fig. 11 shows the results. In both cases, it is not able to identify
all the relevant features. We also found that the algorithm in
Muniz et al. [23] is able to identify the relevant features in the data
sets when noise is not added. However, even in the presence of
moderate amount of noise, its performance deteriorates as shown
in Fig. 11.
4.2. Results on real data sets

We also evaluated MPFS on several real data sets available in
UCI Machine Learning Repository Bache and Lichman [28] (the
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Fig. 5. Feature importance plots for our algorithm applied to the Sphere3 dataset for selected values of noise rG . The procedure is replicated 10 times to obtain standard errors
for feature importance. Under moderate noise (rG ¼ 0:9), x1; x2; x3 can be identified as relevant features visually.
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Fig. 6. Feature importance plots to illustrate the sensitivity of our algorithm to the kernel parameter r applied to the Line2 data set with selected values of noise rG . Under
moderate noise (rG ¼ 0:9), x1; x2 can be identified as relevant features visually for different values of r.
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address of the website is http://archive.ics.uci.edu/ml/). For our
experiments, we chose Wine, Ionosphere, Sonar, and Hill Valley data
sets. The details of these datasets as well as results obtained from
our experiments are described subsequently. We compare MPFS to
baseline filter based feature selection approaches (T-test, Informa-
tion Gain Ratio (IGR)) as well as sophisticated unsupervised feature
selection procedures described before like LS, MCFS, and UDFS. For
each data set in our experiment, we first standardize all the
features so that each feature has zero mean and unit variance.
Gaussian noise with mean 0 and variance r2

G ¼ 0:81 is then added
to the data set. Different feature selection procedures are applied
with the appropriate parameter settings described by the authors
of the corresponding papers, and the selected features are fed to
a classifier (logistic regression) where the results are computed
with 10-fold cross-validation. The entire procedure is repeated
10 times, and average values of salient metrics for classification
like Accuracy, True Positive Rate(TPR), False Positive Rate (FPR),
Precision, F-Measure and Area under Curve(AUC) are reported (Recall
Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
(2014), http://dx.doi.org/10.1016/j.knosys.2014.08.027
is equivalent to TPR, and hence not reported). We also show the
average values of these metrics when all the features are used
for classification.

4.2.1. Results for wine data set
Wine data set has 178 instances, 13 features, and 3 classes. For

each instance belonging to a type of wine, each of the features cor-
responds to the quantities of a particular constituent for the class
of wine based on chemical analysis. The data is obtained from
three different cultivars in Italy. Since there are 3 classes, we used
a multinomial logistic regression. Here we used Chi-squared based
feature selection instead of T-test as a baseline filter because of 3
classes.

The results of our experiments are shown in Table 1. We see
that MPFS obtained the same results as UDFS which is the best
result among different feature selection methods in terms of all
the classification metrics. It is noteworthy that even if both these
algorithms are unsupervised in nature, the classification metrics
tion patterns using kernel principal component analysis, Knowl. Based Syst.
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Fig. 7. Feature importance plots to illustrate the sensitivity of our algorithm to the kernel parameter r applied to the Sphere3 data set with selected noise rG . Under moderate
noise (rG ¼ 0:9), x1; x2; x3 can be identified as relevant features visually for different values of r.
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Fig. 8. Feature importance plots to illustrate the sensitivity of our algorithm to the sparseness parameter c applied to the Line2 data set with selected noise rG . Under
moderate noise (rG ¼ 0:9), x1; x2 can be identified as relevant features visually for different values of c.
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Fig. 9. Feature importance plots to illustrate the sensitivity of our algorithm to the sparseness parameter c applied to the Sphere3 data set with selected values of noise rG .
Under moderate noise (rG ¼ 0:9), x1; x2; x3 can be identified as relevant features visually for different values of c.
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Fig. 10. Feature importance plots for our algorithm for selected values of rG added to the data sets. As the level of added noise (rG) increases, it becomes difficult to identify
all the relevant features.
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Fig. 11. Feature importance plots for Line2 and Sphere3 data sets based on the algorithm by Muniz et al. [23]. Based on the feature importance values, it is not able to identify
all the relevant features when the data sets are corrupted with moderate noise (rG ¼ 0:9).

Table 1
Classification results for different feature selection methods for Wine dataset. ‘‘All’’
refers to the fact that all features were used by the classifier (no feature selection),
and entries for this column are italicized. ‘‘CHI’’ refers to Chi-squared based feature
selection method. The best entries for each metric among the feature selection
methods only are marked in bold.

Metric All CHI IGR LS MCFS UDFS MPFS

Accuracy 0.971 0.949 0.949 0.955 0.966 0.971 0.971
TPR 0.972 0.949 0.949 0.955 0.966 0.972 0.972
FPR 0.014 0.027 0.027 0.023 0.017 0.013 0.013
Precision 0.972 0.95 0.95 0.956 0.966 0.973 0.973
F �Measure 0.972 0.949 0.949 0.955 0.966 0.972 0.972
AUC 0.999 0.986 0.986 0.974 0.987 0.996 0.996

Table 3
Classification results for different feature selection methods for Sonar dataset. ‘‘All’’
refers to the fact that all features were used by the classifier (no feature selection),
and entries for this column are italicized. The best entries for each metric among the
feature selection methods only are marked in bold.

Metric All T-test IGR LS MCFS UDFS MPFS

Accuracy 0.730 0.721 0.735 0.735 0.754 0.711 0.759
TPR 0.731 0.721 0.736 0.736 0.755 0.712 0.76
FPR 0.273 0.284 0. 269 0.266 0.249 0.295 0.249
Precision 0.731 0.721 0.735 0.736 0.755 0.711 0.76
F �Measure 0.731 0.721 0.735 0.736 0.755 0.711 0.758
AUC 0.763 0.779 0.8 0.811 0.818 0.749 0.822
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are very close to those obtained using all the features. We also see
that CHI and IGR methods gave similar results, and MPFS per-
formed better than these baseline filter methods which utilize
the information about the class label in the dataset.

4.2.2. Results for ionosphere data set
Ionosphere data set has 351 instances, 34 features, and 2 classes.

The instances belonging to ‘‘Good’’ class convey the fact there is
evidence of some type of structure in the ionosphere whereas
the instances belonging to ‘‘Bad’’ class do not show the evidence
of any structure. The data is obtained from Goose Bay, Labrador.
Since there are 2 classes, we used two-class logistic regression
for classification.

The results of our experiments are shown in Table 2. We can see
that overall MPFS performed better in all metrics (except
F �measure and AUC where it is slightly worse) among different
feature selection methods. We also note that using the total set
of features provided the best results.

4.2.3. Results for sonar data set
Sonar data set has 208 instances, 60 features, and 2 classes out

of which 111 instances belong to the ‘‘Mine’’ class and rest 97
Table 2
Classification results for different feature selection methods for Ionosphere dataset.
‘‘All’’ refers to the fact that all features were used by the classifier (no feature
selection), and entries for this column are italicized. The best entries for each metric
among the feature selection methods only are marked in bold.

Metric All T-test IGR LS MCFS UDFS MPFS

Accuracy 0.888 0.712 0.811 0.806 0.814 0.803 0.817
TPR 0.889 0.712 0.812 0.806 0.815 0.803 0.818
FPR 0.153 0.5 0.259 0.301 0.264 0.302 0.284
Precision 0.889 0.761 0.81 0.812 0.814 0.808 0.824
F �Measure 0.887 0.653 0.807 0.795 0.809 0.793 0.808
AUC 0.87 0.535 0.843 0.74 0.799 0.719 0.818

Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
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instances belong to ‘‘Rock’’ class. The features for ‘‘Mine’’ class
are obtained by recording sonar signals bouncing off a metal cylin-
der at different angles whereas the features for ‘‘Rock’’ class are
obtained under similar conditions from rocks. We used two-class
logistic regression for classification.

The results of our experiments are shown in Table 3. We can see
that MPFS performed the best in all metrics among different fea-
ture selection methods. Moreover, the performance of MPFS is
slightly better than MCFS. Thus, both MPFS and MCFS deliver the
best results. It is noteworthy that although MPFS and MCFS are
unsupervised, the features provided by them perform better classi-
fication than the case when all features are selected.
4.2.4. Results for hill valley data set
Hill Valley data set has 606 instances, 100 features, and 2 clas-

ses. Essentially, each instance is a sequence of 100 points classified
as ‘‘Hill’’ if a ‘‘bump’’ is observed when plotting the points on a
two-dimensional plot or classified as ‘‘Valley’’ if a dip is observed.
For our purpose, we took the dataset with noise where the bump/
dip is not trivial to observe. Again we used two-class logistic
regression for classification.
Table 4
Classification results for different feature selection methods for Hill Valley dataset.
‘‘All’’ refers to the fact that all features were used by the classifier (no feature
selection), and entries for this column are italicized. The best entries for each metric
among the feature selection methods only are marked in bold.

Metric All T-test IGR LS MCFS UDFS MPFS

Accuracy 0.526 0.486 0.511 0.615 0.625 0.608 0.622
TPR 0.526 0.487 0.512 0.616 0.625 0.609 0.622
FPR 0.474 0.522 0.489 0.392 0.382 0.399 0.385
Precision 0.526 0.468 0.511 0.657 0.687 0.664 0.666
F �Measure 0.526 0.422 0.511 0.585 0.589 0.57 0.593
AUC 0.524 0.447 0.494 0.645 0.665 0.652 0.67

tion patterns using kernel principal component analysis, Knowl. Based Syst.
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The results of our experiments are shown in Table 4. We can see
that the performance of MPFS was very competitive with MCFS. It
was slightly worse than MCFS in terms of Accuracy; TPR; FPR;
Precision but was better in F �measure; AUC. It is noteworthy that
MCFS and MPFS select features that result in much better classifi-
cation metrics than those obtained using all the features.

Overall we can see that MPFS resulted in the best (very close to
best in case of Hill Valley dataset) classification performance.
Although MPFS is unsupervised, it outperformed the baseline filter
based feature selection procedures which make use of the informa-
tion about class label.

4.3. Results on face image data

A real-world application of KPCA is denoising images. For our
purpose, we chose a real face data set available at http://iso-
map.stanford.edu/datasets.html. There are 698 data points and
the dimensionality of each data point is 4096. We took all 698
images, added independent Gaussian noise (l ¼ 0 and rG ¼ 0:5)
to the images to create the noisy data set, and subsequently deno-
ised the test set by obtaining preimages. We chose the algorithms
proposed by Kwok and Tsang [14] and Zheng et al. [15] to obtain
preimages. To evaluate the efficacy of our feature selection proce-
dure, we computed residual error (RSS) for each image with and
without feature selection. RSS is computed as follows: Let
xi; i ¼ 1; . . . ;N; xk 2 Rp represent a set of N observations in the
input space. We estimate the preimage residual root sum of
squared error (RSS) for a method by calculating the Euclidean dis-
tance between the obtained preimage x̂ and its true image t as
shown in Eq. (8).

RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðx̂i � tiÞ2

r
ð8Þ

A smaller value of RSS shows better performance. We note that Eq.
(8) can be used to calculate the RSS for each image by setting N ¼ 1
for that particular image. Also we decided to choose three levels –
top 5%, top 10% and top 20% – of the features when performing fea-
ture selection. We then computed the RSS first without performing
feature selection and then selecting features at the three levels
described previously. Fig. 12 shows the boxplot results of RSS
obtained for both algorithms under the scenario described above.

We computed the difference between the RSS value obtained
without feature selection, and then selected features at each of
the three levels for each of the 698 instances for both the algo-
rithms. We then performed a one-sided Wilcoxon signed-rank test
(the alternate hypothesis is that the median difference is greater
than zero). The p-values obtained for all of the tests were smaller
Please cite this article in press as: A. Sahu et al., Feature selection for noisy varia
(2014), http://dx.doi.org/10.1016/j.knosys.2014.08.027
than 0.001. Thus, MPFS on the preimage estimation algorithms
provides statistically significant improvement over the results
obtained from without using MPFS.
5. Conclusion and further study

A new feature selection algorithm (MPFS) for KPCA for the case
of noisy training data is presented. The data points are projected
onto multiple sparse random subsets of features, and then a fea-
ture importance measure is calculated by denoising the data
matrix using matched pairs of projections (with and without a fea-
ture). An advantage of working with an ensemble of feature sub-
sets is they tend to be more robust towards noisy and irrelevant
features in the data. Also, our feature selection methodology can
used with any suitable KPCA algorithm available in the literature.
Finally, we also note that in addition to feature selection via MPFS,
we can also obtain the preimage. This suggests that MPFS can also
be thought of as a ‘‘meta’’ approach for estimating preimage in
KPCA. We demonstrate the effectiveness of our algorithm on sev-
eral simulated and real data sets.

Since the focus of this paper is on feature selection, we did not
investigate fully the ‘‘meta’’ approach ability of MPFS to estimate
the preimage for KPCA. Given the fact that preimage estimation
is important for many real applications like image denoising, man-
ufacturing variation analysis, etc., we plan to work on it in future.
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